Numerical evaluation of claim by Shapiro.

by
Myron W. Evans,
H. M. Civil List

(www.aias.us, www.atomicprecision.com, www.upitec.org, www.et3m.net)

The correct evaluation of the Shapiro claim is as follows:
Define firstly:
$f(r)=\left(1-\frac{r_{0}}{r}\right)^{-1}\left(1-\left(1-\frac{r_{0}}{r}\right)\left(\frac{R_{0}^{2}}{r^{2}}\right)\right)^{-1 / 2}$.
The time delay is:
$\Delta t=t_{3}-t_{0}$,
where

$$
\begin{align*}
t_{3} & =\frac{2}{c}\left(\int_{R_{0}}^{R_{E}} f(r) d r+\int_{R_{0}}^{R_{P}} f(r) d r\right) \tag{3}\\
t_{0} & =\frac{2}{c}\left(\int_{R_{0}}^{R_{E}}\left(1-\left(\frac{R_{0}^{2}}{r^{2}}\right)\right)^{-1 / 2} d r+\frac{2}{c}\left(\int_{R_{0}}^{R_{P}}\left(1-\left(\frac{R_{0}^{2}}{r^{2}}\right)\right)^{-1 / 2} d r\right.\right. \\
& =\frac{2}{c}\left(r_{1}+r_{2}\right) . \tag{4}
\end{align*}
$$

Wald in his equation (6.3.45) gives an expression for Δt. Firstly, note that Wald's notation is:
$M($ Wald $) \longrightarrow \frac{M G}{c^{2}}($ S.I. $)$
So Wald gives, in S.I. units:

$$
\begin{aligned}
\Delta t= & \frac{2}{c}\left[\left(R_{E}^{2}-{R_{0}}^{2}\right)^{1 / 2}+\left({R_{P}}^{2}-{R_{0}}^{2}\right)^{1 / 2}\right] \\
& +\frac{2 M G}{c^{3}}\left[2 \log _{e}\left(\frac{R_{E}+\left(R_{E}^{2}-R_{0}^{2}\right)^{1 / 2}}{R_{0}}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +2 \log _{\mathrm{e}}\left(\frac{R_{P}+\left(R_{P}^{2}-R_{0}^{2}\right)^{1 / 2}}{R_{0}}\right) \\
& \left.+\left(\frac{R_{E}-R_{0}}{R_{E}+R_{0}}\right)^{1 / 2}+\left(\frac{R_{P}-R_{0}}{R_{P}+R_{0}}\right)^{1 / 2}\right] . \tag{6}
\end{align*}
$$

The first part of Eq. (6) is our Eq. (4):
$t_{0}=\frac{2}{c}\left(r_{1}+r_{2}\right)=\frac{2}{c}\left[\left({R_{E}}^{2}-{R_{0}}^{2}\right)^{1 / 2}+\left(R_{P}^{2}-R_{0}^{2}\right)^{1 / 2}\right]$,
which is obtained analytically from the condition:
$\frac{r_{0}}{R_{0}}=0$.
It is important to note that Shapiro and Wald give Δt as an expression adding to t_{0}. i.e.

$$
\begin{equation*}
\Delta t(\mathrm{Wald})=t_{0}+t_{3} \tag{9}
\end{equation*}
$$

so the so called "time delay" is a time increase.
Therefore, the claim by Shapiro repeated by Wald is:

$$
\begin{align*}
t_{3}= & \frac{2 M G}{c^{3}}\left[2 \log _{e}\left(\frac{R_{E}+\left(R_{E}^{2}-R_{0}^{2}\right)^{1 / 2}}{R_{0}}\right)\right. \\
& +2 \log _{e}\left(\frac{R_{P}+\left(R_{P}^{2}-R_{0}^{2}\right)^{1 / 2}}{R_{0}}\right) \\
& \left.+\left(\frac{R_{E}-R_{0}}{R_{E}+R_{0}}\right)^{1 / 2}+\left(\frac{R_{P}-R_{0}}{R_{P}+R_{0}}\right)^{1 / 2}\right] . \tag{10}
\end{align*}
$$

Check:

This is to evaluate Eq. (3) numerically to machine precision, and compare with Eq. (10).

Input parameters:
These are r_{0}, R_{0}, R_{E} and R_{P}, but for numerical purposes, any input parameters can be used. Use:

$$
\begin{aligned}
& M G=1.327581035 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2} \\
& c=2.997925 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{2 M G}{c^{3}} & =9.8543672 \times 10^{-6} \mathrm{~s} \\
& =9.8543672 \text { microseconds. }
\end{aligned}
$$

