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The complex polarizability of the itinerant oscillator model in the case
where the stochastic torques are weak in comparison with the deterministic
ones may be evaluated analytically in terms of a series involving the modified
Bessel functions. This clearly shows the existence of a harmonic peak structure
at high frequencies. In the case where the stochastic torques are significant the
complex polarizability may not easily be evaluated analytically but may be
calculated to a high degree of accuracy using numerical Fourier transform
techniques developed by Corcoran. These techniques show that the harmonic
peak structure still persists when the friction in the system is significant, but
those peaks of higher order with respect to the fundamental frequency are so
small in amplitude when friction acts on both dipole and cage of the model
system that they are almost imperceptible. If on the other hand frictional
torques are supposed to act only on the cage as in earlier versions of the model
a distinct peak structure still persists.

1. Introduction

The possible existence of resonant absorption peaks in the far-infrared spectrum
of polar fluids has aroused considerable interest, both theoretically [1] and experi-
mentally [2]. The theoretical investigation of the existence of these peaks has been
very considerably hampered by the mathematical intractability of models such as
the itinerant oscillator [3], which are used to calculate the theoretical far-infrared
spectrum. Farley [4] has recently suggested that the itinerant oscillator model
should be analysed again in terms of normal modes of vibration. This has resulted
in closed-form expressions (1.e. not in the form of roots of polynomial equations, etc.
[5]) for all the time correlation functions of the itinerant oscillator model for the
special case where all the friction coefficients per unit inertia in the model are equal
[6]. This simplification has allowed us great insight into the physics of the model.
The time correlation functions of orientation for the model, which are now available
in closed form for the special case cited above, always have the form of double
transcendental functions.

It is the purpose of this paper to show that the double transcendental form of
the orientational correlation functions predicts theoretically the existence of high-
frequency peaks, but that in general the peaks at frequencies higher than the funda-
mental are very small for typical ranges of molecular parameters. This result
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suggests that it may be very difficult to observe such peaks in practice as borne out
by the work of G.J. Evans et al. [7], who have recently obtained evidence for the
peak structure in liquid crystals.

2. Complex polarizability for the equal friction itinerant oscillator model

The equations of motion of the itinerant oscillator model are

b, + BB, + 0d(d, — 1) = g,(t), (1
by + Br by — Qdy — ¢2) = gaft). (2)

Note that ¢,, ¢, are the angles the dipoles make with an arbitrary unit vector e
while I,8,6, and I, 8, ¢ are the frictional torques and I,g, and I,g, are white
noise torques. Quantities subscripted by a 1 refer to the inner or disk dipole while
those subscripted by 2 refer to the outer or annulus dipole.

By analysing these equations in terms of normal modes for the case §, = i, = f
but I, not in general equal to I,, Coffey et al. [6] were able to show that the decay
of the dipole moment of the system following on the removal of a unidirectional
electric field of unit magnitude at time ¢ = 0 is of the form
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If we proceed now to the limit

By=8,=p=0 (10)
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and also for convenience we assume that the dipole moment of the disk is equal to
that of the annulus, so that u; = u,, we find that

2V,
(Q= —J—°=./Qg+a)§)

2

M(0) = = [exp (—a?y,) exp (aly; cos Q) + exp (—a37,) exp (a3 7, cos O
+2exp (—H(al + ad)n2) exp (~a,a, 7, cos Q)] )

Let us now recall that [8]

n=aw

exp (iz sin §) = ) exp (inf)J (2} (12)
where J, is the Bessel function of first kind of order n, and n is an integer. By simple
algebra

exp (—z cos 6) = nzzw exp (z’ ng) exp (inB)J (iz), (13)
exp (z cos ) = Ff exp (—i "2—“) exp (—inb)J (iz). (14)

These are the Fourier series expansions of exp (+z cos 6). It is now possible to
work out the complex polarizability exactly for this particular case. We first recall
that

[e]

1 exp (L ixy) dx = &(y) (15)
2n

- 00

where &(y) is the Dirac delta function. Using equations (13) and (14) to expand the
double transcendental functions in equation (11) as a Fourier series and substituting
the result into the complex polarizability formula, namely

dw) = «(0) — iw J'wM(t) exp (—iwt) dt, (16)
(1]

we find that the complex polarizability is

a(w) = ZiT ([1 + exp (—2y,)] — iw i {[exxn (—aty ) (ialy,)

n=—aw

+exp (—a3 ) (i3 y2)] exp <~i 1’—;) S + n)

+2 exp (—Ha? + a3y, 8,0, 7,) exp (,- 7”) o — nn)}) a7

These Bessel functions of imaginary argument may be written in terms of the
modified Bessel function of real argument defined by Sneddon [8]

I(2) = i~ (iz)

The most interesting feature of equation (17) is that the spectrum is a series of delta
functions at @ = £ nQ. The amplitude of each function is determined by the modi-
fied Bessel functions. These delta functions represent peaks in the far-infrared spec-
trum. If, as is often done in attempting to derive analytic expressions for the



18 W. T. Coffey et al.

complex polarizability from correlation functions such as equation (3), we assume
that the time correlation function, equation (11), is truncated after the first two

terms of the series, then the only peak that will survive is the one at w = £, i.e. the
fundamental frequency. Although the above calculation is valid only for the
undamped motion it indicates that simple analytic formulae derived by truncating
(after the first two terms) a series expansion for a{w) analogous to the method of
deriving the Rocard equation [9] cannot predict the peak structure in the polariza-
bility.

One can say qualitatively how equation (3) will be affected if damping is
included. Essentially the delta function spikes will be flattened, and indeed it would
seem that for acceptable values of the parameters I,, I,, f, etc., only the peak at
o = Q is significant. This is not however the case for the original version of the 1.O.
model, where there are no stochastic torques acting on the inner dipole or disk [3].

In this version of the model, the correlation function of the inner dipole is all
that is supposed to contribute to the polarizability. The dipole correlation function
is given by Coffey et al. [10, p. 117]

2

u _E
7 <e0s $1(0) cos $4(9)0 = 5, — exp (—H(Ad1)*Do) (18)

where

(B> = x-l{z kT (s + B) + O }

Iy s’[s° + Bs® + (w5 + QF)s + farg
=K, + K, t+ K;exp(—A3t) + Ky exp (—A.1)
+ Ks exp (—As1) (19)

where K, ..., K5 are the residues at the poles (0, 0, — 15, —A,, —A4s) of s2[s* + Bs?
+ (0§ + Qs + puri].

This version of the model in which B, = 0 shows a sharp peak at w = Q fol-
lowed by a smaller peak at 2Q (sece below). Apropos of this one may criticize
equation (11) on the grounds that it does not contain frictional terms and in conse-
quence does not have any dissipative mechanism. In writing down such an equation
we assert that we are simply proceeding to the limit where the damping and sto-
chastic torques are assumed to be very small in comparison with the deterministic
ones. We simply use equation (11) to get some insight into the high-frequency
behaviour. In the two-friction case however it would seem that for realistic values of
the parameters of the model the only significant peak is that at the fundamental
frequency Q.

3. Numerical analysis of the polarizability

In order to Fourier transform equations (3) and (18) numerically according to
the complex polarizability formula, equation (16), it is convenient to introduce the

parameters
~ kT S V;) IZ ﬂl
o= - b Y=+ I,,:_, b=—3 (20
\/( 11) « I B )

where it is useful to note that (see [117)
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Figure 1. Normalized polanzability showing the occurrence of four distinct peaks in the
FIR region of the spectrum forb=0and (@)@ =5, =4,% =10and I, = 8, (b) as for
(a), but with p=12. x-ordinate: log frequency (THz), y-ordinate: log normalized
polarizability.

We further note that the scalar determinant or characteristic equation of the 1.O.
model in the general case where §, £ B,, which result covers all possibilities in the
model, is [12, 13]

s{s® + Ba(l + b)s* + [269(1 + 1Y) + B2b]s + w? By(1 + bI 1)) (22)

The original version of the 1.O. model where there is no friction on the inner dipole
corresponds to the case b=0. The case where f, = f corresponds to b =1
{(equation (3)). Using a fast Fourier transform program which we have described
elsewhere [11, 13] it is possible to evaluate the complex polarizability to a high
order of accuracy. In order to illustrate our results, we show in figures 1 and 2
normalized polarizability spectra plotted on a log scale against the frequency (THz),
also on a log scale. Figure 1 shows the effect of varying the friction on the outer
dipole. As this is increased, the microwave (MW) and far-infrared (FIR) peaks
become more widely separated and the multiple peaks in the FIR region are notice-
ably enhanced. This lends some support to the hypothesis that a multiple peak
structure will not be observed experimentally in the FIR region unless the broad-
band (MW) spectrum of the system under observation can be shifted to lower
frequencies. In figure 2, we show the effect of allowing a very small amount of
friction to act on the inner dipole. The multiple peak structure is evidently very
much affected by small amounts of friction on the inner dipole. Finally, we note that
only three peaks are shown in figure 2 (a) because of the numerical inaccuracies due
to rounding errors in our algorithm for these parameter values. Also, we have not
yet calculated spectra over more than three decades of frequency. Such calculations
should be possible, but would require the use of more sophisticated numerical
techniques than have been employed in the present work.

10'
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4, Discussion

The theoretical methods described above have led to the conclusion that peaks
can be expected in the far-infrared power absorption of dipolar materials in the
condensed molecular state of matter. It is therefore interesting to look for the
conditions under which these peaks might be observed experimentally. From careful
and repeated measurements of the far-infrared absorption of molecular liquids, both
by interferometry and by sub-millimetre laser spectroscopy, it now seems certain
that the peak structure will not be visible in dipolar liquids at ambient temperature
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Figure 2. Normalized polarizability showing the effect on the peak structure of allowing
friction to act on the inner dipole. (a) & = 5, § = 20,% = 10, I, = 8 and b = 0; (b) as for
(a), but b =0-01; (c) as for (a), but b = 0-025. Note that only three FIR peaks are
shown in (a) because the numerical algorithm could not satisfactorily resolve the

fourth peak. x-ordinate: log frequency (THz), y-ordinate: log normalized polarizabil-
ity.

and pressure. In terms of the 1.O. this is because friction acts on both the inner
particle and the surrounding cage. However, in the crystalline molecular solid state
it is well known that the broad band in the far-infrared liquid spectrum gives way to
a number of phonon modes. These are generated by the cooperative rotational
and/or translational motion of the molecules in the crystal. Thus it might be
expected that the [.O. pormal modes would be visible in a material wherein the
experimental conditions were intermediate between those of the ambient molecular
liquid and the crystalline solid. Recent work by G. J. Evans on liquid crystals has
shown the presence of structure in the far-infrared power absorption which might be
attributable to I.O.-type normal modes [2]. In this context it seems significant that
the liquid crystalline state of matter is intermediate between that of the molecular
liquid and the crystalline solid (since the liquid crystal flows but is birefringent
under the influence of an external electric or magnetic field).

The present theoretical work also supports the indications of previous numerical
work [1] using a single particle cosine potential model analysed by means of the
Kramers equation. This model gave evidence for the appearance of far-infrared
peaks in the low friction limit. Some of the peaks derived numerically in the latter
work may coincide in origin with those illustrated in figures 1 and 2 from the 1.0,
but on the other hand some of them were probably artifacts arising from a prema-
ture truncation of the matrices involved in the numerical analysis. It seems from the
present work that the peaks must be distributed harmonically, and are at their most
pronounced when the encaged or inner molecule is bound harmonically to its
surroundings with no friction acting between inner molecule and cage. In order to
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resolve the normal modes of the I.O. it is also necessary to assume that the friction
between the outer cage and surrcunding medium is low enough to separate the
peaks from the broad-band absorption background characteristic of molecular
liquids.

Unambiguous experimental evidence for the existence of peaks has also been
obtained in the case of a dipolar molecule encaged in a clathrate [ 14 and references
therein]. These are attributed to normal modes of an encaged oscillator and are
usually regarded as quantum mechanical in origin [14, 15], derived using a particle
in the box analysis. However, the I.O. of this paper is a purely classical model which
could be regarded as the rotational equivalent of the translational oscillator as
described by R. Davies [14, 15]. Thus it would be interesting to repeat the analysis
of this paper when the initial equations of motion are set up for translational
itinerant oscillators. It ought to be possible in this case for a heavy rigid cage and a
harmonically encaged particle to observe classical resonance modes which are
infrared-active because the tramslational motion of the dipole modulates the
infrared-active dipole moment. In other words the encaged translational oscillator
acts like a modulator of the probe infrared radiation. The motion of a small dipolar
molecule in a clathrate lattice may therefore lend itself to the first experimental
recognition of peaks in an infrared spectrum generated by purely classical equations
of motion,
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