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Computer simulation of the optical Kerr effect in liquid water
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A field applied molecular dynamics (FMD) computer simulation of the optical Kerr effect in liquid water has produced fem-
tosecond rise transients which reproduce accurately the available analytical theory, based on generalised Langevin—-Kielich func-
tions. The transients and associated field applied correlation functions prove to be sensitive to the anisotropy of polarisability in
water, showing that femtosecond transient spectroscopy is potentially a much more accurate method of measurement than hith-
erto available.

1. Introduction

We report the first computer simulation of the optical Kerr effect, using field applied molecular dynamics
(FMD). FMD is a simple variation on standard molecular dynamics computer simulation in which the torque
gencrated between the molecules of an ensemble and an external field is coded into the forces loop. FMD pro-
vides rise and fall transients, thermodynamic and structural data, and field-on or field-free statistical me-
chanical data, for example time correlation functions of many different kinds [1], some of which are Fourier
transforms of directly observable spectra. FMD was devised originally for strong electric fields, and accurately
reproduced known Langevin-Kielich functions [2-4] from the final levels of rise transients. Additionally, it
gave dctails of the time resolution of the transients themselves on the femto/pico-second scale, information
which is now becoming directly accessible experimentally [5] in the transient optical Kerr effect. FMD also
gives a wealth of information from the same trajectories on the dynamics of the laser applied steady state in
the optical Kerr effect, on fall transients [6-8], and on pair distribution functions [9]. The method was later
cxtended for use with circularly polarised laser fields [10,11], and for non-linear optical phenomena where in
general [12-14], a laser field or field gradient forms a torque with an induced electric or magnetic dipole or
multipole. FMD also revealed basic statistical mechanical laws such as fall transient acceleration [15], field
decoupling [15], and rise transient oscillations on the femtosecond scale [16,17]; its generality springing from
the fact that the integral of the torque with respect to orientation is potential energy, a term which is added
to the Hamiltonian as the starting point of analytical theory. The interaction of any type of field and any type
of cnsemble is therefore described at a fundamental level, as in semi-classical theory [18], but FMD provides
additionally much more information from the same set of molecular trajectories.

The particular type of torque relevant to the optical Kerr effect is described in section 2. The essentials of
FMD in this context are recounted briefly in section 3, followed in section 4 by a description of rise transients
and a comparison with generalised Langevin-Kielich functions. The latter from both simulation and theory
are shown in two cases to change sign with anisotropy of polarisability, thus providing a potentially accurate
mcthod of measurement of this quantity in water from the transient optical Kerr effect [ 5]. Detailed agreement
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is demonstrated between simulation and theory concerning this useful change of sign and other transient prop-
erties of the optical Kerr effect.

2. Torque of the optical Kerr effect

It is well known that the optical Kerr effect is observed [19,20] through the rotation of the plane of po-
larisation of a probe laser in response to a pulse from a pump laser. We consider a probe polarised linearly
along the X axis of the laboratory frame (X, Y, Z). The pump pulse can be shown to set up the torque

T, =erxe3x(as3 —an)E], Tr=e xesx(ay —as)E], Ty=e,xeyx(an — 0, ) EF (1)

in the frame (1,2,3) of the molecular principal moments of inertia of the water molecule. Here, axis 1 is the
dipole, or C,, axis, axis 2 is perpendicular to the molecular plane, and axis 3 is mutually perpendicular in a
right handed set. In eq. (1), E3 is the square of the scalar electric field strength amplitude (volts/metre) of
the pump laser, and the quantities ¢, y, ¢,y and e;y are X components of unit vectors in axes 1,2 and 3. It is
assumed that the polarisability is diagonalised in the same frame (1,2,3), giving the diagonal components « |,
a5, and a55 of the molecular polarisability of water. It is convenient in this context to define the two an-
isotropies of polarisability of the asymmetric top water molecule,

y=ay; — (A tass), (2)
o=13(0 —as3) . (3)

The torque components (1) are coded into the forces loop of any MD algorithm, and back transformed [12]
into the laboratory frame (X, Y, Z) using a rotation matrix.

3. FMD method

The FMD method was implemented with a sample of 108 water molecules interacting through a modified
ST2 potential using Lennard-Jones and partial charge interactions,

(H-H):  ¢/k=21.1K, ¢=2.25A,
(0-0):  €/k=58.4K, 0=2.80A,
gu=0.23]¢| , q(lone pair)=—0.23]¢| , 4o =0.00|e] . 4)

This potential has been compared in the literature [21] with the ab initio MCYL, and with experimental data
[22] over a very wide range of conditions. We stress that FMD can be used with any type of model or ab initio
water potential, and any type of MD algorithm. With a time step of 0.5 fs, transients were evaluated for dif-
ferent EZ, over a number of time steps sufficient for attainment of the final level, which was measured and
used to construct generalised Langevin-Kielich functions (section 4) by FMD. The latter were also evaluated
analytically [23-25]. The transient generating stage was followed by FMD evaluation of statistical dynamical
properties in the pump laser applied steady state, using running time averaging over a minimum of 6000 steps.
A data band of many different examples was collected and used to characterise the field-on dynamics.
Simulations were carried out at 296 K, 1.0 bar in the liquid state of water.
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4. Rise transients and anisotropy of polarisability

There have been numerous reports [26-32] of the anisotropy function y of water. Khanarian and Kent [26]
have made a tabular comparison of experimental and ab initio estimates from various sources, six of whose
entries were positive, and four negative. In this section we use three literature estimates of the diagonalised
polarisability components of water, and compare for each case generalised Langevin-Kielich functions and
time resolved rise transients from FMD and the available theory. These are given in table 1. We note that the
experimental data in table [ give a negative anisotropy y [26], and a conflicting positive anisotropy y [27].
We also use one ab initio result [28].

For each of these three data sets transients and generalised Langevin-Kielich functions (GLKs) were sim-
ulated for {efy >, (eiy>, and {e’iy ), where n=2,4,6. GLKs were also evaluated analytically from [23-25]

[&cos"0 exp(q cos?0) [3" exp[h cos 2¢ (cos?0—1)]d¢ sin 0dO

(eler= JTexp(gcos®) [5" exp[hcos 2¢ (cos’0—1)] dgsin6do ° )

ety = 3 sin"6 cos"@ exp(q cos?0) [3" exp[h cos 2¢ (cos?6—1)] d¢ sin 6 dY (6)
o= 5 exp (g cos0) [§™ exp[h cos 2¢ (cos0—1)] dg sin 0 dO ’

cenes [3sin"@sin"g exp(q cos?0) [§" exp[h cos 2¢ (cos?6—1)] d¢sin 6d0 (7)
wo= [Eexp(qcos20) [3" exp[hcos 2¢ (cos20—1)] dgsin §d6 ’

where

q=yE3/kT,  h=06E%/kT. (8)

These integrals were evaluated numerically using IBM software [33] based on fine-grid double Gauss-Le-
gendre quadrature.

Fig. 1 illustrates the fact that two of these GLK functions change sign with anisotropy of polarisability y, in
the sense that they increase or decrease from an initial value. Points on these analytical GLKs show simulated
data from FMD under the same conditions, with potential energy corresponding to the torque (1) computed
over a minimum of 6000 time steps at each point. The FMD method successfully simulates the change of sign
in (e%y> and (e4y) given analytically from (6) and (7) as y is changed from positive to negative. The func-
tion { ey does not change sign analytically from eq. (5), and again this is reproduced successfully by FMD.

These results show that

(1) the sign of the anisotropy of polarisability of the water molecule can be determined from an experimental
measurement of the three GLKs described already, possibly with contemporary femtosecond transient optical
Kerr effect apparatus [57];

(2) FMD is in detailed agreement with the analytical theory on GLKs.

Table |

Literature estimates of the polarisability tensor of water diagonalised in (1,2,3). (In figs. 1-3, (a), (b) and (¢) refer to the data sets of
refs. [26], [27], and [28] respectively.)

Ref. 3T [255) 33

[26] 1.69 1.9 1.3 (S.I. units)
[27] 9.62 9.26 10.01 (a.u.)

[28] 8.15 7.12 9.03 (a.u.)
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Fig. I. Generalised Langevin—-Kielich functions L,(q, &), L,(q, h), and L,(g, h) (labeled 1, 2, 3, respectively) from analytical theory
(curves) and field applied computer simulation (points) for liquid water at 293 K, 1.0 bar: using the data (table 1) of (a) ref. [26],
(b) ref. [27], and (c) ref. [28]. The functions initiate at 1/3 (n=2), 1 /5 (n=4), and 1/7 (n=6). Note that in two cases the GLKs
change sign between data sets (a) and (b), respectively representing negative and positive y. (—) n=2, (---) n=4, (- -+ -) n=6.

@) FMD, n=2.
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5. Time resolution of optical Kerr effect rise transients

The time resolution on the femtosecond level of the optical Kerr effect has been achieved [5] by Kenney-
Wallace and co-workers. The data are in the form of rise transients of probe optical absorption as a pump pulse
is passed through the ensemble. These data can be related to our GLKSs through the birefringence of the optical
Kerr effect, which is in turn related to the observable changes in power absorption coefficient [5] through the
Kramers-Kronig equations.

It is possible therefore, using a numerical iterative scheme, for example, to determine the anisotropy of po-
larisability from the rise transient experimental data [5]. Furthermore, FMD gives the time resolution of the
rise transient as illustrated in fig. 2 using the conflicting literature data sets of table 1. Fig. 2 shows that the
time resolved transients are markedly different for each data set at fixed pump laser equivalent potential en-
ergy, obtained by integrating the torque over configuration space in the FMD algorithm. For the Khanarian—
Kent estimate [26] there are no rise transient oscillations [16,17] known from Kramers theory [17] to be
due to specific non-linearities in the molecular dynamics. The presence of these oscillations is observed clearly
(fig. 2), however, using the data given by Zeiss and Meath [27] and the ab initio computation of van Hemert
and Blom [28].

It is concluded that the details of the time dependence of the optical Kerr effect rise transient are intricate
functions of the anisotropy of polarisability at a given pump laser intensity. It would be of interest to attempt
to observe such oscillations experimentally [5].

Finally, we report that in the laser field applied steady state reached by the rise transient at a given pump
laser intensity, a data bank of time correlation functions was accumulated to investigate in detail the field-on
statistical dynamics by FMD. The correlation functions were observed also to be dependent markedly on which
data set of table 1 was used, and this is illustrated in fig. 3 for the orientational autocorrelation functions
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Fig. 3. As for fig. (2), orientational autocorrelation functions in the post transient steady state for data sets of (a) ref. [26], (b) ref.
[27], and (c) ref. [28] (see table 1): (—) i=j=X; (---) i=j=Y; (- - -) i=j=Z
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e (e (0
Ciy()= <i%:>(l/)2e<1;i;l>/2 ,

Such differences were also observed for the time correlation functions of molecular angular momentum

Ji(1)J;(0) >

i=j. (9)

ng(l)=<—W, (10)
and of rotational velocity

Ceu(1)é,;(0) >
Cy(t)= <é%,->‘/2<1éfj>”2' (11)

Off diagonal components (cross correlation functions) were found to change sign with the anisotropy of po-
larisability y. Further detailed discussion of these extensive data will be reported elsewhere.

The Fourier transform of the rotational velocity autocorrelation function [34] is the far infrared power ab-
sorption coefficient, and were it possible to observe this spectrum in the presence of a pump laser pulse, FMD
as used in this paper shows that it would give information on the molecular dynamics of the optical Kerr effect
in the laser on steady state, and specifically on the anisotropy of polarisability.
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