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Computer simulation and analytical theory are used to characterise, for the first time, the fundamental cross-correlation
function (c.c.f.) between a molecule’s linear centre of mass velocity (v) and its own angular velocity (w) or angular
momentum (J) in the laboratory frame of reference.

The c.c.f. ((p(£)wT(0))) is made visible in the laboratory frame by breaking the overalt parity symmetry of the hamiltonian by
application of directional force to the molecular ensemble, in this paper a unidirectional, static, external, electric field of force
(E).

The characteristics of ((v(t)eT(0))) are investigated for different field strengths E and its appearance is linked analytically to
measurable electric-field induced far infra-red birefringence in liquids and liquid crystals.

1. Introduction

The statistical correlation between molecular rotation, measured through the molecular angular
velocity (e) or angular momentum (J), and molecular centre of mass translation, measured through the
centre of mass linear velocity (v), is fundamental to our understanding of the liquid and condensed
states of molecular matter. The simplest way to express this statistical relation is through the
cross-correlation matrix C, = (v(t)w"(0)) (or (v(1)J(0))), the C, function. There have been many
attempts to describe C, analytically in the laboratory frame, starting with the important work of Condiff
and Dabhler [1], who used the terminology and methods of the Kirkwood school, based on hydro-
dynamics and the diffusion theory originally due to Einstein.

Many of these papers are, however, incomplete, in that they have attempted to construct theories for
C,, for an isolated molecular ensemble free of any externally applied force field. In this case

C,=0 forallz, o))

because the sign of v with parity inversion is changed, and that of @ and J is unaffected. Eq. (1) follows
via a theorem due to Berne et al. [2-4], published in final form in 1976.

Berne et al. excluded [3, 4] from the parity veto molecular ensembles to which are applied fields of
force, vectors, whose directional properties imply that the complete hamiltonian under consideration is
itself changed in response to parity inversion. (In other words if the coordinates and linear momenta all
change sign the complete hamiltonian does not remain the same.) This invalidates eqn. (1), and means
that C,, does not necessarily vanish in the presence, for example, of an electric field, E, or magnetic field
H. :

It is true that a magnetic field has different parity and time-reversal properties to an electric field,
but this does not necessarily deny it the ability of inducing rotation—translation coupling. For example, if
the molecule has a magnetic dipole moment u,, and is subject to a magnetic field H, there is a torque
—~pm X H generated analogous to the electric torque to be considered in this paper. It is significant in
this context that a magnetic field aligns a nematic liquid crystal, causing a large lab. frame bire-
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fringence. Birefringence implies the presence of rotation—translation coupling, as this paper aims tc
show.

This paper reports the discovery of the C, function by computer simulation. The characteristics of
C,. produced by computer simulation, are interpreted with simple analytical theory developed by
Grigolini et al. [5] for molecular motion in the presence of a static electric field.

An experimental method of measuring C, is suggested using electric field induced birefringence [6]
in the far infra-red.

2. The algorithm

The search for C, was carried out on a model of the C,, molecule dichloromethane chosen for the
E.M.L.G. pilot project [7]. The molecule was modelled with a very simple 3x3 Lennard-Jones
atom-atom potential, taking the —CH, groups as moieties. Partial charges were made to suffice as ¢
first-order approximation to the electrostatic forces between 108 of these CH,Cl, model potentials. The
complete potential is fully described in the literature, together with Ferrario’s extensions [8] of the
Verlet algorithm used in the numerical integration of Newton’s equations for the ensemble. The
standard assumptions were made about pair-additivity, boundary conditions and long-range cut-off ir:
the potential. These are also described in more detail elsewhere [8]. The temperature of the runs was
293 K, and the molar volume 10™* m® as in ref. 8.

The newly developed technique of field-effect computer simulation was employed to apply to the 103
molecule ensemble an external, static, electric field E in the z-axis of the laboratory frame. This exerts
on each molecule a torque

F=-uxE, (2

where u is the molecular (electric) dipole moment. By incorporating F in the forces loop of thz
algorithm it becomes possible to monitor the transient development of birefringence in the system [7. 9]
and after equilibrium, the field-on correlation functions (c.f.’s), including the nine elements of C,,. Each
element is normalised, e.g.

w _ (8w, (0)

X ¥
Ce = B0 ) -

(vi>l/2<wi>l/2 ’

and so on. At field-on equilibrium, laboratory frame components of normalised autocorrelation
functions (a.c.f.’s) || and L to the electric field are different in time dependence, because the liquid is
birefringent [6], i.e. no longer isotropic.

The transient regression to equilibrium (after E is removed instantaneously) may also be monitored
by computer simulation as orientational fall-transients [9]. Another recent discovery made by simulation
is that fall transients are accelerated progressively in their time dependence with respect to the
equ1valent normalised orientational a.c.f. as the external field strength E is increased. This effect, the
ndamental bearing on the theory of the Brownian monon
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therefore be described with the classical theory of Debye or Langevin for decoupled rotational or
translational diffusion [11]. It is clear that D.A.S.E. is related to the transient process

C(E#0)>C(E=0)=0.
The inter-molecular pair-potential for CH,Cl, was modelled with

e/k(C=Cl)= 173.5K; &/k(CH,-CH,)=70.5K; o(CH,~CH,)=3.96 A; o(CI-Cl)=3.354;
9o =—0.15le}; gcy, = 0.30le| .

The noise level in the simulation can be estimated as the difference in C,, between two successive runs.
By symmetry C,= 0 at t=0 for all E, so that any departure in the simulation is due to noise.
Approximately 1000 records (3000 time steps each of 5x 107" s) were used in constructing C, elements.
The noise level could be reduced considerably given the computer time, or by repeated averaging.
There is no scientific reason for precluding field strengths in the simulation equivalent to the
“‘experimentally accessible” wuE/kT <€ 1. The simulation would simply require more time steps (e.g.
20,000 or 30,000 or more).

The simulation runs were all steady-state runs under a constant electric field. Equilibration was
reached under the influence of the field, and the first few thousand time steps rejected as in a normal
simulation. There are no abnormal temperature effects with this method.

3. Analytical theory

This is intended to try to understand the numerical results in terms of as few parameters as possible.
We therefore use a “‘bare-bones” theory, starting with the generalised Langevin equation [5]

d i
= c=A0C0) - fo &t — )C(7) dr ©)

and the correlation matrix

(v(1)o"(0)) <v(t)wT(0))]

c= [<w(z)uT(0)> (@ (D)w™(0) ©)

so that the elements of C(t) are correlation functions of v and w.
In order to reduce the problem to its simplest form, we make the following assumptions:
1) The three molecular moments of inertia are put equal, so that the dynamics of the molecule are

those of a “spherical top’’ with moment of inertia I.

2) It is assumed that the molecule carries a net dipole moment u, which interacts with an external
electric field E

For a field E applied in the z-axis of the laboratory frame of reference the computer simulation
shows that the matrices C,(1) or C,(t) may be approximated as
&5 -1 6§
CH=CO=Cnf1 & &1, 7
5 & &
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i.e. the dominant elements are the (x, y) and (y, x) elements, which are mirror images. In eq. (7) C,> (1)
is the scalar c.c.f. obtained by computer simulation.
It is important to note that the electric field has the dual role of promoting the existence of C, (t) = C,(1)
in the laboratory frame and of making the sample anisotropic. This means that .
(2= (v} # (v, : (8)
(wi) = (wi) # (wi) . 9

The interaction —u X E appears in eq. (5) through the matrix A(¢). We assume that this matrix can be
written in the form

0 0
)‘:i“"[o 1]’ w

where @ is the null matrix and I the unit matrix, with the scalar frequency

_ (M_E_y ,

w; — I

Eq. (10) comes from the fact that the only direct influence of E on the molecular motion is the creation
of the torque — u X E. There is no direct influence on the linear centre of mass velocity (v), so that termsin A
involving v vanish.

Laplace transformation of eq. (1) gives

[pl+¢(p)—iw1]C(p)=CQO). (L1

The supermatrices in eq. (11) are defined by

(G0 0 _[Culp) Cu(p)
co=|" col €O=1cm cml
where -
(3 0 0 (0 0 0
COH=| 0 @y 0] cO=| 0 (@) 0 |;
0 0 () 0 0 (o)

(p~iw)l+ d(p) du(p) ] .

[(p—iw)1+ @(p)] = [ &.(p) (p—iw)1+ ¢ (p)

The elements of these matrices are themselves matrices defined by

0 -1 0 T 0 0
b.=d.=(p)} 1 0 0] &,=| 0 « 0

0 00 : 0 0 o

n
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and so on.
For an electric field in the z-axis

D (p)= oW (p)# by (p)]

XX zz (12)
= (P)= X (p)# &5 (p)
and similarly for C,(p) and C,(p) and the linear and angular velocity autocorrelation matrices.
Comparing scalar elements leads to the following physical effects of electric field induced /¢ coupling,

1) For a field E in the z-direction both the linear and angular velocity a.c.f.’s become anisotropic in
the laboratory frame.

2) For a coupling matrix of the type (7) there is no effect (with this simple theory) of #/t coupling on
CZ(p) (or Ci¥(1)) and C(p).

3) We obtam the results:

Ci(p) _ o)+ 2 (P)CR(P)] (P + 5(P))

Cip) (p+ 5 (p) Wy (1)
CH(p) Ko+ ¢2(P)CY(P)p—iw, + ¢Z(p)) (12)
CH(p) (wi(p—iw, + $5(p))

If the anisotropy of the liquid is not too pronounced:

du(P)= (), (15)
¢.i’(p)# dn(p)- (16)

If, furthermore, in the Markov approximation[11], we regard the memory function as a constant multiplied
by a delta function in time, then

¢ (p)= &y (17)

a constant. The approximation inherent in eq. (17) is the Markov approximation. This is too drastic
when rotation and translation are uncorrelated (i.e. in the absence of birefringence induced by an electric
field), because the theory then reduces to Debye’s theory of 1913, with all the shortcomings, now well
known [7]. In the Debye theory, the linear and angular velocity auto-correlation functions are pure
exponentials, that cannot, therefore, fall below the time axis. The Debye theory produces C, = 0 for all
t and E. It then follows from egs. (13) to (17) that

cop (@D CE(p)_ (@D

y CZZ( ) Xy (18)
(vz)C Ca(p) (D)
}' sz(p) ¢ : (19)

The angular velocity a.c.f.’s Cx(p) can be approximated with rotational velocity a.c.f.s in the
appropriate limit. The latter a.c.f.’s are Fourier transforms of the far infra-red power [11] absorption
coefficient, which can be measured [ and L to the applied electric field. It is, therefore, possible to observe

the C. function experimentally by far infra-red spectroscopy of liquids or liquid crystals treated with
external, electric fields.
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4. Calculation of C.?(1)
s
The supermatrix equation (11) also produces the following, rigorous, relation between compuminn.
The approximations leading to the relations (18) and (19) have been used only to make thew =
transparent to the experimentalist, and need not be used at all.

¢ (p) —¢5(p) Cip) ~Cr(p)_d 0
[p+f3(17)p p- lw1+<:n(p)” Cy (2) C,",’(p‘;]:[z()) <w§>]'

This equation leads to the time-domain results:

. (0o e ™"
Ccr= -Zal))—‘m)]—n'&n((

where b = ¢2 + ¢F ¢ — iw, P and a = ¢ + = —iw, . Note that both the real and imaginasy '
eq. (21) vanish at ¢ = 0, as they must by symmetry, because v,(0) is always orthogonal at 1 =& &
For a Hamiltonian invariant to parity inversion, it is probable that the off-diagonal elements ¢
all zero. In the presence of an elecrric field, however, the Hamiltonian is no longer invaras: =0
inversion, and it is not easy to use symmetry arguments, to preclude any element of C,, for ¢
At t=0, (v, (t)w (0)) = 0 simply because v, is always perpendlcular to w, for the same
the same instant in time, so that each component of the average () is separately zero.
This can be demonstrated by considering a rigid body which rotates about an axis throuzs =
in the lab. frame with angular speed w. The linear velocity v of a point P of the body with s
vector r is given by v = @ X r, where w is the angular velocity, i.e. a vector with magnitude & w5
direction is that in which a right-handed screw would advance under the given rotation. Simce & sus
in a circle of radius rsin §, the magnitude of the linear velocity v is w(rsin 8) = jw X r|. It follows
must be perpendicular to both @ and r at the same instant in time (i.e. 1 = 0). Since the lincas
of the centre of mass can always be made to have the same magnitude and direction as that of the &
point r (by setting r = @), it follows that »(0)e”(0) = @ for every molecule. Similarly:

CE (1) = (v} e-"“(cos((b - —)”2;) s G mad) ((b - —2) mt)) ,

4 (b — aay?” 4

Note that when o, =0 the equations (22) and (23) decouple into rotational and transiatioss
ponents. Using the identity:

sin(a + ib) = sin a cosh b +1i cos a sinh b

and the N.A.G. routines AO1AAA and AO1ACA to evaluate the real part of eqs. (21) to (23). the m'
be applied to the C, function obtained by computer simulation.
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5. Results and discussion

The C, function from the computer simulation is illustrated in fig. 1 for various uE/kT. The (x, y)
and (y, x) elements dominate over the others in amplitude for an electric field in the z-axis of the
laboratory frame. These can therefore be labelled, for convenience, as the ““‘dominant elements’ of the
C,, function, i.e. C and C}’. The simulations show that these two elements are mirror images within the
noise of two successive computer runs. The other seven elements cannot be picked up from the noise, but
may exist. They could be detected using a super-computer such as Cray IS or Cyber 205 with long runs.

The dominance of C;? and C}* can be understood simply in terms of the torque —pu X E when E is
in the z-axis. In vector terms this is

iy — jn )E,

where i and j are unit vectors in the x and y axes and u, and px, components of the dipole moment p.
The torque is basically the same in nature when polarisability effects are introduced, so that little or no
~new physical insight is gained in this particular context.
The C}? (or C}¥) function is oscillatory, and attains a maximum normalised amplitude (imeasured by
. that of the first peak) for intermediate field strengths. The other elements of C, lie below the noise of
the current simulation runs. As the field strength is increased the Grigolini decoupling effect is observed
in C? and C}. This means that the external electric field competes with the thermal forces in the
molecular ensemble, whose influence on the C, function decreases with respect to that of the electric
field as the strength of the latter is increased. In consequence, the C,, function becomes longer lived, as
measured through the envelope of its oscillations.
At pE/kT = 0.28 for as few as 3000 time steps C;) and C," are still just visible above the noise of
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Fig. 1. Development of 1) C# and 2) C¥ with interaction energy uFE/kT. a) u E/kT = 0.0 (noise only); b) 0.28 (curve 1 only); ¢) 1.40; e)
28.0; f) 2.8. Ordinate: Normalized c.c.f.; abscissa: time/ps.
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the simulation. By using a great deal more computer time the C,, function can be characterised S
the experimentally accessible pnE/kT < 0.01 the condition under which induced-birefringence W‘
are q,wally carried out [6]. _

Eq. (21) is illustrated in fig. 2 with a set of test parameters, keeping the ratio w,/¢Z c:m‘l‘n
follgwing points emerge from this illustration:

1) The envelope of the oscillations, marked with dashed lines in figs. 2a and 2b. remains M'
congtant w,/¢;..

2) It is possible to observe the function C;? even for values of ¢; much smaller than &= wﬁz

3) C2(t) from eq. (21) vanishes, as it should, at t =€} and 1 — e ;

At intermediate ¢ the normalised amplltude is similar to that from the computer (sec 7z =
differs in that the initial slope at t— 0 is not zero, because the ‘‘bare-bones” theory behind eu 1
Markovian in statistical make-up. Unlike the simulated C, function, the amplitude from qt:ﬁg
decreases monotomcally with decreasing field strength. (Recall that the simulated €, goes St
amplitude maximum at intermediate field strengths.) This is another consequence of Markmm
in eq. (21}-(23). In consequence, these cannot show the Grigolini decoupling effect. The faias
signature of the non-Markovian statistical properties of molecular dynamics [12].

By symmetry, ¢;’ must disappear when w, =0 (i.e. E = 0). A theory with more flesh an =
“bare-bones’ (21) to (23) would provide us with this link.

In fig. 3, we compare the analytical and simulated C;’(¢) and C*(¢) c.c.f.’s at 2.8kT bs
simulated CZ(¢) function, giving ¢ = 6.4 THz; w, = 6.0 THz. For 51mphc1ty, it was then
dZ = ¢ = ¢ = ¢y and the other curves in this figure were generated by varying ¢ only.

w=9.0THz. Both the analytical and numerical C, functions in fig. 3 are therefore der
consistently. For these parameters the analytical C, c!ements are greater in normalised inte
the simulated ones, and less oscillatory. The birefringence in the simulated and analytica’
velocity a.c.f.’s (eq. (23)) in fig. 3 is in the same sense, but this time the analytical result is the e
magnitude for the same parameters as in the C, comparison. Finally there is a small. ‘e o
birefringence in the simulated and analytical (eq. (22)) linear velocity a.c.f.’s (fig. 3) whicn *
course, come from r/t coupling.
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Fig. 2. a) The function Cf?/(w,z,), test parameters da'.t,' = ¢:= 10l2 s'l: — Y =09 10775 oy = IR “l
&% =0.09% 1025 wy= L8 % WBg): the oscilation envelope. b) == 10257, ST w-a
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Fig. 3. (a) Simulated and analytical C¥'(¢) and C¥(1). (1) C¥(1), simulated; ———— analytical theory (R.H. scale).
Ordinate: Normalised c.c.f.; abscissa: time/ps; (b) (1) {w, (f)w; 0D/ w2); (2) {wx(t)wx(0))/{w}), the simulated angular velocity a.c.f. |/
and L to the electric field. ———- (3) and (4); as for (1) and (2), respectively, analytical theory. Ordinate. normalised a.c.f.;

abscissa: time/ps. (¢) As for fig. 3a; linear, centre of mass, velocity a.c.f.’s.

6. Suggested metheds for the experimental observation of the C, function

1) Rise and fall transients calculated from eq. (5) could be compared with their equivalents from the
new electro-optic methods using sub-picosecond laser pulses to induce birefringence.

2) Eq. (18) (or a more rigorous version) can be implemented by looking at electric field induced
birefringence in the far infra-red at as many different frequency points as possible. An extremely
sensitive method of detecting very low levels of birefringence is via the rotation of the plane of
polarisation of a probe laser [6]. This method can be used with polarised carcinotrons or submillimerre
lasers in the far infra-red and with polarised microwave guides at lower frequencies. The refractive
index at a given frequency could be measured [ and L to the applied electric field. The resulting
birefringence An(v) could then be converted into power absorption Aa(d) using the Kramers-Kronig
relations. Repetition of the experiment at different spot frequencies would provide the required far
infra-red power absorption profile / and L to E. These profiles would be Fourier transformed for
subsequent use in eq. (18) as discussed already in this paper.

It is true that the rotational velocity and.angular velocity auto-correlation functions are not the
same, but under well-known conditions (e.g. relatively high density and relatively low temperature) they
become very similar, and therefore the angular velocity correlation-function is well approximated by the
Fourier transform of a far infra-red profile. For further remarks in this context see ref. 7 and its
companion volume ‘“Molecular Dynamics”, ref. 11.

3) Method (2), suitable for normally isotropic liquids such as dichloromethane, becomes feasible with
an ordinary Fourier transform interferometer by using nematic liquid crystals as samples. The far infra-red
spectra 1 and [/ to a low strength z-axis electric field will be significantly different, and measurable
straightforwardly in order to extract the C,, function.



282 M.W. Evans | Fundamental single molecule cross-correlation functions in the liquid stase

Acknowledgements

The University of Wales is thanked for a Fellowship and the Nuffield Foundation for
referee for this paper is thanked for a detailed and worthwhile review, with severa!
compents, incorporated in the text by the author.

References

[1] D.W. Condiff and J.S. Dahler, J. Chem. Phys. 44 (1966) 3988.
[2] G.D. Harpe and B.J. Berne, Phys. Rev. 2 (1970) 975.
{3} N.K. Ailawadi, B.J. Berne and D. Forster, Phys. Rev. A 3 (1971) 1462.
[4) B.J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Physics, Chemistry znd E
Interscience, New York, 1976).
[5] M.W. Evans, P. Grigolini and F. Marchesoni, Chem. Phys. Letters 95 (1983) 544.
[6] M.S. Beevers and D.A. Elliott, Mol. Cryst., Liq. Cryst. 26 (1979) 411.
[7} W.T. Cofley, M.W. Evans and P. Grigolini, Molecular Diffusion and Spectra (Wiley-Interscience. New Yort
{8} M. Ferrario and M.W. Evans, Chem. Phys. 72 (1982) 141, 147.
[9}) M.W. Evans, J. Chem. Phys. 76 (1982) 5473, 5480 77 (1982) 4632; 78 (1983) 925, 5403; J. Mol. Liq. 26 (1585 &¢
[10] C.J. Reid, Mol. Phys. 49 (1983)331. -
[11] M.W. Evans, G.J. Evans, W.T. Coffey and P. Grigolini, Molecular Dynamics and Theory of Broad Bamd So
(Wiley-Interscience, New York, 1982).
[12} Memory Function Approach to Stochastic Problems in Condensed Matter, M.W. Evans, P. Grigolini d
Parravicini, eds. Chapter I, by P. Grigolini, special issue of Adv. Chem. Phys. series, Vols. 62 and 63 (Wiley-Iaien
York, 1985).




