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M. FERRARIO, P. MARIN*, P. GRIGOLINI* and M. W. EVANS 

Chemistry Department, University College of Wales, Aberystwyth, SY23 INE, U.K. 

(Received 23 May 1983) 

ABSTRACT 

It has recently been suggested that non-linearity implies that the statistics 

governing the transient behaviour of translational correlation functions of the 

motion cannot be Gaussian. A computer simulation of CH2CI 2 under EMLG pilot 

project conditions shows that rotational as well as translational motion 

exhibits strong dynamical non-Gaussian features. It is shown that these effects 

cannot be ascribed to the non-linear drift appearing in the Markoffian version 

of the Euler-Langevin equation. This strongly supports an investigation line 

based on the research of a hidden non-linear dissipation coupling. 

INTRODUCTION 

It has recently been sBggested that a non-linear extension of the "reduced" 

model theory (RMT) [1,2] can account for the major findings of the computer 

simulation of molecular dynamics [3,4]. Grigolini and co-workers found that 

this approach explains both the non-diffusional slope property and non-Gaussian 

behaviour [3,4]. Note that refs. 3 and 4 concern the translational case. 

When dealing with the rotational case a new problem arises. The structure of 

the Euler-Langevin equation is itself non-linear thereby leading, in principle, 

to a non-Gaussian behaviour for the angular velocity. However, this kind of 

non-Gaussian behaviour in a sense is trivial in that it is traced back to a well- 

known deterministic structure, whereas the main aim of the RMT [1,2] is to detect 

hidden non-linearity within the context of the dissipation interaction between 

the variable of interest (in the present case the angular velocity m or the 

angular momentum J) and its thermal bath. According to the RMT [1,2] the non- 

Markoffian nature of the variable of interest is simulated by a deterministic 
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coupling with a set of "virtual" variables undergoing the influence of fluctuation 

and dissipation Markoffian in nature. The latest version of the RMT [3,4] is 

based on the non-linear character of this deterministic coupling, thereby 

exhibiting a misleading similarity with the non-linear drift of the Euler- 

Langevin equation. 

Tha mainaims of this paper are: (i) To prove that rotational dynamics is not 

Gaussian (see next Section); (ii) To show that such a non-Gaussianicity cannot 

be ascribed to the non-linear structure of the Euler-Langevin equation (see last 

Section). This is tantamount to assessing that the methods of [3,4] can be 

extended to the rotational case thereby offering the RMT a wider field of appli- 

cation. 

Computer Simulation of Transient Non-Gaussian Behaviour 

The molecular dynamics algorithm used is TETRA, at EMLG pilot project state points 

for CH2C12, i.e. 293 K and 177 K at ibar. The computational details, those of 

intermolecular potential and experimental checking, are fully reported elsewhere 

[5]. Note that indications of non-Gaussian behaviour have been reported previously 

using molecular dynamics simulation, by Rahman [6] for argon, Berne and Harp [7] 

for CO, and Evans et al. [8] for N 2 in the liquid and high temperature glass. 

Grigolini et al. [9] reported such behavour in an artifical triatomic of C2v 

symmetry using the algorithm TRI2, and Balucani et al. [3] have also reported non- 

Gaussian effects in computer argon. The effects are present therefore in six 

different algorithms, six different potentials, and with differing box sizes, 

different state points and numbers of sample molecules. They are therefore 

unlikely to be artifacts of the molecular dynamics method. 

The algorithm TETRA for CH2CI 2 uses 108 molecules with a sophisticated site- 

site interaction potential and using it Evans and Ferrario [5] have produced a 

wide variety of spectra suitable for the comparison with experimental data of the 

EMLG pilot project. In some cases TETRA produces information otherwise virtually 

unobtainable, either experimentally or theoretically. An example is 

<J(t).J(t) J(O).J(O)>, where J is the molecular angular momentum. Another is 

<v(t).v(t) v(O).v(O)>, where v is the centre of mass linear velocity; and yet 

another is the cross-term a.c.f.'s <J(t).J(t) v(O).v(O)> or <v(t).v(t) J(O).J(O)>. 

Provided: 

i) transient statistics are Gaussian; 

ii) <J(O).J(O)> is statistically independent of <v(O).v(O)> (i.e. equipartition); 

these a.c.f.'s may be interrelated analytically. In this case: 
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<v(t).v(t) v(O).v(O)> = 2 ( i  + 

<v4(O)> 5 

2 <v(t) .v(O) > 2 

3 <v2(0)>2 
( i )  

<J(t) .J(t) J(O) .J(O) > 

<j4(o) > 

3 
2 2 

(I I + 12 + 13 )2 + 2 ~=i li Xi (t) 
= 

2 
(I I + 12 + 13)2 + 2 (I 2 + 12 + 

(2) 

where ×i(t) = <Ji(t)Ji(O)>/<Ji2(O)> , and: 

J = Ji i + J2 j + J3 k (3) 

where i, j and k are unit vectors and Jl' J2 and J3 are components of J in the 

molecule frame. 

In eq.(2) If, 12 and 13 are the three principal moments of inertia of CH2C12, 

defined about the axes of i, j and k respectively. 

The computer results are compared with those of eqs.(1) and (2); in figs.(1) 

and (2). They are clearly non-Gaussian in the interval t=O to equilibrium (t + ~) 

The predictions of eqs.(1) and (2) are plotted as the dashed curves. The maximum 

deviation in each case occurs at around 0.3 ps after t=O. 
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Figure (i) 

(a) - -  

(b) 

Ordinate : 

<v(t).v(t) v(O).v(O)>/<v4(O)> , computer simulation. 

3 2Vv   j 0 >)2 ) Gaussian statistics, i.e. ~( 1 + ~ (< 

<v(t).v(O)>/<v 2> , computer simulation. 

normalized a.c.f. ; Abscissa : time/ps 
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Figure (2) 

(a)-- <J(t).J(t) J(O).J(O)>/<j4(O)> , computer simulation. 

..... gaussian result , see text. 

(b) <J(t).J(O)>/<J2> , computer simulation. 

Ordinate : normalized a.c.f. ; Abscissa : time/ps 

Figure (3) 

(a) 

(b) 

Ordinate : 

<F(t).F(t) F(O).F(O)>/<F4(O)> , computer simulation. 

<F(t).F(O)>/<F2(O)> , computer simulation. 

normalized a.c.f.; Abscissa : time/ps. 

The analysis brings the same conclusion for the molecular force F and torque T. 

In figs.(3) and (4) we mark points where the non-Gaussian nature of the simulation 

results is clearly apparent, and analytical expressions linking, for example, 

<F(t).F(t)F(O).F(O)>/<F4(O)> to <F(t).F(O)>/<F2(O)> are not necessary. However, 

in Appendix A we sketch their derivation. 

Finally, in fig.(5) we illustrate the simulation results for 

<v2(t) j2(O)>/<v2 (O)><J 2 (O)> (and <F2(t)Tq2(O)>/<F2(O)><Tq2(O)>). These reflect 

very clearly the nature of rotation/translation interaction in diffusing CH^CI 2. 

2 2 <F~iO)> We note that <v (0)> and <J (0)> are statistically uncorrelated (whereas 

and <T 2(0)> are not). We also note that any analytical theory which purports 
q 

a description of these functions must produce <v(t).J(O)>=<J(t)°v(O)>=O because 

of the physics of parity reversal. The derivation of <v2(t)j2(O)>/<v2(O)><j2(O)> 

from <v(t).v(O)> and <J(t).J(O)> is sketched in Appendix B, where we use two 

dimensional Gaussian statistics. In conclusion it is clear that the computer 
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Figure (4) 

<Tq(t).Tq(t)Tq(O).Tq(O)>/<Tq4(O)> , computer (a) simulation. 

(b) <Tq(t) Tq(O)>/<Tq2(O)> , computer simulation. 

Ordinate : normalized a.c.f. ; Abscissa : time/ps. 

Figure (5) 
(a) <v(t) .v(t) J(O) .J(O) > 

<vZ(O)><jZ(O)> , computer simulation. 

Note that <v(t).J(O)>=<J(t).v(O)>= 0 for all t by parity reversal symmetry. 

This is corroborated in the m.d. simulation. If we assume tile p.d.f.'s of 

v and J to be Gaussian, then this, together with the foregoing parity 

reversal condition, implies that <v2(t) j2(O)>=<j2(t) v2(O)>= 0 theoretically 

for all t. The existence of the simulated function of fig. (5a) is 

therefore a strong support for non linear theories of the liquid state. 
(b) __<F(t)'F(t) rq(O).Tq(O)> 

<Fz(O)><Tq2(O)> 

Note that <F2(O) T 2(O)>=<F~O)><Tq2(O): and that the force squared and torque 
q 

squared are statistically correlated. 

Abscissa ; time/ps. 

simulation results are non-Gaussian in nature. This can lend strong support 

to the research line proposed in 2,3, provided that we succeed in showing that 

these non-Gaussian features do not depend on the non-linear structure of the 

Markoffian Euler-Langevin equation. This is the main aim of the next Section. 

THEORETICAL EVALUATION 

When making the Markoffian assumption on the interaction between and its 
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thermal bath, the motion of the variable ~ in a rotating frame fixed to the 

molecule is described by the well-known Euler-Langevin equations [2] which read 

~1 = %imjmk - Bimi + Ai(t) z - Ei(w ) + Ai(t ) (4) 

where T i = (Ik-Ij)/I i and i, j and k are cyclically permuted among I, 2 and 3. 

The stochastic forces A. are assumed to be white Gaussian noises defined by 
i 

<Ai(tl)Aj(t2)> = 2 ai6ij6(tl-t2) (5) 

The equation of motion of a variable of interest f is then driven by 
o 

= 
fo ~o fo (6) 

with 

= F + s o (7) 

2 2 
3 (~--- Ej(~) - (8) 

F ~ -5= 1 ~. aj~.2 ) 
J J 

The main difficulty met when dealing with eq.(6) descends from the non-linear 

nature of Ei(m), which renders this equation equivalent to an infinite hierarchy 

of linear equations. The algorithm of ref. i0 (which, in turn, is a natural 

outcome of the theoretical background behind the RMT) allows us to solve this 

problem via a continued fraction expansion, the virtually infinite parameters of 

which are straightforwardly evaluated on the basis of a Mori-like theory (see 

Appendix C). 

When evaluating the correlation functions <Ji(O)Ji(t)>, fo 

with Ji(i = 1,3), whereas the calculation of 

~(t) ~ (<j2(O)j2(t)> - <j2>2)/<j4> 

implies that f be identified with j2 _ <j2>. 
o 

To apply this method of calculation, however, we have to rely on suitable 

values of the friction parameters B.. These can be determined via a sort of 
l 

"semiempirical" method as follows. Let us call el, e 2 and e 3 the three unit 

vectors defined by the principal moment of inertia frame in the CH2CI 2 molecule. 

The a.c.f.'s <ei(O).ei(t)> (i = 1,3) are found via computer simulation to be 

almost exponential with damping Yi" On the other hand, to a first approximation 

these dampings are shown theoretically (see Appendix C) to be related to the 

friction parameters B 1 via the following relationship 

-1 
1 1 

Yi = kT -- + -- (iO) 
(IjBj IkBk ) 

in cyclic permutation of the indices i,j,k. Eq. (9) allows us to determine the 

parameters B. to be used in our theoretical calculation in terms of the 
i 

"experimental" dampings Yi" 

has to be identified 

(9) 
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We are now in a position to illustrate the results of this "exact" calculation 

First of all, let us consider the curves of figs. (6) and (7). These have been 

evaluated by using the dampings B i provided by eq. (i0). The moments of inertia 

are I 1 = 2.526 10 -38 gm cm 2 12 = 0.262 10 -38 gm cm 2 13 = 2.737 10 -38 gm cm 2 

The friction parameters are B 1 = B 3 = 18.8 THz and B 2 = 49.4 Hz at T = 177 K and 

B 1 = B 3 = 11.7 THz and B 2 = 22.0 THz at T = 293 K. The latter parameters refer 

to CH2CI 2 at 1 bar. We can remark that the distance between the exact ~(t) and 

its Gaussian approximation ~G(t) is less than 0.5 10 -2 throughout the whole range 

of t. 
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0.i75 0.35 

Figure (6)) 

(a) ~(t), calculated. In this scale ~(t) coincides with its Gaussian 

approximation, ~G(t). 

(b) <J(t).J(O)>/<j2(O)> , calculated. 

The molecular parameters are those concerning T = 177K. 

Ordinate : normalized a.c.f. ; Abscissa : time/ps. 

Figure (7) 

(a) ~(t), calculated. In this scale #(t) coincides with its Gaussian 

approximation, ~G(t). 

(b) <J(t).J(O)>/<J2(O)> , calculated 

The molecular parameters are those concerning T = 293K. 

Ordinate : normalized a.c.f. ; Abscissa : time/ps. 
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A significant non-Gaussian behaviour is exhibited by the curves of fig. (8). 

However, these curves concern values of the parameters B I which are significantly 

smaller than those provided by eq. (i0). Therefore, according to our "semi- 

empirical" criterion this result has to be rejected. 

1.0 

1.4 2:.8 p s  

O 

(b) 

1.4 2.8 

Figure (8) 

(a) 

(b) ..... 

~(t) , calculated. 

Gaussian result, see text. 

<Jl(t) oJl(O)>/<Jl2(O)> , calculated 

<J2(t),J2(O)>/<J22(O)> , calculated. 

The parameters B i are : B I = B 3 = l.ll THz and B 2 = 2.22 THz. 

Ordinate : normalized a.c.f. ; Abscissa : time/ps. 

The exponential behaviour exhibited by ~(t) in figs. (6) to (8) can easily be 

accounted for as follows. Let us explicate the expressions for the expansion 

parameters 1 o, A I, 11 (for their meaning see Appendix C). We obtain 

io = - 2E I~B i / E I~ (ii> 
i i ~ 

22 2 22 2 22 2~ 2] -1 
2 -4 [III2(BI-B 2) + 1213(B2-B3 ) + III3(BI-B3) ~ E I i (12) AI = i 

22 2 2 2 2 2 2 2 2 (BI_B3)] 
%1 = -2 ~I~(BI-B2)(BI-B 2) + 1213(BE-B3)(B2-B3 ) + III3(BI-B 3) 

-i 

2 2 + 1213(B2_B3 ) + III3(BI_B3 ) ] x tlII2(BI-B2 )2 2 2 2 2 2 2 . (13) 

It is easily seen for all the three groups of values of B i of figs. (6) to (8) 
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that ' ~1%o-%112>>IA~ so that the Mori chain providing ~(t) is almost exactly 

truncated at the zeroth order, i.e. ~(t)~ exp (-hot). 

As far as the non-Gaussian behaviour of the curves of fig. (8) is concerned, 

we can note that this seems to depend on the fact that the correlation functions 

<JiJi(t)> compared to ~(t) are much faster that in the cases of figs. (6) and (7). 

In conclusion, we are in a position to assert that no significant non-Gaussian 

effects can be given by eq. (4) for reasonable values of the parameters B.. 
l 

Therefore, the strong non-Gaussian properties exhibited by the "experimental" 

results of figs. (i) to (4) have to be traced back to the dissipative interaction 

driving ~ rather than the drift term. The appearance of rototranslational 

interactions on the correlation function <j2(O)v2(t)>, furthermore, leaves open 

the question whether or not this effect can be related to the same non-linear 

mechanism which destroys the Gaussian relationship between the two time correlation 

functions and higher-order ones. 
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APPENDIX A: DERIVATION OF ANALYTICAL EXPRESSION FOR HIGHER MOMENT FORCE AND 

TORQUE AUTOCORRELATION FUNCTIONS 

The Gaussian distribution can be written as: 

3/2 2 
3 3 .x-m) 

(o-7~) exp [ - ~ ~-~-- ] (AI) 

2 
where m is the mean, o the variance. In the case of linear centre of mass 

velocity the probability density function may be defined as: 

M (A2) ev(v,t,Vo, o) = i 2~KT (i- ~--] 3/2 

x exp i- M(v - VoW(t))2 1 

2KT (i - ~2(t)) 

where M is the particle mass, and: 

~(t) = <v(t).v(O)>/<v(O).v(O)> (A3) 

The variance is: 

0 2 = 3~T (i - ~2(t)) (A4) 

M 

and the mean: 

m = VoW(t) (A5) 
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being the particle's initial velocity. The required fourth moment is v 
o 

calculated through the relation: 
4 -i 

<v(t).v!t)Vo.V >.<v > 
o (A6) 

l /d3v ° = jd3v 7 v.v Vo.Vo P(v,tlvo,O) P(v o, 0), 

where P(Vo, O) is the equilibrium probability distribution function. 

Evaluating the integral, we have [7,9] the results of eq. (i). Similarly 

we can derive [9] eq. (2) for the angular momentum. The integrals for 

force and torque may be evaluated, but with considerable more difficulty. 

For Gaussian statistics it is clear that when <F(t).F(O)>, for example, 

vanishes, then all <F2n(t)F2n(o) > should also vanish at the same instant t. 

This is not the case in the computer simulation for either the force or the 

torque (figs. (3) and (4)). 

APPENDIX B : THE MIXED-MOMENT A. C. F. ' S 

Assuming <v2> to be independent, statistically, of <j2>, we may evaluate 

the mixed a.c.f.'s using the two dimensional equilibrium Gaussian 

distribution: 
i - X2/2Ox 2 

P(XI' X2) = ( ~2~ e ) 
(BI) 

i - X2/2o 2 
x ( ~ u  .~,, e z x 2 ) 

x2 

for uncorrelated variables X 1 and X 2. In the case of force squared and 

torque squared we must use the correlated form : 
I 

P(YI' Y2 ) = 2~ /i - t 2 

°Y 1 °Y 2 

I_ i y2 2~ Y1 Y2 + Y2 

xexp 2(1- ~2) ( - )  
o2 02 
YI °YI °Y2 Y2 

where • is the correlation coefficient and oyl and Oy2 are the standard 

deviations of Y1 and Y2 respectively. Note, however, that the correlation 

of force and torque <F(t).Tq(O)> vanishes, whereas <F2(t)Tq2(O)> function 

of course does not vanish. This is because the parity reversal symmetry of 

F is different from that of T . q 
Eqs. (BI) and (B2) imply that: 

<v2n(t)j'2n(o)> = <v2n(o)j2n(t)> = 0 (B3) 

for all t and n, if v and J are transiently Gaussian in nature. Fig. (5a) 

is clear evidence of the contrary. 



Similarly: 

<F2n(t)Tq2n(o)> = <F2n(O)Tq2n(t)> = O (B4) 

for all t and n for transiently Gaussian F and T . This is obviously not 
q 

the case either analytically or numerically (fig. (5b)). 
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APPENDIX C 

Dupuis' algorithm [ii] leads to an easy evaluation of the Mori expansion 

parameters A 2 and I. [iO]. These parameters in turn give the Laplace 
i i 

transform of the correlation function ~(t) = <f f (t)> (see egs.(6) to (8)) 
OO 

this continued fraction expansion : 

A 
~(z) = i 

2 (cl) 
z + l ° + A 1 

z + 1. + ] 

As far as the time behaviour of ~(t) is concerned, its explicit e valuation 

can straightforwardly [i0] be given by: 

Et 
~(t) : z <li~><~ii> e ~ (C2) 

Z 

where I~>,<~l and E are respectively the eigenstates (right and left) and 
Z 

eigenvalues of the matrix A defined as follows: 

F I ° 1 O. 

A = I -A~ t l  1 (C3) 
i 

0 - ~  x2 

I t  i s  i n t e r e s t i n g  t o  n o t i c e  t h a t  t h i s  a l g o r i t h m  c a n  a l s o  b e  a p p l i e d  t o  

t h e  c a s e  w h e r e  t h e  v a r i a b l e  o f  i n t e r e s t  i s  t h e  o r i e n t a t i o n  g .  I n  s u c h  a c a s e  

t h e  e q u a t i o n  o f  m o t i o n  f o r  t h e  p r o b a b i l i t y  d e n s i t y  P ( g , ~ )  i s  

~__ P(g,w;t) = (-iI~.J+ F) P(g,w;t) (C4) 
St 

where T is the rotation generator and the operator F is defined by eq. (8). 

When fo is identified with el(i = 1,3) and 

+ 
L ° = -i~.J+ F, (C5) 

the zeroth-order of our continued fraction approach is shown to lead to 

eq. (iO). 
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