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THE MAGNETOSTATIC FLUX DENSITY By OF
THE ELECTROMAGNETIC FIELD:
DEVELOPMENT AND CLASSICAL

INTERPRETATION

1. INTRODUCTION

It has been demonstrated"7 recently that the electrgmagnetic plane wave
generates the novel quantity By which is in .umts of te.sla,'and thfa
symmetry of uniform, diyergentless, magnetost.atlc flux density, i.6., posi-
tive to parity inversion P and negative to motion _reversal T. .In quantum
field theory By becomes? the novelA magnetostatic flux ersuy quantlim
By, a boson operator defined by By = ByJ /ﬁ, where J is the angular
momentum boson operator of the photon, By 18 the‘ magnetic flux density
amplitude associated with a sipgle photon, and % is the reduced Planck
constant. The boson operator By is generated by each photon of the beam
as it propagates linearly at the speed of light c. For thls.reason, and frorp
considerations of symmfstry,8 there can be no electrostatic field E; assocl-
ated with a plane wave, and Ey; cannot be generate.d from By by Faraday
induction in free space. However, By interacts with matter thrpugh an
interaction Hamiltonian operator —n. By, where. m is a'magnetlc dipole
moment operator, and By can be used either In cla531.cal or quantum
forms to describe observable phenomena such as the mverslf,sFarafiay
effect,’ an optical Faraday effect,> optical Zeemar}() ?F(?Ct’ " opt‘lcal
Cotton-Mouton effect,’ and other related phenompna in Whlch'llght
magnetizes matter. Well-known phenomena of opt1c§ can also l?e rclazmtehr-
preted in terms of By, for example, antisymmetric light scattering.’”= T >ke
classical vector By is proportional1 to the vector cross product E X E¥,
where E is the usual electric field strength of an electrlomagnetlc plane
wave, and E* is its complex conjugate.*1* Accordingly, in free space,

1/2 172
E X E* Iy IN| 1
Bn=_’"=30k=(__3) ":( k (1

. > 3
2Eci £¢C 2e0c
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in which k is a unit axial vector in Z, the propagation axis, and E; is the
scalar amplitude of E; B, = E,/c is the scalar magnetic flux density
amplitude, and ¢, is the free space permittivity. Here I is the scalar
intensity in Wm 2 of the plane wave and |N| denotes the scalar magni-
tude of the well-known Poynting vector:

1
N=—E x B* (2)
Ko

This paper is concerned with the development and classical interpreta-
tion of the novel vector By; in analogy with its well-known relative N. The
latter is a flux of energy denisty of the plane wave, and takes meaning'®
only when the wave interacts with matter, at the simplest level the
electronic charge. It is well known that N = 2/;n, where n in free space is
the unit propagation vector in the axis Z of propagation of the plane
wave. The vectors N anq n are negative to both P and f”, and are polar
vectors, whereas By is P-positive, f*-negative, and is an axial vector. N is
proportional to the scalar part of the free space intensity tensor

I; = gycEE} 3

and By, is proportional to its antisymmetric part, which in vector notation
is £,cE X E*. Therefore, N and By, are different parts of the same tensor
property. It follows that as for N (Ref. 15), its relative By takes meaning
only when the wave interacts with matter.

Section 11 develops a novel continuity equation for By, which links it to
a novel magnetic density Uy = —B,/c in the same way as N is linked by a
continuity equation of electromagnetic field theory to the energy density U
(Ref. 15). Thus, N and By; are vector fields and U and Uy; are scalar fields.
The scalar field U can also be interpreted as electromagnetic power per
unit volume, and N can be interpreted as power per unit area. In the same
way B becomes interpretable in Section 1 as magnetostatic power per
unit area, and Uj; as magnetostatic power per unit volume generated by a
completely circularly polarized electromagnetic plane wave.

Section III defines the vector potential Ay associated with By starting
directly from a consideration of the cross product E X E*, suitably scaled
by the denominator 2Eci. It is shown that a vector triple product of the
type r X (E X E*), where r is a position vector in (X,Y, Z), has all the
characteristics of the vector potential normally associated with a uniform,
divergentless, magnetostatic field. The latter is identified therefore as By,



ind is related to Ay; through
Bn = V X AH (4)

Section IV interprets the cross product E X E* with the antisymmetric
syart of Maxwell’s electromagnetic stress tensor,! which is part of the
:lectromagnetic energy /momentum four tensor. Thus, By is proportional
o0 a vorticity in the classical electromagnetic field. This is illustrated by
jetermining the equations of motion of an electron in By by solving the
1vel Lorentz equation

p + 2eAy = constant (5)

vhere p is the electron’s momentum and e is its charge. The field By
jrives the electron forward in a helical trajectory, with constant linear
relocity in z. It is shown finally that this is the same trajectory as that of
he electron in a circularly polarized plane wave, obtained by solving the
Lorentz equation for this case. In other words, the solutions of the
Lorentz equation (5) are also solutions of the Lorentz equation of motion
5f the electron in a circularly polarized plane wave, showing that a plane
yave can generate the characteristics of a magnetostatic flux density By,
vhich takes meaning as it interacts with the electron, driving the latter in a
aelical trajectory.

The paper ends with a short discussion of the interpretation of By in
the required relativistic context.

II. THE CONTINUITY EQUATION FOR B,

Maxwell’s phenomenological equations lead to the following well-known'®
continuity equation when electromagnetic radiation interacts with matter:

V-N i E-J*=0 6
_—5_ CJF = ()

where J*, the current density, is zero in free space. The energy density U
is defined in free space as the time-averaged quantity:

U=1(H*-B+E*-D) (7
with B = u H and D = g,E. Here p, is the permeability of free space.

Clearly, in free space, the wave does no work on matter, such as
electronic charge, because the density E - J* of power lost from the fields

E and B* is zero. U is therefore a field energy density, which takes
meaning only if there is field—matter interaction.

By considering the product E X E*, which is proportional, as we have
seen, to the antisymmetric vector part of light intensity, it can be demon-
strated as follows that there exists a novel continuity equation linking B
and Uy;. Using the vector relation, !

V-(EXE*) =E*-(VXE)—E-(VxE*) (8)

and the Maxwell equations in free space,

JB aB*
3 VXE Py (9)
implies
V-(EXE*)=V-(BxB*)=0 (10)
that is,
V:B;=0 (11)

which shows that By; is uniform and divergentless. From Egs. (9) and (10)
we can write ’

oB oB*
+E-—  (12)

V(EXE*)=2E;iV-By = ~E* - —
at at

Integration by parts of the right side of Eq. (12) gives the result

- JB aB* 1
Fyp— — . —_ x . _ .
/ —— di [E S dt=S(E*-B-E-B*) = -2iEB, (13)

Defining the quantity

1 o8B oB*
Uy = E* - — dr — .
u 2Eoci(f Ul LR d’)
14
M (14
B C
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implies

V°BH=——6;—=O (15)

which is a free space continuity equation for By. Equation (15) is the
precise counterpart of the free space continuity equation (6) for N:

V-N v 0 16
- - - (16)

Equation (15) is novel to this work, whereas Eq. (16) is standard in
classical electrodynamics.’

The continuity equations (15) and (16) have the same structure and
must be interpreted in the same way. Thus, in classical electrodynamics,
the Poynting vector N is the flux of the density (U) of the electromagnetic
energy. Similarly, the novel B is the flux of the magnetostatic density of
the electromagnetic plane wave, a flux that is uniform and does not vary
with time. U is the electromagnetic field energy density in free space (i.e.,
electromagnetic power per unit volume!®), and therefore Uy, is the magne-
tostatic density in free space generated by an electromagnetic plane wave,
or the magnetostatic power of the wave per unit volume occupied by that
wave in free space.

Both Egs. (15) and (16) are continuity equations relating’” the time rate
of change of a density (the scalar fields U or Up) to the divergence of a
flux (the vector fields N or Bpy). It is well established' that the notion of
electromagnetic field energy density U takes meaning only when there is
interaction between the field and matter. Similarly, Uy; takes meaning only
when there is wave—matter interaction. Equations (15) and (16) are both
statements based on the existence in free space of the light intensity tensor
I;;, which is Hermitian.'® Equation (16) is concerned with the scalar part
of I;;, and Eq. (15) with its vector part, which, as we have seen, is the
quantity e,cE X E* proportional to By;. The existence of By, and of
Eq. (15), is an inevitable consequence of the fact that [;; is a tensor,'® with
a vector (i.e., antisymmetric) component that is purely imaginary as a
consequence of the Hermitian nature of [; (Ref. 16). It follows that the
classical free space electromagnetic plane wave generates By and its
associated scalar field Uy;.
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III. THE VECTOR POTENTIAL A IN FREE SPACE

Since By; is a magnetostatic flux density, it is assumed that there exists a
vector potential A such that

Since By and Up are well defined in free space, it follows from the

assumption (17) that A;; would also be well defined in free space. If
Eq. (17) were true, it follows that A;; would be a function'” of the type

Ap= —4r X B, (18)
where r is a positive coordinate vector in frame (X, Y, Z). From Eg. (1),
A= —3r X (E X E*)/(2E,ci) (19)

Defining
r=Xi+Yj+Zk (20)

and using the vector relation

rx (EXE*) =E(r-E*) - E¥(r - E) (21)

with!7-19

E = E,(i — ij)e'

) 22
E* = E (i + ij)e ™ )
where ¢ is the phase!” of the plane wave, we have
A BO . .
n= T(XJ - Yi) (23)
Since
IBHI = Bo (24)

it is clear that B; and A; of Eq. (24) are related by Eg. (17).

In‘ other words there exists a vector potential A, in free space whose
Furl is By; that is defined by the vector field (B,/2X Xj — Y1), a field that
1s generated in free space by the classical electromagnetic plane waves
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(22), both solutions of Maxwell’s equations. Note that By is also a solution
of Maxwell’s equations in vacuo. In the same way, N is not in itself a
solution of Maxwell’s equations, but is generated therefrom through a

cross product E X B* /u,.
It has been demonstrated that By is related to a well-defined Ay in

free space, and to a well-defined scalar field Uy. The next section
considers the interaction of Bj; with an electron, i.e., wave—matter interac-

tion.

IV. INTERACTION OF B;; WITH AN ELECTRON
From Eq. (18) it is clear that
Ay = —3vXBy (25)
where v = dr/dt is a velocity in frame (X, Y, Z). Consider the interaction
of By; with an electron. Since action and reaction are equal and opposite,
the action of B;; on the electronic charge e is balanced by a reaction of e
upon B;;. However, as usual in classical electrodynamics, we assume that

B, is not changed greatly by the action of e upon it,~1% so that the
Lorentz equation of motion applies. Since there is no Ej; present,

p=evXBp (26)
where p is the momentum of the electron, and v is its velocity (p/m) in the
field By;. With Eq. (25) the Lorentz equation can be rewritten directly in
terms of the novel vector potential Ap:

p+2Ape=0 (27)

The equations of motion of e in By thus become® those of Coriolis
acceleration:

Uy = Quy
s 8
Uy= —QUX} vz 0 (2 )

where the parameter ) is defined as

v} e
Q=(1-?) (—)BHZ (29)
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Equations (28) can be rewritten!’ as

—(vx+ivy) = —=iQ(vy + ivy)
de Yoy (30)
Ux + ivy = aexp(—iQ¢)
where a is complex and defined by
a = vy, exp(—ia) (31)
where vy, and « are real. Here
1/2
Vo = (vx + v3) (32)

is the ve.locity of the electron in the XY plane. The trajectory of the
electron in the field By is therefore that of a helix

X =X, + rsin(Qr + a)
Y=Y, + rcos(Qr + a) (33)
Z="Zy+ vyt

where the radius of the helix r is defined by

r =

p[ mUU( I3l 2 - 1/2
! (34)

eB eBy,

where p, is the projection of the momentum on to the XY plane. Note
that the same result can be obtained directly from the equation

p=—2Ape (35)
to give
Uy = —uy ete. (36)

Wc? now demonstrate that the motion of an electron in a circularly
polarized plane wave is precisely the same as the motion of an electron in
the novel ‘magnetic field By. Assume that the reaction of the electron
upon the circularly polarized electromagnetic field is negligible, so that the
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Lorentz equation again applies:
p=-e(E+vXB) (37

Here E and B are plane wave solutions of Maxwell’s equations in free
space:

E=E,(i+ij)e® B=Byj—ii)e (38)
i.e., they are the usual oscillating, phase-dependent, ‘elect‘ric and .magnetic
field vectors of the wave. Note carefully that B is quite dlfferent in nature
from By;. The velocity of the electron in frame (X, Y, Z) is

V=uyi+vy) tUzK (39)

Substituting Egs. (38) and (39) into the Lorentz equation (37) and using
IB;| = B, = E,/c gives the equation of motion:

Uy = Q(c — llz)e_i"S (40)
by =i0(c +vz)e (41)
0, = Q(vy + ivy)e (42)

Multiplying Eq. (41) by i and adding to Eq. (40) gives
d iv,) = —2v,0e (43)
a—t(vx +ivy) = z

If we assume a solution of the type

i .
vy = E(UX +ivy)e'? (44)
then separation of variables occurs
d . - . (45)
d—(ux +ivy) = —iQ(vy + ivy)
t
d i —2ié 46)
—u, = —2iQuze (

dt
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Equation (44) is a consistent solution of Egs. (40)—(42), a solution that
implies that the time average of v, must be zero

<UZ>t = 0 (47)
because the time average of the oscillating function

(e'*), = {cos ¢, + i(sin ¢}, (48)

is zero."” This is consistent with the fact that the unaveraged v, itself is in
general nonzero and complex. Equations (42) and (46) both imply that
(0,), is also zero. Equation (44) is therefore a solution of Egs. (40)-(42)
when both (v, ), and (0, ), vanish.

Note that Eq. (45) is the same as Eq. (30), derived when considering the
motion of one electron in By, and can be solved to give the trajectory of
the electron in a circularly polarized plane wave. This is, from Eq. (45), a
circle:

X =X, + rsin(Qt + a)
Y=Y, + rcos(Qt + a) (49)
Z=2,

a conclusion that is consistent with that of Landau and Lifshitz!® from the
relativistic Hamilton-Jacobi equations of the electromagnetic field, but
derived in a different way by solving the Lorentz equation assuming
Eqgs. (38).

For an initially stationary electron, i.c., for Voz = 0, Egs. (49) are
identical with Egs. (33), describing the trajectory of the electron in the
novel field By. The trajectories (49) are consistent with the assumption
(44), which implies that the time averages of v, and i, both vanish.

In summary, the trajectory of an initially stationary electron in the field
B is the same as that in the fields E and B: An initially stationary
electron moves in a circle under the influence either of By or of E and B.
In the former, the velocity in Z vanishes identically; in the latter this
component is zero on the average.

An observer noting this trajectory would not be able to define unam-
biguously the influence that causes the electron to move as it does in a
circle, be this the wave or the field B;. The influence upon an initially
stationary electron of a circularly polarized electromagnetic plane wave is
identical in all respects in the plane perpendicular to the propagation axis
with the influence of B; upon that electron. Therefore, the motion in this
plane of an electron in a circularly polarized electromagnetic plane wave
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can be represented exactly by a magnetostatic field By, which influences
an electron to move in the same trajectory. B is therefore a real,
physically meaningful, influence. .

Furthermore, we have shown that By is in units of tesla, is T-negative
and P-positive, and is accompanied by a well-defined scalar field Uy and a
well-defined vector potential A ;. It follows that By has several character-
istics of a magnetostatic field. However, By is clearly not identical with an
ordinary magnetostatic field, because it is a property of light. Apparently
there is no E;, and E; cannot be generated from Bp by Faraday
induction. If there were an E; an electron’s trajectory in that E; would be
a catenary'’; clearly, from Egs. (33) and (49), this is not the case. An
electric field E;; cannot be generated from products such as E X E*,
B X B*, E X B*, or B X E* on the grounds of fundamental 2 and T
symmetry.

Finally, further physical interpretation can be placed upon E X E* by
considering the Maxwell stress tensor °:

Oup = —E0ELEf — poH HE + 38ap(e0ELES + poH HE)  (50)
which is the momentum flux density of electromagnetic radiation, and part
of its energy momentum four tensor.”® It is clear that the antisymmetric
component of o, is proportional to E X E* in vector notation, so that
the field By; is also proportional to the antisymmetric part of o,,. In this
context the antisymmetric part of stress in mechanics is a vorticity, with
the same symmetry as angular momentum, so we deduce that By is
proportional to theAangular momentum of classical radiation, as in our
operator equation By = Bof /h (Ref. 2) of quantum field theory. Clearly,
angular momentum takes meaning in the energy momentum four tensor of
the electromagnetic field through the antisymmetric part of the Maxwell
stress tensor, a vorticity, i.e., the antisymmetric part of the momentum
tensor per unit volume.

V. DISCUSSION

It has been argued that the notion of By is consistent with several
properties of a magnetostatic field, but it must be borne in mind that By is
generated by a photon that travels at the speed of light. The classical
theory with which we have been concerned must come to terms with the
fact that By, is relativistic in nature. In so doing® ' it becomes clear that
the only relativistically invariant component of By; is that in the propaga-
tion axis, which is, of course, consistent with Eq. (1). Furthermore, it can
be shown® that there is no Faraday induction by a time-modulated Byp;
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ie., the hypothetical E; cannot be generated from By /d¢ through
Faraday’s law. This is a consequence of the Lorentz transformations.
Furthermore, the existence of a By; is consistent with the fact that a valid
solution of the Maxwell equations in free space is

B = By(j —ii)e™"* + B,k (51)

where B,k is in general a magnetostatic field such as By. It has been
shown that there exists a vector potential A such that B; = V X A, and
there exists a scalar field Uy linked to By by a continuity equation. Since
A“ is defined in terms of X and Y coordinates it is relativistically
invariant, i.e., does not change under Lorentz transformation. This is
consistent with the fact that By; is defined in Z, and is a magnetic flux
density, and so is also invariant to Lorentz transformation.
Finally, it is straightforward to deduce that

N = +cU, By = £cUpk (52)
yvhere n is a propagation vector whose magnitude is refractive index, and k
is a unit axial vector. The first of these equations shows that the relation
between energy and momentum in an electromagnetic field is the same as
that in a particle moving at the speed of light,’> ie., the photon of
q'uantum field theory. The second equation shows that there exists a
similar proportionality between the magnetic flux density B;; and Uy;.

V1. CONCLUSION

The classical theory of fields has been used to develop and interpret the
concepts E X E* and By;, and it has been shown that these concepts are
self-consistent and physically meaningful. For example, the motion of an
electron in B is the same as that in E and B of a plane wave. The latter
can therefore be thought of as generating a magnetostatic field.
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© oA

THE ELEMENTARY STATIC MAGNETIC FIELD*
OF THE PHOTON

I. INTRODUCTION

It is well known that the photon has an intrinsic, unremovable spin, which
can be expressed as its quantized angular momentum operator J (Refs.
1-4). This is the essential explanation in quantum-ﬁgld theory for thp
existence of classical left and right circular polarization in electromagnetic
plane waves. In this paper it is argued that the photon glsq generates an
intrinsic and unremovable static magnetic field (flux density in tesla) which
can be described through the operator equation

. 7
By = Bog (1)

where B, is the scalar magnetic flux density amplitude of a beam of. N
photons (for example, a circularly polarized laser beam). The exp;ctatlon
value of the component of the operator By in the propagation axis qf the
laser is B,M,, where M, is the azimuthal equantum number associated
with the operator J. Classically, this expectation value is £ By - k, where k

*Printed by permission, based on Physica B, 182, 227 (1992).
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is a unit axial vector in the, propagation axis, axis Z of the laboratory
frame of reference (X,Y, Z).

The derivation of the fundamental operator equation (1) is given in
Section 11, followed in Section III by a suggestion for a key experiment to
test the theory, which consists of reflecting at right angles a circularly
polarized laser beam from a beam of electrons, and of measuring the
frequency shift in the reflected laser due to the interaction

A

AHy = —m - By (2)

between EH and the electron’s magnetic dipole moment operator .
Section IV develops some consequences in spectroscopy of the existence
of ﬁn, specifically a quantum field theory of the optical Zeeman effect,
splitting due to By in spectra at visible frequencies, and optical NMR and
ESR,® in which én shifts and splits conventional resonance features in
liquids and condensed matter. Finally, a discussion is given of some other
immediately interesting consequencies of the existence of By, for exam-
ple, an optical Stern-Gerlach effect.

II. DERIVATION OF THE OPERATOR EQUATION FOR ﬁn

It is seen immediately that the operator equation (1) can be derived on the
basis of symmetry and dimensions alone, and in this section the rigorous
quantum field theoretical derivation is given using the recent results of
Tana$é and Kielich® and of the present author.”~ ' Before embarking on
this it is instructive to note thAe role of fundamental symmetries, namely
the motion reversal operator 7, and the parity inversion operator P. The
operators By and J have the same Pand T symmetries, respectively,
positive and negative, so one is proportional to the other through a 7- and
P-positive scalar quantity. Furthermore, the unit of the operator J in
quantum mechanics is the reduced Planck constant #, and therefore the
scalar proportionality constant must be a scalar magnetic flux density
amplitude, B, in tesla. I a laser beam of N photons, the constant is the
laser’s scalar flux density amplitude in tesla. When N = 1 (one photon),
By remains finite, and it follows that the single photon generates a
quantum of magnetostatic flux density, described in quantum field theory
by By, of Eq. (1).

To derive this result rigorously it is convenient to consider first the
classical equivalent of By, which is a vector quantity in the propagation
axis of the laser:

B, = Bjk (3)
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; ‘ : 7-10
where k is a unit axial vector. The classical By; is proportional to the
conjugate product!!~13

) = E x E* (4)

a vector cross product of the electric field strength E of a circularly
polarized laser with its complex conjugate E*:

E = E,(i + ij)exp(id)

: (5)
E* = Ey(i — ij)exp(—id)

Here, as usual, E, is the scalar electric field strength‘ amplitude in volts

per meter of the laser, i and j are unit polar vectors in X and Y of th'e

laboratory frame (X,Y, Z), mutually orthogonal to the propagation axis

Z, and ¢ is the phase. From Eq. (5)

N = —2E2ki (6)
where k is a unit axial vector in Z. The product II* is an axial vector

which is also negative to T and positive to P. Equation (6) can be
rewritten using the fundamental in vacuo relation

E, = B, (7)
as
MY = —2E,c(Byk)i = —2E,cBpi (8)
with the definition
B, = Bk (9)

where ¢ is the (scalar) speed of light. .
Clearly, I and B;; must have the same T and P symmetries, and so

-10
does the unit axial vector k. The classical quantity B ha§ been deﬁneq7 )
as equivalent magnetostatic flux density in vacuo of a circularly polarlzﬁd
plane wave. It has no dependence on the phase ¢ of thﬁ: wave, a ,
therefore none on the angular frequency @ and propagation vecltort ic.
Using the relation between intensity (watts per square meter) and electr
field strength

I, = 2e,cE} (10)
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where ¢ is the permittivity in vacuo,’

g = 8.854 X 107 2C% 1m~! (11)
we arrive at
12
B, =il ——| (ExE") (12)
f 81yc

which shows clearly that By, is directly proportional to the conjugate
product E X E*, and that By is a real quantity.

The classical third Stokes parameter is the real scalar

S; = —i(ExEY - EyEY) (13)
so that
1/2
By= — (22| sk (14)
" 81yc ’

Equation (14) defines By in (8). Equation (10) defines B, in terms of S,
and shows that the former is a real axial vector that changes sign with the
laser circular polarization (left to right). The transition from classical to
quantized field theory is made through the third Stokes operator §3,
recently introduced by Tana$§ and KielichS:

3 =

N 2 ho oan s n
S, = — W 1(aXaY—aYaX) (15)

Here n(w) is the refractive index, V is the quantization volume, and 47
and 4 denote, respectively, the creation and annihilation operator. Defin-

ing a coherent state of a laser beam of N photons by the Schrodinger
equation®

dla) = ala) (16)

provides the expectation value

(alSsla) = la, |? = |a_|? (17)
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with
1 . 8
a,= —ﬁ(ax+1ay) (18)

We define the operator ﬁn using Egs. (14) and (15):

e 1,2
A 0 A
= S (19)
Bu (8100) ’
and rewrite Eq. (19) as
121 27w
R €0 i i
= nlaia,—a-a._ (20)
Bu (8106) [nz(w)V][ ( A )]
with
1 —_— . A
dt= —_2'_(6X + lay) (21)
The quantity
h(é1d+—&,ﬁ_)5h(r‘z+—ﬁ_) (22)

has the units of quantized angular momentum because (A,—A_) is
dimensionless. Here

A + A
n, +ay

i
D

(23)
ata

n_ -

are the number of photons operators.® o

The total angular momentum of a beam of N photons propagatlpg inZ
is known independently!’ to be NM,h, where M, is the azimuthal
quantum number associated with the photon’s angular momentum opera-
tor J. Defining the angular momentum eigenfunction of a single photon by
|JM, ) we arrive at the Schrédinger equation:

h(A,—A_)lIM,> = hM;NIIM,) (24)
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From Eq. (20) and (24)

n*(w)V
2w

S,1UM,> = hNM,|IM, ) (25)

and with the identity

A

S, (26)

j n*(w)V
| 270N

Eq. (25) becomes the standard Schrddinger equation describing the angu-
lar momentum of one photon:

JUM,) = aM,IM,) (27)

From (19) and (26)
b - € VU 20N feef -8
”“(SIOc) [nz(w)V} =t (28)

showing that én is directly proportional to J. Considerable insight to the
nature of the constant ¢ is obtained with the results of Tana$ and Kielich®

2T wh

0= nz(w)V<a|§()|a> (29)
N = (a|Syla) (30)

for the zeroth Stokes operator fo and its classical equivalent, the Stokes
parameter S,. Furthermore, we make use of the classical result'®

S, = 2E? (31)
which follows from our definitions (5) of £ and E*. From Egs. (28)-(31):

TwhN

Ef = @)V (32)

Using Eqs. (10) and (32) in (28) gives, finally, the fundamental and simple
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operator equation we seek to prove:

) (33)

IIL. A KEY EXPERIMENT FOR B

The theoretical existence of l§n implies many different things experimen-
tally, because a circularly polarized laser acts as a simple magnet, and
delivers equivalent (or “latent” or “potential”’) static magnetic flux density
through a vacuum, flux density which is able to form a scalar interaction
Hamiltonian with a dipole moment operator 7:

AH = —u - By

The electron carries an elementary i

A

=gyl (34)

where g, is the electron’s g factor' (2.002), and [ is the electron’s angular
momentum operator. The key experiment devised in this section isolates
the effect of the Hamiltonian (2) on a circularly polarized visible frequency
laser reflected at right angles from an electron beam. There is a frequency
shift

Af = ——" (39)

in the reflected beam, which provides a method of measuring I§n spec-
trally with a high-resolution spectrometer. The derivation of Eq. (35) is
based on conservation of momentum and kinetic energy when a circularly
polarized laser beam of N photons is reflected at right angles from the
electron beam. Consider the collision of one photon of the beam with one
electron, whereby the former is reflected by an angle 6 and the latter by
an angle ¢'. Initially, the electron is at rest with relativistic energy mecz,
where m, is its mass.! After the collision, the electron’s linear momentum
magnitude is p and it translational kinetic energy is (p*c? + micH\2,
The initial linear momentum of the photon is h/A; where A; is its
wavelength, and its initial energy is Ac/A;. The photon strikes the elec-
tron, considered stationary,' is deflected through an angle 6, and emerges

R e
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with linear momentum 4 /A; and translational kinetic energy hc /A¢. The
ele.ctron after collision moves off at an angle #' to the incident photon’s
trajectory. Conserving linear momentum and translational kinetic energy
gives three equations

i h h
pc050+)\—fcosﬂ=; (36)
o h
psm0+)\—fsm6=0 (37)
he hC
172
mec2+)\—i=(p2c2+m§c4)/ +)\—f (38)

v\‘/hich can be solved simultaneously to give the standard Compton equa-
tion for the wavelength shift

Ay — A, sin? — + L cos?
(A¢ ) . n > 2m.c A, cos“ @ (39)
At 8 = 90°
A A h
f i ¢ ’ (40)

a result that has no classical counterpart.! The wavelength shift is in the
X-ray region of the spectrum.

The theory of Compton’s effect, embodied in Egs. (36)-(38), takes no
account of the interaction energy

AEy = —{i - By) (41)

In consequence, Eq. (38) for the conservation of kinetic energy must be
modified to

he he
mec? + — = (p%? + m2ct)? + Tt AR (42)

1

Le., AEy contributes to the total energy after collision. Also the theory
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(36) to (38) takes no account of the intrinsic angular momenta of e.ither
photon or electron, and there must also be conservation of rotational
kinetic energy and angular momentum. However, equations (36), (37), and
(42) suffice to solve for A; — A; in the presence of AEy. For an electro;
magnetic beam of N photons (a circularly polarized laser) reflected at 90
off the electron beam, solving (36), (37), and (42) gives

h/m.c + AMA(AEn/hc)(1 — AEp/2m.c?)

43
1 - AEg/m.c? (43)

A= A

We consider the order of magnitude of AEy compared with m.c®. The
magnitude of the observable associated with the operator rfz is the Bcihzl;
magneton multiplied by the electron’s g factor (2.002), and is about 10

J T~!. The magnitude of the observable with the elementary photon

operator By, is’
IByl ~ 1077172 (44)

and for I, of 1.0 W cm™2 (10000 W m~?) is of the order 10’52T.
Therefore AEy; is of the order 102 J for this intensity. However‘, mc” is
of the order 1012 J per electron, so that to an excellent approximation

AE
r; < 1 (45)
m.c
and Eq. (43) reduces to
h AEg
A= A —2 46
Af /\1 m.oc + /\1 f hC ( )

€

which is consistent with Eq. (40) for AE; = 0. It is useful to express
Eq. (46) in terms of wave numbers:

_ m.cv; o m. AEyL (47)
YT e+ hv, mghe + h?B,

We now compare the order of magnitude of m hc (about 10~% _kg J mg
with 425,, which is about 4.4 X 10~ %75, kg J m; and find that for 7; < 10

G
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m~! (10" cm™Y)

vp— v A% 48
VT T (48)

to a very good approximation. In terms of frequency in hertz

AE 7B
Af=— hn:<mh n’ (49)

which is Eq. (35).

This equation shows that at electromagnetic frequencies well below 107
cm ™! (wave numbers), for example, at visible frequencies, the change in
frequency in hertz in a circularly polarized laser reflected at right angles
off an electror) beam is given by Eq. (49). This is based on the interaction
energy (/1 - By;) between i of the electron and én of the photon, two
elementary properties of quantized matter. In general, the frequency shift
is proportional to the square root of the incident laser intensity I,. The
interaction energy is quantized according to the quantum theory'9-2! of
operator products, and can be expressed as the expectation value

AEy = —<IJFMFIArfz -1§HII’JA’F’M1’,> 50)
m = —2002y. 1= —g.y. [

where [ is the angular momentum quantum number of the electron
(I = 3), and J is the angular momentum quantum number of the photon
(a positive integral quantity greater than zero!). Here Y. is the gyromag-
netic ratio and g, the electronic g factor.! The quantum number F is
given by the Clebsch-Gordan series

F=J+1,...[0-1 (51)

and the expectation value of the Z component of the resultant angular
momentum operator F is given by M», with the selection rule

AM; = +£1 (52)

and M. having (2F + 1) values from —F to F as usual. Therefore,
depending on the value of J, there are several different values possible of
the frequency shift Af; i.e., an analysis of the reflected laser beam will
reveal their presence as a spectrum. The diagonal matrix elements of (50)
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can be worked out analytically,!°~% giving the frequency shift

107713%g. 8.

M=
g=[3Q2F + DI(1 + 1)(2I + 1)J(J + D(2J + 1)]'?  (53)
I I 1
x|7 7 1
F F 0

Here the quantity in braces is the well-known 9-j symbol. For I = 2
J=1 and F = %, this is —0.05, and for an incident circularly polarized
laser intensity of 1.0 W cm ™2 the frequency shift in hertz from Eq. (19) is
~ 20000M, Hz. For I = 1,7 =1, F = j, the shiftis ~ —10000M, Hz.

For modest incident laser intensity the shift is already in the kilohertz
range, easily measurable, and has the following characteristics:

1. It should change sign with respect to the incident laser frequency if
the incident laser’s circular polarity is switched from left to right
(i.e., if the azimuthal expectation value of the photon’s static mag-
netic flux density operator is changed from By|M,| to —ByIM,|).

2. There should be no frequency shift or spectral detail if the incident
laser is linearly polarized, because the net static flux density deliv-
ered by the photon beam is zero, being 50% B,IM,| and 50%
—B,IM,l.

3. The shifts with respect to the incident laser frequency should be
proportional to the square root of the laser’s incident intensity /.

These features should prov1de adequately for the measurement of the
novel elementary property BH, and the method can be extended to other
elementary particles by using, for example, a neutron beam in place of the
laser beam. This would allow an experimental determination of whether
neutrons also have elementary magnetic flux density similar to Bn of the
photon (the elementary “magneton” of electromagnetic radiation).

IV. DISCUSSION

In addition to the frequency shift phenomenon mtroduced in this paper, it
is possible to predict novel phenomena due to B, wherever the photon
interacts with matter, one of these being the optical Zeeman effect gnd
another the optical Faraday effect. Both effects have been suggested in a
semiclassical context recently??~2® and their existence is reinforced by that
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of l§n on a fundamental level. In the optical Zeeman effect the magneton
By plays the role taken by a static magnetic flux density in the conven-
tional Zeeman effect and its relatives, the anomalous Zeeman effect, and
Paschen-Back effect. In the optical Faraday effect the magneton rotates
the plane of polarization of a linearly polarized problem. Clearly, the
interaction energy in these magneton-based effects must be constructed
from the quantum theory of operator products, as in Eq. (53), and
off-diagonal components of the matrix elements so obtained are important
in general, as well as diagonal elements. In molecules, these off-diagonal
elements must probably be worked out numerically, but for this purpose
there are many standard ab initio packages available.

Clearly, the magneton l§n is capable also of generating optically in-
duced resonance spectra (optical NMR and ESR), and evidence for this
has been obtained recently,?” although a full theoretical description is not
yet available, and must probably be generated ab initio, using software
packages such as HONDO or GAUSSIAN 90 by taking into account the
interaction of the magneton BH with the large and complicated chiral test
molecule used by Warren et al.”’ to show interesting, site-specific effects
of a low-power, circularly polarized laser on a conventional one- and
two-dimensional NMR spectrum. This technique appears to have consid-
erable promise, especially if the laser intensity could be increased by
pulsing. In principle, considerable increase in resolution of conventional
resonance spectra is obtainable.” %27

Finally, the optical equivalent of the Stern-Gerlach experiment is possi-
ble in principle by using an expanding or focused laser beam to generate
the optical equivalent of a magnetic field gradient in the axis of propaga-
tion of a circularly polarized laser beam coaxial with a beam of atoms,
such as silver atoms. The magneton theory of this will be the subject of
future work.

APPENDIX

The neutron has a magnetic moment and quantum number | = %, but is
approximately 10000 times heavier than the electron. The theory of
spectral detail in a circularly polarized laser beam reflected off a beam of
neutrons can be set up in the same way as for an electron beam, but the
expected splitting in the reflected laser beam is much smaller and much
more difficult to detect with a spectrometer. However, the presence of
such detail would be further evidence for the existence of the magneton
By;. It is also possible to replace the electron beam by a beam of atoms
with net electronic dipole moment, for example, and for any material with
net electronic or nuclear dipole moment the interaction with the magne-
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ton produces spectral detail in the reflected laser beam, which can be
analyzed spectroscopically. The experiment is not confined, furthermore,
to beams, but can also proceed, in principle, by reflecting the circularly
polarized laser beam from a material of interest with a net magnetic
dipole moment. In this context, the behavior of superconducting surfaces
is particularly interesting?® and the magneton Bn could well provide an
entirely novel way of analyzing type I and II superconductors by reflecting
a laser beam from the surface of the mgterial at right angles, and looking
for the specific magnetic effects due to By;. Type II superconductors are of
particular interest?® because they remain superconducting in the presence
of magnetic flux density, which is known to propagate in such material in
the form of quantized flux lines, each carrying one quantumzsA of magnetic
flux. In this case it might be expected that the magneton By would be
converted in the type II superconductor to the quantum of magnetic flux
hc /m,. Furthermore, Bitter imaging techniques®® can be utilized in super-
conductors to detect the presence of magnetization due to the magneton
EH of the circularly polarized laser, which can also be used to scan the
surface of the sample and induce individual vortices of magnetization in
the superconducting sample.

More generally and fundamentally it is interesting to speculate on the
possibility that elementary particles with spin are also capable of generat-
ing magnetons of flux akin to én of the photon. The latter is massless and
travels at ¢ in vacuo, whereas the neutron, for example, has mass and does
not travel at c¢. The electron also has mass and does not travel at c.
Nevertheless, the electron and neutron both have intrinsic, irremovable
spin, essentially in the same way as the photon, and in terms of symmetry
and dimensionality, both electron and neutron can generate magnetons of
flux through equations identical in structure to Eq. (1) of the text.
However, neither electron nor neutron are electromagnetic plane waves,
but different types of wave, and the question comes down to whether a
beam of electrons or neutrons carries a finite, scalar flux density amplitude
akin to l§n of the photon. It is known that the neutron, for example, obeys
the Planck relation between energy and frequency, but there appears to be
no evidence that the Maxwell equations can be written for neutrons or
electrons, and solved to generate plane waves akin to electromagnetic
waves. It appears at present that the electron and neutron generate
elementary magnetic dipole moments and that the photon generates the
elementary magnetic field En.

These speculations can be extended to other elementary particles with
intrinsic spin (i.e., angular momentum operators) and experiments can be
devised to test the speculations. For example, if the electron does indeed
generate its own magneton, a quantized magnetic flux density operator,
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Be, a bgam of electrons reflected off a beam of neutrons will generate the
interaction Hamiltonian

AH, = -r, - B, (A1)

wh‘ere i, is the magnetic dipole moment of the neutron. This is quantized
as in Eq. (53), and consequently the energy of the emerging electron beam
must record in some way the presence of AH ;- If the electron beam has
wave properties, it should be analyzable spectrally, and the spectral
pattern due to the interaction A H, should be measurable experimentally.
Electron diffraction is evidence that electrons can behave as waves as well
as particles, which is a result of the de Broglie principle. Proceeding with
the speculative logic in this way, it becomes clear that reflecting a beam of
any p_article with intrinsic elementary spin from any other particle beam
with 1ptrinsic elementary magnetic dipole moment could, in principle
result in an interaction energy of type (A.1). In other words, we speculatej
on the possibility that elementary particles in general can each generate its
own magneton.
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THE PHOTON’S MAGNETOSTATIC FLUX QUANTUM:
SYMMETRY AND WAVE PARTICLE
DUALITY—FUNDAMENTAL
CONSEQUENCES IN PHYSICAL OPTICS

I. INTRODUCTION

It has recently been demonstrated theoretically that there exists an opera-
tor én of the quantized electromagnetic field that describes the photon’s
magnetostatic flux density:

>

én = BOZ (1)

Here B, has been interpreted®™> as a scalar magnetic flux density ampll-
tude of a beam of circularly polarized light consisting of one photon, and J
is the boson operator®” describing that photon’s quantized angular mo-
mentum. The classical equivalent of By, is a novel axial vector By, which
is directed in the propagation axis of the beam. In this paper it is
demonstrated using elementary tensor algebra, and from inspection of the
Maxwell equations of the classical field, that there is another possible
interpretation of the scalar amplitude B,,, designated henceforth by (B,) .,
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where the + subscript is to be interpreted as “positive to parity inversion.”
It turns out that B, can be interpreted both as a scalar and as a
pseudoscalar quantity, designated (B,,) _, where the minus subscript means
“negative to parity inversion.” This is designated “symmetry duality,” and
is shown in this work to imply that BH can be defined simultaneously in
terms of the photon’s angular momentum operator J and linear momen-
tum operator p, a result that is a generalization of a keystone of wave
mechanic§, the de Broglie wave particle duality.® The latter is linked
through B|; to a symmetry duality in Maxwell’s classical equations.

It has already been shown theoretically>~> and experimentally®® that
circularly polarized light can magnetize, leading, for example, to the
inverse Faraday effect'®~'* and novel, potentially very useful, light-induced
shifts in NMR spectroscopy®? in one and more dimensions. The existence
of the operator By, and its classical equivalent B; makes it much easier to
interpret these magnetization effects by treating circularly polarized light
as a “magnet” generating this novel flux quantum per photon. The I?H
concept also makes it relatively straightforward to forecast the existence of
novel spectral phenomena, such as optical Zeeman, anomalous Zeeman,
and Paschen-Back effects, an optical Faraday effect and optically induced
magnetic circular dichroism,* and optical Stern-Gerlach effect, using a
focused laser beam to produce a light-induced magnetic field gradient,
optical ESR effects, optically induced effects in interacting beams, such as
a beam of circularly polarized photons reflected® from a beam of polarized
electrons, and so on. All these effects can be thought of as arising from the
replacement (or augmentation) of an ordinary magnet by or with a
circularly polarized laser. These theories allow scope for the development
of several novel analytically useful methods.

In this paper it is shown that By; is related directly to the ubiguitous, '
pseudoscalar, third Stokes parameter S; of the classical electromagnetic
plane wave, which becomes in quantum-field theory the third Stokes
operator of Tana$ and Kielich.! Therefore, it follows immediately that
several well-known phenomena of physical optics can be reinterpreted
fundamentally in terms of the operator 1§H, or its classical equivalent B,.
Examples include ellipticity in the plane wave, ellipticity developed in the
measuring beam of the electrical Kerr effect, and circular dichroism, which
are shown in this work to be magneto-optic phenomena. Therefore, not
only does BH allow this reinterpretation, in both classical and quantum
field theory, it also allows a link to be made between de Broglie wave
particle duality and symmetry duality in the classical Maxwell equations. It
appears, therefore, to go to the root of physical optics and field theory.

In Section II we develop the mathematical basis of symmetry duality
with elementary vector and tensor algebra, before embarking in Section
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I1I on a discussion of symmetry duality in the link between By; and ;. In
Section IV we develop the link between wave particle duality and the
symmetry duality in Maxwell’s equations demonstrated in Section III, and
discuss qualitatively the implications for elementary particle theory. In
Section V we develop the link between By, and S, into a novel explanation
for ellipticity and circular dichroism in physical optics.

II. SYMMETRY DUALITY IN THE VECTOR PRODUCT
OF TWO POLAR VECTORS

It is well known that the components of a vector that can be written as the
cross product of two polar vectors do not change sign under parity
inversion (P) and that the vector so formed is an axial vector,” or
pseudovector. The conjugate product of the classical electromagnetic

field? >

™ = E x E* = 2(E}), e, (2)

where E* is the polar complex conjugate of the polar electric field
strength vector E, is an axial vector, therefore. Here, e, is an axial unit
vector, positive to P and the quantrty (E?), is a scalar, also positive to p.
The overall motion reversal (T) symmetry of II™ is negatlve and it is
natural to define e, as a T-negative unit vector, so that (E2), is a T
positive scalar.

It appears at first sight that these definitions are both necessary and
sufficient for the complete definition of the axial vector II’; but mathe-
matically, there is an alternative, which is revealed through writing any
arbitrary axial vector as

C=C,e,=C_e_ (3)

where C, and e, are respectively ﬁ-positive scalar and unit axial vector
quantltles and where C_ and e_ are respectively P-negatlve pseudoscalar
and P-negatlve polar unit vector quantities. The cverall P symmetry of the
complete axial vector C is positive in both cases.

This seemingly mundane observation in elementary vector analysis has
far-reaching consequences in the theory of the classical and quantized
electromagnetic fields. In tensor algebra, the general vector cross product
C = A X B is written with the third rank antisymmetric (or alternating)
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unit tensor, ¢,;., known as the Levi-Civita symbol” !:

C, = %eaﬁy(AﬁBy _AYBﬁ) = %gaﬁycﬁy (4)

where the P symmetry of €4py 1S Degative, so that Cy, is a P-negatlve
antisymmetric polar tensor of rank two. Evidently, C, must be P-posrtlve,
and is the rank one axial tensor (i.e., an axial vector) However, C,_ can
also be written’” as T
Cpy = —ligg,C_ (5)
where g, is the Is—positive, axial, unit antisymmetric tensor of rank two,
and C_ is the pseudoscalar of Eq. (3). Equation (5) shows that the polar
antisymmetric tensor of rank two can be reduced, quite generally, to a
pseudoscalar, a particular result of a generalization in the relativistic
theory of the classical electromagnetic field.’* Note that Cg, Is purely
imaginary from the Hermitian properties of the general second-rank
tensor, which can always be written as a sum of real symmetric and
imaginary antisymmetric parts.’
Therefore,

i

a T T Eguﬁysﬁyc— (6)

or

) i
C,=—-iC,e,,= — EsaﬁysﬁyC_ (7)

where ¢, is the rank one axial unit tensor, positive to P, and C L+ isa
P-posrtlve scalar. Recall that C_ is a P-negatwe pseudoscalar. Equations
(3) and (7), using vector and tensor notation, respectively, are expressions
of symmetry duality, a purely mathematical result that shows that a scalar
and pseudoscalar may both be used to define an axial vector. Clearly, if we
take the magnitude (|C|) of the axial vector C in Eq. (3), we obtain

C’=c-C=C2=¢?
(8)
icl =)= 1c.| = 1c_|

so that the positive parts of the scalar C, and pseudoscalar C_ are equal
in absolute magnitude. This same result can be obtained from the tensor
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Equation (7) by taking a particular Z component:
i
Cy= —iCiez,= — EC—(EZXYEXY + ezyxEyx) 9

where the Einstein convention of summation over repcgt.ed indices has
been used on the right side. With the component definitions &7y = 1,

exy =1, £,yx = —1,and e,x = —1, we obtain
Ciez,=C gz (10)
where
E7_=EzxyExy T EzvxEyx (11)

is the Z component of the ﬁ—negative polar unit tensor of rank one, ¢, _.
Note that Egs. (3) and (10) are identical in symmetry charactgr for the
considered Z components of C. Equation (10), which is a direct and
fundamental consequence of elementary tensor algebra, again §hows the
symmetry duality between scalar and pseudoscalar in the definition of thf:
axial, or pseudo, vector. It is now possible to apply the purgl_y rpathemah-
cal principle of symmetry duality to the classical, nonrelativistic (or rela-
tivistic) field to obtain novel information of fundamental importance in
physical optics, particularly in respect of a P—posmve T-negatlve axial
vector, a novel magnetostatic field, By, associated with th.e electromag-
netic plane wave or in the quantized field, the magnetostatic flux density

operator I§n of the photon.

III. AN EXAMPLE OF SYMMETRY DUALITY:
THE RELATION BETWEEN B,; AND THE STOKES
PARAMETER S,

Consider the classical electromagnetic wave in free space, so thqt the real
scalar refractive index is unity. It follows from Maxwell’s equations for a

plane wave that
E, = cB, (12)

where E, and B, are P- and T-posmve scalars, amplitudes, respectively,
of the electric ﬁe]d strength and magnetic flux density. The intensity of the
wave is defined in free space by

IO = EOCE(% (13)
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where ¢ is the free space permittivity® in S.I. units, and ¢ is the speed of
light in vacuo. With Egs. (12) and (13), Eq. (2) can be rewritten as

I = 2(E,) , ciBy (14)

where we have defined the magnetostatic flux density vector B4 of the
classical electromagnetic plane wave in free space:

BHE(BO)+e+ (15)

where e, is a P—posmve un1t axial vector. The overall 7 symmetry of By is
negative, and the overall P symmetry is positive. In the introduction we
have given an account of the role of By in the reinterpretation of
well-known effects, such as circular dichroism and ellipticity, and its
mediating role in new effects such as optical NMR and ESR,’ optical
Faraday® and Zeeman® effects, optical Stern-Gerlach effects, optical
Compton scattering,” and so on.?~* Its quantized equivalent is the magne-
tostatic flux density operator of Eq. (1), in which (B,), is defined as the
P-and T -positive scalar magnetic flux density amplltude of one photon.

Again, as in Section II, it would appear at ﬁrst sight as if the definition
of the seemingly mundane quantity B, as a P- and T-posmve scalar is
sufficient. Remarkably, however, this is not the case, there is an alternative
definition possible of the novel classical vector B; which uses By as a
pseudoscalar. Not only does this emerge naturally from the Maxwell
equations for the plane wave, it also provides a natural link between B I
and the third Stokes parameter S,.!"7 1415

These conclusions emerge stralghtforwardly from the equations linking
the E and B vectors of the classical electromagnetic plane wave in a
medium of refractive index n, defined through the classical wave vector K,
a T- and P—negatwe polar vector directed in the propagation axis Z of the
plane wave”:

‘ 16
K=-—n n=- (16)

Here  is the angular frequency i 1n radians per second of the plane wave,
as usual. Maxwell’s equations give’

1 c
S OXE  E=-—nXxB 17
cn n2n (17)

In free space, the positive absolute magnitude of the P- and f-positive
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scalar n is unity. Using Equation (17) yields the conjugate product

c n c(E - B¥)
EXE*= -SEX(nXB*)= - ——7— (18)
n n n

We note that the vector n is a Is-negative f"—negative polar vector, defined
as usual’ as a propagation vector whose scalar magnitude is equal to the
T-posmve scalar refractive index n; the dot product E - B* is a T—posntlve
pseudoscalar. Equation (18) reduces to

Ey,Byc Ey\B,c n
e = o —

n t n [n|

Scalar Axial Pseudoscalar  Polar
unit unit 19)
vector vector

in which we have designated the various symmetries. It follows alge-
braically that

n
(BO)+e+= (BO)—; (20)

which can be rewritten in the notation of Section Il as an example of
symmetry duality in the Maxwell equations:

(By),e.=(B)e. e=- (21)

This shows that classical vector B, can be defined simultaneously in terms
of the unit axial vector e, and the unit polar vector e_, which is related to
the propagation vector x, the photon linear momentum. In free space,
with n =1,

n=(By).e,=(By)_e —(Bo)_ (22)

demonstrating a duality between the classical angular and linear momen-
tum of the plane wave. We shall see that this is none other than the
classical equivalent of the de Broglie wave particle duality for the photon
in the quantized field. Before making the transition to the quantized field,
however, another fundamentally new result emerges when we consider the
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definition'® of the Stokes parameter S;:
EEf — EgE)Y = —ig,4(S;)_ (23)
so that
(83) = (Eq)- (24)
is a pseudoscalar quantity, implying inter alia the symmetry duality
O™ = 2(Ef), ie, = 2(S;) _ie_ (25)

It follows directly that the magnetostatic vector B;; can be defined in free
space (n = 1) in terms of (§;) _ as follows:

(S5)_
2E,c

B, = = (By)_e_ (26)

and we find that the role of B, as pseudoscalar is none other than the
Stokes parameter S, scaled by an appropriate P- and T-posmve scalar
quantity. Thus, B;; can be defined in free space through the symmetry
duality

(S3)- (S3)- c
By = (By), e, = - < 27
n=(Bo)ie= S = E s W (27)

where the unit polar vector n can be identified with the unit vector e_ of
this section. We thus forge a novel and fundamental link between the
pseudoscalar magnitude of By; and the pseudoscalar ;.

VL. SYMMETRY DUALITY AND WAVE PARTICLE DUALITY
FOR THE PHOTON

Equation (1) shows that the photon’s novel magnetic field operator éﬂ is
dlrectly proportional to its well-defined® angular momentum boson opera-
tor J through B, in its scalar representation (B,),, interpreted as the
magnetic flux density amplitude of a single photon. The latter is a massless
lepton that propagates at the speed of light and is not localized in space'®
unlike a massive lepton such as the electron or proton. These well-known
properties are contained in Eq. (1), in that B, varies with intensity I, for a
beam of circularly polarized light containing one photon, and therefore B,
for one photon depends on the beam cross section, a finite area. The
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eigenvalues of the operator J are known to be M,#, M, = +1; there is no
M, =0 component from relativistic considerations. 81 Therefore, the
elgenvalues of By are +(B,),, where (By), is a scalar, the positive
eigenvalue corresponds to one particular c1reular polarization, and vice
versa,’ as in the convention for the operator J.

We now use the result®’ that the eigenvalue of the linear momentum

operator p of the photon is
p=(p)=rhx (28)

where k is the wave vector as defined classically in the preceding section.
It follows straightforwardly from Egs. (22) and (28) that in free space

(n=1

J (By)_

Bu=(By). 5 = (29)

&[’U)

(5
n w

which expresses the duality of Eq. (22) in terms of quantum field theory,
and shows that the én operator of the photon is simultaneously propor-
tional to both its angular and linear momentum operators. Equation (29)
summarizes a duality in symmetry, linear/angular momentum, and
wave—particle character with the results

f[(30)+] = +f[(30)—] (30)
ﬁ[(30)+] = _ﬁ[(Bo)—]

Equation (29) implies the free space relation
® ,
p=n—J n=1 (31)
c

The expectation value of p is therefore given by the expectation value of
J , which is +#. Taking without loss of generality the positive eigenvalue #,
we have, with n = 1,

h (32)

which is the de Broglie wave particle duality for the photon.

We have therefore succeeded in relating directly the de Broglie wave-
particle duality of quantum mechanics to the novel symmetry duality 22)
of classical electromagnetic field theory. It has also been shown that the

e e,
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novel flux quantum én is definable simultaneously in terms of J and D,
one operator being directly proportional to the other, implying that both
must be quantized in the same way. In a sense, therefore, Bn is the
keystone of de Broglie’s concept of duality for the photon.

Furthermore, contemporary elementary particle theory argues that the
photon is a chiral entity, a massless lepton that travels in any frame of
reference at ¢, and whose chirality, in consequence,!’ is well defined in
terms of the eigenvalues of Dirac’s 95 operator. The chirality of a lepton
with mass (i.e., a massive lepton) such as the electron is not well defined,
leading to the idea'’ that mass itself is ill-defined chirality. Well-defined
chirality in the photon can be thought of as a consequence of superim-
posed linear and angular momentum, and Eq. (29) shows that there is a
duality between these two fundamental quantities. It appears therefore
that the novel Bn operator of the photon is a true chiral influence as
defined by Barron,!’ and is therefore fundamentally different in nature
from a magnetostatic flux density, such as a magnetic field generated in an
electromagnet. The latter is now known to be an example of a false chiral
influence,'”” and cannot, for example, be a cause of enantioselective
synthesis. This is in contrast to the circularly polarized electromagnetic
field, which le Bel'® in 1874 conjectured to be a truly chiral influence, and
which is now known to mﬂuence enantioselectivity in chemical reactions.
The definition of the B operator in Eq. (29) also allows insight to the
symmetry of natural optlcal activity, i.e., circular dichroism and optical
rotatory dispersion, as developed in the next section.

It may be conjectured that a magnetostatic flux quantum én is always
carried by a massless lepton whose chirality can be precisely defined as the
eigenvalues of the Dirac y5 operator; and, conversely, that the massive
lepton does not support B and does not have precisely deﬁned eigenval-
ues of 5. This conjecture would impiy that fundamentally, BIl is always a
consequence of the absence of mass. It would therefore follow that the
neutrino (and antineutrino) carries a én field, but that the electron,
neutron, and proton do not. However, it is not clear whether the neutrino
has a classical counterpart such as the classical electromagnetic plane
wave, the counterpart of the photon. If the parallel between photon and
neutrino can be carried further, it would appear that the neutrino must
also be thought of as unlocalized in space. This would imply inter alia that
localization in space implies the presence of mass and the absence of
well-defined chirality (or well-defined eigenvalues of ¥s), and that the
absence of mass implies the absence of space localization. Carrying the
argument further, wave particle duality in a massive lepton such as the
electron has been observed, because an electron beam can be diffracted,
for example, but since the electron is localized and does not have well-
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defined chirality, its wave nature must be fungamentally different from
that of the photon, and in consequence, no By can be constructed or
defined for the electron. Wave particle duality in the electron is therefore
fundamentally different in nature from duality in the photon. The electron
has a magnetic dipole moment that is proportional to the electron’s spin
angular momentum operator through the gyromagnetic ratio. We there-
fore conjecture that a massless lepton cannot support a magnetic dipole
moment, because its effective gyromagnetic ratio would be infinite, but can
support a magnetostatic flux quantum. The opposite is true for a massive
lepton. With these assumptions, the BH operator of a massless lepton
would always be able to form an interaction Hamiltonian operator to first
order with the magnetic dipole moment operator of a massive lepton, an
example being a photon beam interacting with an electron beam,’ or a
neutrino beam with a neutron beam and so on, giving rise to measurable
effects in principle. The inference overall, therefore, is that a beam of
massless leptons, for example, photons or neutrinos, can magnetize but
cannot be magnetized, whereas a beam of massive leptons cannot magne-
tize but can be magnetized.

The charge conjugation symmetry operator can be defined as ¢ (which
operates to reverse the sign of charge), and with this definition we recall
the fundamental Luders-Pauli-Villiers theorem'’

CPT =1 (33)
The violation of P has been observed!” in a number of different ways,
whereas the violation of 7 has been observed in only one critical experi-
ment.!” The violation of P leads to the result that the space-inverted
enantiomers of a truly chiral entity such as the photon or neutrino are not
degenerate, or exactly the same in energy, because of the existence of the
p violating electroweak force.!” In contrast, the space-inverted “enanti-
omers” of a falsely or pseudo chiral entity, such as an ordinary magnetic
field, are precisely the same in energy.” Thus, it is important to note that
the true enantiomer of the photon, or neutrino, is not generated by space
inversion or by application of the P operator, i.e., by reversing the linear
momentum and keeping the angular momentum the same. Assuming that
the photon is uncharged, so that ¢ has no effect its true or exact
enantiomer must be generated by simultaneous P and T violation in order
to conserve the validity of the Luders-Pauli-Villiers theorem. (33). The
true enantiomer of the left-handed photon is presumably, therefore, an
object that must be designated the right-handed “antiphoton,” and there
is a very small, but nonzero, energy difference between the left-handed
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photon and the right-handed photon. If the right-handed photon is to be
regarded as having a different energy from the left-handed photon, then
either P has been v1olated and T and C have been conserved, or T has
been violated and P and C have been conserved. Assuming that € has no
effect on the photon, because it is uncharged, the combined operation PT
must be used to generate the right antiphoton from its true enantiomer,
the left photon, and vice versa. The photon is an object whose chirality is
generated only as a result of its simultaneous translational and rotational
motion, and the novel By operator is a fundamental manifestation of this
chirality. The latter is conserved, furthermore, in the photon and antipho-
ton, because both travel at the speed of light and both are massless. It is
also known'” that neutrinos conserve chirality, in that only left-handed
neutrinos and right-handed antineutrinos exist. The P violating weak
force is known to play a critical part in the interaction of left-handed
neutrinos with left, but not with right, spin-polarized relativistic electrons,
and of right-handed antineutrinos with right, but not left, polarized
relativistic electrons.!”

These arguments lead to the interesting possibility that a beam of, say,
left photons, each carrying a flux quantum én, may interact differently
with a beam of left and right polarized relativistic electrons, each carrying
the magnetic dipole moment %, through the interaction Hamiltonian
operator

AH = -1 - By

This differencg may be picked up by observation of the Zeeman splitting
caused by AH in, for example, a circularly polarized visible laser beam
reflected from a polarized, relativistic, electron beam. Such an experiment
has been proposed recently to evaluate the effect of ﬁn (Ref. 5).

V. THE ROLE OF By, IN ELLIPTICITY AND ASSOCIATED
EFFECTS IN PHYSICAL OPTICS, FOR EXAMPLE, CIRCULAR
DICHROISM

The link between |Bp| and the third Stokes parameter (S;)_ can be
expressed through the intensity /; as

£ 172
IBHI = (Bo)—= (4106) (S5)_ (34)

so that it follows that whenever (S;)_ occurs in physical optics, it can be
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replaced by the pseudoscalar quantity B,, multiplied by the scalar
(41yc/£¢)"/*. This is a key link between the photon’s magnetostatic field
operator BH, in its classical limit, and the ubiquitous (S;)_, revealing
immediately the root cause of several well-known phenomena in physical
optics.

As an example, the ellipticity n of an elliptically polarized beam of light
is related to (S;)_ by

(S;) . =2E{sin2q (35)
with
b
n=tan ' — (36)
a

where a and b are respectively the major and minor axes of the polariza-
tion ellipse.” This shows that there is a direct link between ellip}icity and
the vector By, which is the classical equivalent of the operator By. In the
theory of the electrically induced Kerr effect,” for example, ellipticity is
developed in an initially circularly polarized measuring beam after it has
passed through a material to which a static, uniform, electric field has
been applied perpendicular to the propagation direction of the beam and
at 45° to the aximuth of an incident linearly polarized beam. For the
emerging beam in the electric Kerr effect it can be shown that

I 1/2
IBul = (By) - = (8—23) sin(2m) (37)

showing that the root cause of eliipticity in the Kerr effect is the pseu-
doscalar magnitude (B,)_ of Bj. Note that for the incident, linearly
polarized beam, By, is zero, but that in the transmitted, elliptically polar-
ized beam it is nonzero.

Another example of the fundamental role of the pseudoscalar (B,)_
the phenomenon of circular dichroism, which is a manifestation of optical
activity, whereby the intensity of initially linearly polarized electromag-
netic radiation transmitted by a structurally chiral material contains an
excess of left over right circularly polarized components, or vice versa. In
this context’

(S3)— IL_IR
(So). I+ 1y %)

e
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where (S;), is the zeroth Stokes parameter, a scalar quantity defined by
(So) 4 = 2E§ (39)

Therefore, the root cause of circular dichroism is the pseudoscalar magni-
tude (B,)_ of the vector By:

1 1/2
IBHI :(Bo)—= (m) (IR_IL) (40)

an equation that is valid at all electromagnetic frequencies.

The origin of circular dlchr01sm therefore resides in the photon’s
magnetostatic flux quantum Bp. In other words, circular dichroism is
magneto-optic in origin, and the observable (I — I;) is a spectral conse-
quence of the interaction of B, with structurally chlral material. From
Eq. (40), Iy — I, is proportional to the real pseudoscalar quantity (B,)_
after each photon of the beam emerges from the chiral material through
which the beam has passed, i.e., after interaction has occurred between
the incident flux quantum én per photon and the appropriate molecular
property tensor of the material.” This leads to a new way of describing the
fundamental mechanism of natural optical activity by considering the
mechanism of interaction of Bj; with a structurally chiral molecule, or
center of optical activity. A quantum l§n per photon is evidently absorbed
and reemitted with different characteristics imparted by the chiral struc-
ture.

For a beam consisting of one photon, the observable I — I, provides
an experimental measure of the transmitted elementary BH at each
frequency of that beam. Although By; is itself independent of the phase of
the beam, the interacting molecular property tensor depends on the beam
frequency through semiclassical perturbation theory,” which gives

[\
IBpl = (By)_= (ﬁ) tanh[wp,oclNg“j\’,Yz(g)] (41)
0

where p is the permeability in vacuo, @ the angular frequency of the
beam, / the length of sample through which the beam has passed, and
{yyz an appropriately averaged molecular property tensor component, a
pseudoscalar.” Equation (41) shows that all circularly dichroic spectra are
signatures of the reemitted BH property of the photon.

More generally, any property in physical optics that involves (S;)_, in
classical or quantized' form, necessarily involves B or the quantized BH



140 M. W. EVANS

per photon. There are several of these phenomena, each of whose origin
can be traced to the novel elementary flux quantum By, of the photon.
Rayleigh refringent scattering theory, for example,” shows that (S;)_

associated with a change dn /dz in ellipticity in a beam passing through a
sample of thickness z. It is immediately possible to say, therefore, that
dn /dz measures changes in the flux quantum BH per photon as it passes
through the sample, i.e., as Bn is absorbed and reemitted, a process from
Eq. (29) that must involve changes in the incident photon’s angular and
linear momentum. Ellipticity is therefore magneto-optic in fundamental

origin.
VI. DISCUSSION

One of the interesting consequences of the development ir} the preceding
sections is that the speed of light ¢ must be regarded as a T-positive scalar
quantity. This is because ¢ is a universal constant that is relativistically Fhe
same in any frame of reference, and cannot be reversed by the motion
reversal operator f", because ¢ is independent of motion. However, a
velocity v that is less than ¢ is f"—negative, because it is reversed by motion
reversal in a given reference frame. In consequence, the scalar refractive
index n, defined by ¢ /v in a material, must be a 7-positive quantity. The
value of n in vacuo is numerically unity and is the mathematical limit of
c/v as v — c. It is proper to regard n as being T-positive in this limit, and
this is the point of view utilized in this paper. A

1t follows that the unit polar vector n/n must be T-negative, because it
is the quotient of T-negative / f"—posAitive quantities. In Eq. (20), for exam-
ple, TI(By) 1=+, Te,) = —, T((BY,1= +, Ta/n) = —, so that
there is a balance of net T symmetries on either side of the equation.

To interpret rigorously the generalization, Eq. (29), of the de Broglie
equation (32) in its “textbook” form, it must be borne in mind that the
de Broglie duality rigorously implies the symmetry duality summarized in
Eq. (30) for P. Equation (31), therefore, is more rigorously expressed as

5 _ (30)47_(‘:" _ 42
P—n(—éo—fc., n=1 ( )
and Eq. (32) as
(Bo)+
Sl =1 (43)
Por Byt "
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The quotient (B,), /(B,)_, and the T-positive free space refractive index
(n = 1) are missing or implied in the usual textbook definition of the
de Broglie wave particle duality.

In conclusion, it has been demonstrated that there is an 1nherent
symmetry duality in the definition of the magnetostatic flux quantum Bn,
which is the root of the de Broglie wave particle duality for the photon.
The operator By can be defined simultaneously in terms of the angular
and linear momentum operators of the photon. This type of symmetry
duality occurs throughout physical optics, and is inherent in the fact that
BH, or its classical equivalent B, is at the root of several well-known
effects, such as circular dichroism and ellipsometry of various kinds. The
operator én can also be used straightforwardly to predict and describe
novel and useful spectroscopic effects that depend on magnetization by
circularly polarized light.
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EXPERIMENTAL DETECTION OF THE PHOTON’S
FUNDAMENTAL STATIC MAGNETIC FIELD OPERATOR:
THE ANOMALOUS OPTICAL ZEEMAN AND
OPTICAL PASCHEN-BACK EFFECTS

I. INTRODUCTION

[n this paper we continue a systematic theoretical search for a method Qf
detecting and measuring unequivocally the photon’s fundamental static

magnetic field operator!~>

X J
By = Bo% (1)

where B, is the scalar magnetic flux density amplituge.in tesla of ’a
circularly polarized laser beam, made up of N photons, Jy; is the photon’s
angular momentum operator, and # is the reduced Planck cqnst.ant h / 2.

Fragmentary experimental evidence for the existence of By is available
through the inverse Faraday effect (IFE),°~° and the recent emergence of
optical NMR (ONMR), or laser-enhanced nuclear magnet.lg resonance
spectroscopy (LENS).!> ! Both techniques measure the ability of circu-
larly polarized laser radiation to magnetize. The IFE measures bglk
magnetization and ONMR measures light-induced resonance shifts, which
are different for each resonating site and are therefore useful for sample
identification and spectral analysis. However, the theoretical exis.tence.of
l§n also implies other effects, such as an optical Zeema.n effect, in thlch
the magnetic effect of a circularly polarized laser splits electrlg dipole
transitions in atoms occurring in the visible frequency range. Thls paper
provides a fairly rigorous quantum theory of the anomalous optlca.l Zee-
man effect and the optical Paschen-Back effect, in which both spin a.nd
orbital electronic angular momenta are considered in various coupling
schemes.

The existence of an optical Zeeman effect in atoms appears to have
been implicit in the theory of the inverse Faraday effect proposed by
Pershan et al.®~% Kielich et al.,'? and Atkins and Miller.”> The present
author independently arrived at the existence of an optical Zeeman gffect
in a series of papers'*~'7 based on symmetry considerations and semiclas-
sical theory, considerations that also led to ONMR.'*~?! Recently, he has
proposed theoretically the existence of the photon’s By o.perator', a
fundamental property of the photon itself, whose classical equivalent is a
static magnetic field, 311, produced by circularly polarized electromagnetic
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radiation at all frequAencies.l“4 It is important to realize that the operator
By (or the classical Byy) is different fundamentally from the usual B vector
of electromagnetic plane waves.”? The B vector is frequency dependent,
whereas the B vector is not. The B vector has components in X and Y
directions mutually perpendicular to the propagation axis Z of the laser,
and no component in the Z axis, whereas B, is directed in the Z axis only.
The B vector depends on the photon’s linear momentum vector & (i.e., the
propagation vector), whereas By, does not. Again, B, is positive to the
Qarity inversion operator P and negative to the motion reversal operator
T, and is therefore fundamentally different in symmetry from the Poynting
vector?® and the propagation vector.”* It appears that By (and its quan-
tum field equivalent By) is a fundamentally new concept in electromag-
netic field theory.

The optical Zeeman effect appears to be a promising method of
detecting the effects of ﬁn experimentally. Electric dipole transitions in
atoms are readily measured and identified spectrally.” The key to the
optical Zeeman effect is to replace the magnet of the conventional
Zeeman effect™ by a circularly polarized laser. In the ordinary Zeeman
effect, where there is no consideration given to the role of net electronic
spin angular momentum,” a singlet 'S — 'P transition is split by a magnet
into three lines. Its optical equivalent has recently been proposed theoreti-
cally” using the concept summarized in Eq. (1), and produces a splitting of
the original 'S —»'P electric dipole transition, a splitting pattern whose
details are different in quantum-field theory (in which the operator ﬁn
forms a Hamiltonian with the electronic magnetic dipole moment operator
m of the atom) and in semiclassical theory (in which the Hamiltonian is
formed from a product of 7 and the classical vector Bj;). The pattern also
depends on the type of angular momentum interaction used in the
quantum-field theory, i.e., whether a coupled or uncoupled representation
of By, and s is used.?? The semiclassical result is recovered® only in the
uncoupled representation. In the coupled representation, the quantum
field theory produces three lines, but the central line is displaced in
frequency. In the uncoupled representation of the quantum field theory of
the optical Zeeman effect, and in the semiclassical representation of the
same problem, the splitting pattern obtained® is the same as that in the
conventional Zeeman effect, i.e., two lines each side of a central line
situated at the original frequency of the electric dipole transition 'S —'P.

In Section 1II, these findings are augmented by the consideration of
electronic spin angular momentum in quantum field and semiclassical
approaches using in the former different coupling models for the angular
momenta involved in the interaction Hamiltonians. In Section I11, the
details are given of the spectral splitting due to the circularly polarized
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laser for each theoretical approach of Section II. Finally, some experimen-
tal details are discussed and estimates of the splittings in hertz are given
for each theoretical approach, namely the quantum field theory in the fully
coupled, semicoupled, and uncoupled representations, and the semiclassi-
cal approach where By is considered as a classical field vector. Conditions
are discussed under which the anomalous optical Zeeman effect gives way
to the optical Paschen-Back effect in the quantum field and semiclassical
representations of the same phenomena.

II. QUANTUM FIELD AND SEMICLASSICAL INTERACTION
HAMILTONIANS

The core of the description of the anomalous optical Zeeman effect and
the optical Paschen-Back effect in atoms is the construction of the interac-
tion Hamiltonians between the novel photon property I§n (quantum field
theory) or By (semiclassical theory) and the atom’s net electronic mag-
netic dipole moment operator . In this section, first-order interaction
Hamiltonians are constructed in the framework of quantum field and
semiclassical descriptions of the same problem.

A. Quantum Field Theory

The interaction Hamiltonian is the operator product

A

AH, = - - By (2)

from which the energy of interaction is calculated from an expectation
value such as

AE, = - FMIL + 2.0028|S'LT' T, F'M}) (3)

In this expression, the magnetic dipole moment of the atom is de-
veloped as

= y.(L + 2.0025) (4)

where v, is the electronic gyromagnetic ratio, L is the operator describing
the net electronic orbital angular momentum, and 2. 002S is the operator
description of the net electronic spin angular momentum.?? The By
operator is developed in terms of the photon’s angular momentum opera-
tor in Eq. (1). The angular momentum quantum numbers §, L, and J;; are
associated with the operators S L and JH, respectively. The interaction
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energy (3) is one in which a coupled representation? is considered fc
the three angular momenta just introduced. In this case the couplir
scheme is

J=L+S F=J+]; (5

so that the values of the quantum number J, associated with the operatc
J are given as usual by the Clebsch-Gordan series

J=L+S,...,|L -S| (6
Similarly, the overall quantum number F is defined by
F=J+Jy,....,|J =Jgl (7

i.e., from a coupled representation of the J operator of the atom and th
novel1 5 Jy operator of the photon whose effects we are attempting t
describe.

There are other ways of writing the interaction energy for the give
Hamiltonian (2), these being the semicoupled and uncoupled representa
tions. In the former, the operators . and 2.002§ of the atom ar
combined in a coupled angular momentum representation?? to give the .
operator, but the interaction energy is formed as follows:

B
AE2=_ye 0

s InMy L+ 2.00281S' LI M;; JgM; ) (8

i.e., with J and fn considered in an uncoupled representation, in whict
the projections M, and M 1, onto the azimuthal axis (Z, the laser’
propagation ax1s) are well defined, but in which the net angular momen
tum operator F is not. In the latter, the interaction energy is written as

s3

s IuM,, L+ 2.002818'M}; LMy ; T M; )
%)

in which all three angular momentum operators—/. and 2.002S$ of the
atom, and JH of the photon—are considered in a fully uncoupled repre-
sentation. All three representations are possible theoretically, and which is
the most appropriate can be determined only by independent considera-
tion of the physics of the problem.
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1. The Coupled Representation

The first stage is the usual one. The Wigner-Eckart theorem is used to
separate out the M, dependence® **:

wf F 0 F 10
AE, = —(~1)F F(_MF 0, |(SLInFli - BulSLURF)  (10)

We have restricted our consideration to diagonal elements of the interac-
. . . . 2
tion energy, and in this case, the 3-j symbol is®

(—1)""‘“(_1;4 8 A§F)=(2F+1)*1/2 (11)

The quantum nature of the interaction energy is t.herefore contained
within the reduced matrix element in Eq. (10). This is a problem.of tl}e
type first considered by Curl and Kinsey?® and which is summarlzed. in
Eq. (13.8) of Silver,”” one in which there are three types of commuting
(independent) angular momenta, described by operators 2..002S, L, and
fn in spaces 1, 2, and 3, in the fully coupled represer}tatlon gf angular
momentum quantum theory.?? It is helpful to write the interaction energy

(10) as

[$1e 1], @/,

0

SLII;F)

[0 e 21], ® Ji

AE, = —

Ye By -172
P (2F +1) ((SLJJHF .

|

in terms of tensor products of the type illustrated in Eq. (13.7) pf Sllve‘r,25
to which we refer the reader for background and details of irreducible
tensorial methods. These methods allow the reduced matrix element t.o bztS:
written in terms of the 9-j symbols of atomic quantum mechanics,
allowing the interaction energy to be expressed simply as

0

SL/JHF>) (12)

+2.002( SLIJ \ F

0

AE, = —v.Byhg, (13)

where the g, factor is a complicated combination of terms defined
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through the individual angular momentum quantum numbers;

J 71
&= (27 + D[32F + OIu(Jy + D2y + D]y Ty 1
F F 0
S S 0
X[(2S+ DHL(L + 1)L+ DL L 1 (14)
J J 1
s s
+2.002[(2L + 1)S(S+ DH(2S + D]?[L L o
J J 1

Note at this stage that there are several energy levels, because there are
several allowed combinations of quantum numbers through the appropri-
ate Clebsch-Gordan series. For each energy level there will be an individ-
ual g, factor. The physical meaning of this coupled representation is
discussed later, and in Section III the result (13) is used in the context of
electric dipole transitions in atomic states split by the photon property Bn
generated by a circularly polarized laser.

2. The Semicoupled Representation

This is, perhaps, the most realistic representation of the problem in
quantum field theory, because of the nature of the photon operator EH.
The photon propagates at the speed of light and is massless, so that the
azimuthal components of the angular momentum operator fn are always
well defined (i.e., specified)?? in terms of the azimuthal quantum numbers

M]II = *1

(A sign change in this context denotes switching from left to right circular
polarization.) Relativity theory forbids any component of the photon
angular momentum perpendicular to the azimuthal (propagation) axis Z.
It appears natural, therefore, to combine the angular momentum opera-
tors J and Jy; in the uncoupled representation of the quantum theory of
angular momentum coupling,” > a representation in which the azimuthal
components of the angular momenta are specified, but in which the
resultant angular momentum is not,2
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In the semicoupled representation, the interaction energy (8) can there-
fore be written

'YeBO

AE,= -

(¢sem,iiv e ]ISz + 2.002 )

& ~o]! r ' ’
x (SLIM,|[$' ® 10]015’L'1'M;>)<JHM,“|ng|JHM,n>

an expression that can be reduced using tensorial methods (using Egs.
(14.10) fF. of Silver®) to the form

Y. By 3J(J+ 1) —L(L+1) +S(S+1) (_1),[1_,%“
AE2=_( h )M’ 27(J + 1)
(16)
Ji 1 Ji . ,
NIl Tl
x _an 0 an e
This can be reduced further to the simple result
AE, = —YeBogLMJMJnh (17)
using the following results® and notation:
3J(J+ 1) —L(L+1)+8(S+1) (18)
gL~ 20(J + 1)
I 1 Jp -1,2
~ 1)/ M =M, [Ja(Jy + 1)(2]g + 1)]
( ) ( —an 0 an T
(19)
A 1/2
Ul i) = Al + 1270 + D] (20)

In this semicoupled representation, therefore, the interactiqn energy in
quantum field theory becomes the product of ag, factqr which depends
only on the quantum numbers J, L, anq S, .Wlth thf: a21mutl.1al quantul:n
number product M, M, . The g, factor in this case 1s recognizable as the
Landé factor of atomic theory.”® %
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3. The Uncoupled Representation

This is a possible representation of the same problem, in which the three
operators 2.002§, L, and Jy are decoupled operators acting indepen-
dently on decoupled states, each operator acting independently on states
built from independent sets of coordinates in spaces 1, 2, and 3 (Ref. 22).
The interaction energy (9) is therefore written as

Y. B PR
AE, - - = (<SMys LM, ; 3y M, |1 L0 T30l S'MG; LMy T M;, )
+2.002(SMy; LM, ; Iy M, S0 1585 oy, (2D
JiM;))

and the Wigner-Eckart theorem applied three times to give a superficially
complicated result:

AE3 — _YeBoh( _ 1)S—M5+L~ML+J”~MJ“

Sl s o s L 1 LU Jn 1 Uy
-M; 0 M)\-M, O M)\-M, 0 M

X (SIS SYCLIENE Y Tl (22)
s 1§ L 0 L Jn 1 Jg
+2.002 , ,
0 (—MS 0 MS)(—ML 0 ML) -M,, 0 M,

X (SISUS YCLITNL Y Il ]

. However, with standard results, % %° such as

(SISISY = [S(S + 1)(25 + 1)]*h (23)

(SIS = (28 + 1)!? (24)

(-fus 0 Ai)=(—1)S‘”“'MS[S(S+1>(2S+1)1“” (25)
0
0

) =(-1)*M@s+1)"'”? (26)

X
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the interaction energy in the decoupled representation of quantum fi
theory collapses to

AE; = —v.ByhM, (M, + 2.002Mj) (27)

in which there is no g factor at all, and which is a simplei prodzlct Bpf
azimuthal quantum numbers of the atom and the photon’s nov -
operator in which we are interested.

B. Semiclassical Theory

i i and
The semiclassical representation of the anorpalous optlca.l Zeeman
Paschen-Back effects depends on the interaction Hamiltonian
AH,= —r - By (28)
where By, is now a classical field vector,l’s. not a quantum-mechanical
operator. The interaction energy in this case is

AE, = —v,|Bgl(SLIM,|L + 2.0028|S'L'J"M}) (29)
4 €

which can be reduced to

AE, = —v.IBylg M, (30)

where g, is the same Landé factor as in Eq. 7).

III. APPLICATION TO ELECTRIC DIPOLE TRANSITIONS
IN ATOMS

In this section the results of Section 1I are E}ppl{ed to predli)t theCisrp;lllltl':;llﬁ
of a visible frequency electric cii:lipole tra?smog 1n0§1111E Zto(rln) %hi rcularty

rized laser generating the flux quantum n (1) !
Ir)l(l)ll:s governing such a transition in the conve;xztlzosn?ﬁl Erhheory ;)ef Lti;iﬁ?:d
lous Zeeman effect in atoms are well knovyn. e e)]/E ak determited
by rules on the existence of the 3+ syr'nbol in thf: ngner- C aent OI:I)) nsion
of the matrix elements of the transition electric dipole mom

it. For the Z component

I—MJ( ‘5‘/! (1) 1{41)(5“”/20“5’[4’]’)
- J

(31)

(SLIM,|GNIS'LT' M) = (—1)

J
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and the selection rules are
AJ=0,+1 AM; =0 (32)
Similarly, for the X and Y components of 4,
AJ=0,+1 AM, = +1 (33)

However, in the anomalous optical Zeeman effect, the atomic terms
between which the electric dipole transition takes place are each being
considered in the presence of the operator By, in the various coupling
schemes of Section II. Therefore, the electric dipole transition selection
rules must also be derived in the appropriate coupling scheme.

We shall consider an atomic transition?? between the atomic terms
ZPI/2 and 2D3/2. In the former, L =1, S =1, and J = 1; and in the
latter, L =2, §$ =1 and J = 3. The Laporte (or parity) selection rule is
also obeyed in such a transition, i.e., AL = 1 in this case. The transition
occurs at a frequency that is determined from the appropriate electric
dipole selection rules,? and the spectrum in the absence of én consists of
a single line which can be measured at visible frequencies in a spectrome-
ter.

We are specifically interested in how this line is affected by the
presence of an additional, circularly polarized laser, generating the flux
quantum ﬁn of Eq. (1), and substituting for the usual magnet of the
Zeeman effect.” In examining the effect of By we use the four results,
Egs. (13), (17), (27), and (30), in turn. In each case the effect of én is first
determined on the * P, , atomic term, and then on the ? D, ,, term. Each
of these two terms is split into nondegenerate energy levels by the addition
of quantized energy such as AE|, described by Eq. (13), for example.
Various electric dipole transitions can then occur between the split 2Pl y
term and the split 2D3 /2 term according to the transition electric dipole
selection rules appropriate for the coupling scheme. Overall, therefore, we
expect that the novel flux quantum Bu splits the original line correspond-
ing to the transition ZP,/2 —>2D3/2 in an atom. The details of the splitting
pattern depend on which of the various schemes of Section II are chosen.
This procedure is similar to the standard theory of the conventional
Zeeman effect,”~2* but in the optical Zeeman effect, By is a quantum-
mechanical operator. In the conventional Zeeman effect, the applied
magnetic field B, is always a classical, magnetostatic field vector, whose
Origin is not electromasnetic
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A. Quantum Field Theory, Coupled Representation, Eq. (13)

The atomic 2P1 ,, term is split from Eq. (13) into two levels by the novel
Jperator BH of the photon:

g =1,7
Jg=1,7

’

g(F =
gz(F =

.2 .
and there is a different g factor for each level. The atomic “Dj; , term 1s
split into the three levels:

L=138
L=1,8

oj— N

)
)

= N

1

3

Nojw N

g(F=1Jn=17=3L=25=3)
g4(F=%,Jn=1,J=%aL=2’S=%)
85(F=%afn=1’]=%’l‘=2’s=%)

each with a different g factor. In general the ﬁ\'/e g factors (tvyo Ein tl}e
lower term and three in the upper) are all different. Electric l1pole
transitions within the atom can now occur betwee_,n the two lower levels
and three upper levels with selection rules determn}ed as follows. _—

The transition electric dipole moment operator is developed using the
Wigner-Eckart theorem between coupled states to give

(SLJIy FMe| @IS’ LT T F' M) .

F 1 F' A ! ’ ryr 14
Fou SLITFED
=(-1) r( M, 0 M,F)<SL/JHFIIMOH n

This procedure yields immediately the selection rules on the Z component
of i
AF=0,+1 AMp=0 (35)

Similarly, for X and Y components of £,
AF=0,+1 AMp= %1 (36)

All selection rules now refer to the net quantum number F - 1 )

There are six possible spectral lines generated lz)y electric dlp;) e transO )
tions between the two P, /2 levels and tl‘zle three "D levels,_ ;tl om’i o
these, from the F = § level of the split “P; term to the F —5 5 32‘)16'ust
the split 2D3 2 term, is forbidden by. the selectlon' rule (35 ,t o J+ X
derived, i.e., by the fact that the maximum change in F mus .
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Discussion of the physical meaning of this result is given later. The
quantum field theory of the anomalous optical Zeeman effect in the
coupled representation splits the original visible frequency spectral line
into five, each displaced from the original frequency.

B.  Quantum Field Theory, Semicoupled Representation, Eq. (17)

In this case the selection rules on the electric dipole transitions are
obtained by the development (for the Z component):

(SLIM;; In M, |GG131S'LT' My Ty M; )

= (SLIM,agIS' LI My Ty M, |18107 M, >

(37)
- (_1)""4!( _5”] (1) A{,})(SUH;%HS’L’J’)
so that the 3-j symbol is nonzero if and only if
AJ=0,+1 AM, =0 (38)
Similarly, for X and Y components of Qa,
Al=0,+1 AM, = +1 (39)

The Landé g, factor of Eq. (17) is the same for each level of the ’p, 2
term. For each level of the split >D, > term the Landé factor is again the
same, g, ;. Transitions between the levels are controlled by the selection
rule AM, =0, + 1. The resulting spectral pattern is three groups of
doublets, i.e., six lines. This is recognizable as the same pattern observed
in the conventional semiclassical theory of the anomalous Zeeman effect,
as illustrated, for example, in Fig. 9.27 of Ref. 22.

C. Quantum Field Theory, Uncoupled Representation, Eq. (27)

In this case the electric dipole (Z component) transition selection rules
are determined from the development

(SMg; LM, ; Iy M, 11984191S'My; LM; TaM;

- (- 1)“’"( o )<leouu> (40)
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Assuming, as usual,2~?* that the spin selection rule

AS =0 (41)

s obeyed, we obtain

AL=0,+1 AM, =0 (42)

Similarly, for the X and Y components of 4,

AL=0,+1 AM, = +1 (43)

) 2

In this case there are no g factors in either term, and both “P; , and

i 22 The result is a spectral pattern

’D, ,, terms are split to the same extent. ¢ resull ! pagter
of tﬁree lines, which can be thought of as three c01nc1dental.d0ub ets. 1sf
is recognizable as the same pattern obtained in the convenponal theory o
the Paschen-Back effect.? In the uncoupled representation of quantum
field theory, therefore, the novel By operator is expected to produce the

optical Paschen-Back effect.
D. Semiclassical Theory, Eq. (30)

It is straightforward to see that in this case the transition elect(rilchdltpz);z
moment selection rules are those given by Eas. (38) aqd (39), and t af (e
splitting pattern is the same as that in the conventional theory o
anomalous Zeeman effect, consisting of three doublets.

IV. DISCUSSION

In four different schemes we have deduggd that the -novel prgl)ler}y By ﬁf
the photon'~? splits electric dipole tran51.t10ns occurring at visible }rleque(:) "
cies in atoms. It is appropriate to ask which scheme 1s likely to be the m :
realistic. It is well known?* that in the qugntum theory of angu.lard mmfn::}rlle
tum coupling, the uncoupled representation leaves'the magmtllll e ol e
total angular momentum undefined and says nothing about tb e rg: ative
orientation of the contributing individual angu!ar momenta, but le N
individual components. The coupled representation defines thf: tota z;ln%n -
lar momentum but leaves individual components undeﬁned. Elthfer scol et:hat
is equally valid and acceptable math;matlcally. In Section II we opnu e
there is also a third scheme, whlqh we have called the semic;oalpde_
representation. All three are valid in the q.u-antum-ﬁeld theoretic
crrintinn nf the effect of B.. on atomic transitions.
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However, it is independently known that the photon propagates at the
speed of light, which implies that the component of én in the azimuthal
axis be well defined, because there cannot be any perpendicular compo-
nents from the theory of relativity. Therefore, it appears that in our
coupled representation of Section II, there is a conflict of reasoning, in
that the total angular momentum is defined as well as the azimuthal
component of the novel field operator of the photon én. Therefore, the
commutator [ F?, J,1 is not zero. However, it is well known?? that this
type of “paradox” can be resolved by remembering that the commutator is
an operator, which acts on a wave function, ¢, and if the result

[F20 Jw=0 (44)

is true, then F? and an can be simultaneously well defined in the
quantum theory of angular momentum coupling.?

This is the mathematical basis for our coupled representation of the
problem in Section II. In physical terms, the coupled representation ieads
to five lines, instead of six as in the semicoupled representation, and this
can be tested experimentally to reveal which is the truer representation.

The semicoupled representation treats J and fn in an uncoupled
scheme, so that azimuthal components of both are well defined, but their
resultant F is not. Therefore, F does not appear in Eq. (17) and there is
clear definition of directionality, in that the azimuthal quantum number
M, does appear in Eq. (17) and controls the selection rules as described in
Section IIl. The directionality comes from the presence of the circularly
polarized laser, generating the quantity éu, a laser that propagates in the
azimuthal axis Z. In the coupled representation that gives Eq. (13) no
azimuthal quantum number appears, but F is well defined and selection
rules on F now govern the effect of 3“ on atomic transitions.

In the uncoupled representation of Section II, the only difference from
the semicoupled representation is that the operator 2.002S has been
decoupled from f,, leading to the optical Paschen-ABack effect. This is
therefore a type of strong field limit, in which 20028, 1., and J i brecess
independently %2 about the propagation or azimuthal axis Z.

In the semiclassical representation, B is a classical field vector, and
the treatment of both the anomalous optical Zeeman effect and of the
optical Paschen-Back effect becomes the same as conventional theory,
leading to the same physical considerations.? This is because in the
semiclassical representation, By, is akin to a magnetostatic field, albeit
generated by a laser.'
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aightforward to derive order of magnitude estimates of

Finally, it is str (13), (17), (27), and (30), given the

the splitting from any of the equations
relation' >

21, \'?
ol =5y | =10 (45)
EOC

between |By| and the intensity of the laser in watts per square meter.
Here, ¢, is the permittivity in vacuo in S.I. units:

£, = 8.854 X 10712 71C?m ! (46)

For an intensity of 100 W cm 2 (%06 w nzfz) we expect that. tal;le rll)(;,vg;
property én will shift the original “P, % 5—) Dﬁ31 /z.transmon typlcterysl) Yo
the order 1.5 X 10° Hz. This is 5 X 1077 cm (inverse centm;?et e 1;;ser’s
Lhe splitting s cXpectod (0 be D e laser has no degree of circulr
i i should be no splitting 1

;n(:far;?g}."g}l::sr: features shouldAhelp in .identifying Fhe effec(tj of t(;uzV E;ccv;
fundamental photon property By in whlch5 we are interested, an

has recently been proposed theoretically.!~
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THE OPTICAL FARADAY EFFECT AND OPTICAL MCD

L. INTRODUCTION

This paper continues a series of articles in which the consequences are
developed of the recent deduction'=® that the photon generates a mag-
netic flux quantum, an operator

én =By~ (1)

Here B, is the scalar magnetic flux density amplitude of a beam of N
photons (a circularly polarized generator laser), J is the photon’s angular
momentum operator’ whose eigenvalues are + M sh, where M, is plus or
minus one, and where # is the reduced Planck constant. The operator én
changes sign with the circular polarity of the generator laser, is unlocalized
in space, and has eigenvalues +M, B,, where B, is the laser’s scalar flux
density amplitude. Its classical equivalent is the axial vector By, a novel
magnetostatic flux density generated by circularly polarized electromag-
netic plane waves.' *® The theoretical existence of By, is supported by the
experimental evidence for light-induced magnetic effects. The first to be
described (in the 1960s) was the inverse Faraday effect,® '* and recently it
has been shown'> '® that NMR resonances are shifted in new and useful
ways by the magnetizing effect of circularly polarized argon ion radiation
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at frequencies far from optical resonance (i.e., where the sample is
transparent to the argon ion radiation and does not absorb it). Both these
effects can be described in terms of the operator By, or its classical
equivalent By (Refs. 1-6, 17-23). It has also been proposed®~® that there
exist an optical Zeeman effect, in which BH splits singlet electric dipole
transition frequencies in atoms; an anomalous optical Zeeman effect for
atomic triplet states; and an optical Paschen-Back effect. It has also been
proposed theoretically®® that By can be detected by examining spectrally
a circularly polarized laser at visible frequencies reflected from an electron
beam.

The existence of én also implies that of an optical Faraday effect, in
which it rotates the plane of a linearly polarized probe, an effect that is
frequency dependent and gives rise, therefore, to optical magnetic circular
dichroism (optical MCD spectroscopy). These effects are developed theo-
retically in this paper for atoms.

Mason®* has given an interesting discussion of cause and effect in
chirality that includes some pertinent historical analysis of interest here.
In 1846, Faraday showed experimentally25 that a magnetostatic field
induces optical activity in flint glass and other isotropic transparent media.
In 1884, Pasteur®® proposed on the basis of this result that the magnetic
field represented a source of chirality. It is now known?’ that the magneti-
cally induced optical activity in the Faraday effect has a fundamentally
different symmetry 23! from that of natural optical activity. Nonetheless,
it is interesting for our purpose, following Mason,?* that le Bel** in 1874
had independently proposed that circularly polarized radiation also pro-
vides a “chiral force” of the type envisioned by Pasteur emanating from
the magnetostatic field used by Faraday. Enantio-differentiating photore-
actions were indeed reported by Kuhn and Braun® in 1929, and it has
been proposed repeatedly (e.g., Bonner®* that circularly polarized solar
irradiation may be responsible for the preponderance in nature of one
enantiomer over another. However, Mason?* favors the universal and
parity-violating mechanism of the electroweak force as the origin of this
dissymmetry because the electroweak force does not depend on time and
location on the earth’s surface. (Natural solar radiation is only 0.1%
circularly polarized, and equally and oppositely so at dawn and dusk.”*

It is interesting for our purpose to note that both circular polarity in
light and the magnetostatic field have been proposed independently (by
le Bel and Pasteur, respectively) as sources of chirality. It had thus been
sensed more than one hundred years ago that these two concepts have
something in common in their effect on material. Pershan et al.,!! in their
first paper on the experimental demonstration of the magnetizing effect of
rirenlarlv nolarized giant ruby laser radiation, edged toward the concept of
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By, by describing the effect of the laser as being due to an effective
magnetostatic field. In view of these indications, those by Kielich and
coworkers,'> ¥ and those by Atkins and Miller,” the present author
appears to have demonstrated conclusively!~® the fact that circularl
polgrlzed radiation generates the classical magnetostatic field B whosZ
equivalent in quantum field theory is the photon’s flux quanturlr]l By, a
novel fundamentgl property of quantum field theory. As noted elsewhrgre
the concept of By must be clearly and carefully distinguished from the,
(standard IUPAC) oscillating B field of the electromagnetic plane wave
because the two are quite different.'~® We have therefore resolved!~® the
conjectures of le Bel (1874) and Pasteur (1884) insofar as to show that
cucglarly polarized light can indeed act in the same way as a magneto-
static field, a finding that implies the existence of several novel types of
spectroscopy in circumstances where a conventionally applied magnet
would be Feplaced by a circularly polarized laser. :

In _Sectnon I1, the contemporary quantum theory of Faraday’s effect of
184§ is developed succinctly for atoms, whereby it becomes relativel
straightforward to show that the flux quantum én must also generatz
Faraday’s observation of optical activity in all material, inherently (struct-
urally) chiral or otherwise. In our case, the magnet ljlsed by Faraday is
replaced by a circularly polarized laser, which generates B andy is
therefore referred to as the generator laser. Section III devglops the
frequenpy dependence of the optical Faraday effect in atoms through the
properties of the magnetically (i.e., B,) perturbed antisymmetric polariz-
ability qf conventional contemporary Faraday effect theory,® and there-
forg arrives at expressions in atoms for optical MCD. Finall;/ a discussion
1s given of possible experimental configurations and order o’f magnitudes
of Phe expected optical Faraday effect in terms of the intensity in watts
unit area of the generator laser. P

II.  OPTICALLY INDUCED FARADAY ROTATION IN ATOMS

The contemporary quantum theory of the Faraday effect is based on the
woFk by Serber,“ which was the precursor for the A4, B, and C terms.”’
This section develops the Serber theory for use with a ﬂ,ux quantum é
from the geperator laser and shows that the analogy between the opticzﬂ
and conventional Faraday effects is easily forged by using By in place of
the conventional magnetic field B, from a magnet. !

The starting point for the theory of the conventional Faraday effect in
quant.um mechanics is an equation for the rotation of the plane of linearl
polarized rafjiation. This is derived®” by a consideration of the effect of Z
magnetostatic field on the antisymmetric part of an atomic or molecular
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property tensor called the antisymmetric polarizability «;:
aj;( Boy) = @/;(0) + afj By, (2)

where a7, is a perturbation tensor of order three. Before embarking on
detailed theoretical development it is instructive to consider the funda-
mental symmetries of these atomic property tensors (we restrict considera-
tion in this paper to atoms) and to recall that the complex electronic
electric polarizability, of which «f; is the antisymmetric, imaginary compo-
nent, is derived from time-dependent perturbation theory within whose
framework ¥’ a; is a product of two transition electric dipole moment
operators. The perturbation tensor ), in this context involves two of
these and one transition magnetic dlpole moment matrix element. This
structure introduces frequency dependence into the conventional Faraday
effect, leading to MCD. Similarly, frequency dependence occurs in the
optical Faraday effect, leading to optical MCD.

The fundamental symmetrles considered are parity inversion (repre-
sented by the operator P) ‘and motion reversal (by the operator 7). In this
context a, ;1S negative to T and positive to P while a7 is posmve to both
P and T. Therefore af; is finite only in the presence of a T-negatlve
influence, such as B, or BH, and this influence is mediated by «f;, which
is finite for all atoms and molecules and is described by the ubiquitous B
term.>” The contemporary theory of Faraday’s effect depends on a pertur-
bation of a quantity a7;, which is itself the result of semiclassical, time-
dependent, second-order perturbation theory. The basic reason for this is
that the observable in the Faraday effect is an angle of rotation (A8) (or
alternatively a change in ellipticity An), which must be calculated from
Maxwell’s equations or Rayleigh refringent scattering theory.” Although
the A term is closely related to the Zeeman effect,® the observables of
the two effects are quite different, being traditionally an angle of rotation
(Faraday’s effect) and a frequency shift in the visible frequency region
(Zeeman’s effect). The latter can be described by an energy perturbation,
while Faraday’s effect needs perturbation of the antisymmetric polarizabil-
ity, because energy does not appear directly in Maxwell’s equations, which
are needed to calculate refractive indices and therefrom A6 and An.

With these considerations, the starting point for our development of the
optical Faraday effect and optical MCD is the equation®’ for angle of
rotation in the conventional quantum theory of the Faraday effect:

. 1 N " ” m"Z " "
A6 = Zwﬂvod d_B 02‘54 [axyz —ayxz t TT_(QXY - Qyx ] (3)

n
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Here, A is the angle of rotation of plane polarized probe radiation of
angular frequency w parallel to the conventionally generated magneto-
static flux density B,. The quantity N is the total number of molecules per
unit volume in a set of degenerate quantum states of the atom, individu-
ally designated®’ ¥,, where d, is the degeneracy and the sum is over all
components of the degenerate set, with N, = Nd,. In Eq. (3), p, is the
vacuum permeability, ¢ is the speed of light, / is the sample length, m,, , is
the Z component of the atomic magnetic dipole moment in state n nand
kT is the thermal energy per atom. Recall that the atomic property
tensors «f; and «j, are derived from semiclassical, time-dependent,
perturbation theory and are frequency dependent in general, so that Ag
mapped over a frequency range has the appearance of a spectrum—the
conventional MCD spectrum.

Our task here is to incorporate the novel flux quantum Bn (Refs. 1-6)
into Eq. (3), and thus generate the optical Faraday effect and optical
MCD. The terms aj; and a7, as used in Eq. (3) are expectatlon values of
the respective quantum mechanical operators a” and &J,; in the same
way that m,, is an expectation value of the magnetlc eljectronlc dipole
moment operator /,. The quantity B, is a classical magnetostatic vector
component, and AB is an expectation value of the operator A#. It is
convenient to transform the appropriate Cartesian components of the
operators @’ ;;and &} i« into spherical form,?” 3 using the Condon / Shortley
phase conventlon

A — A1 ~
aXY — [f ” %// _ az”z)]

A

Xyx

sl A2mn __ aA2n
[V2ay — (a3 - &)

N o

&" _i A2”+ i A2 s2n ~3n ~3n (4)
xvyz = 2 Ay /6 (az + aAz) + —(a2 - a—z)

an i A2 1 A 1
& I:J(% c ( 2n 2!!) 3 (Ag// A3!/2)‘]
from which

A A Al
Axy — Qyx = _\/_1 !

A arr s A2p

Uxyz — Ayxz = —log .

(5)
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Both &]; and &/, are purely imaginary i.nA 1the apl)Arzoprlate ts:pll_llf;rrlrcr:l?{
representation, indicating that the operag)rs idg and id; are anti- erm
tian, with purely imaginary eigenvalues.” (ngever, the T symm:,_ry 5
i@y is negative, while that of ia3 is positive. Both have positive
SymT?Ztl;lycg(t step in our development for atoms is to replace the VfiCtOr
component B,; of the conventional quant.um theory by the C'lu}-?x'ltutr}?e
mechanical operator defined by Eq. 1), Wthh' has a§soc1ated with i .
angular momentum quantum number J. An immediate con.seqf\‘llelrcliceﬂlcl)X
this replacement is the necessity to consider the magnetic fie N
quantum using irreducible tensorial metl:lods of angular momentum ccz) -
pling theory in quantum mechanics.**~*!' In other vyords we arf?thn o
considering a quantized photon angular momen.tum 1nterac't1ng wi .
atom, which contains, as usual, quantizeq orbital apd spin elecFrontlc
angular momentum. Without loss of generality we rf.:strlct cons@eratlonlac;
atomic singlet states, in which there is a nettorblgal electronic angu

L. but no net spin angular momentum 3. .
mo\r;l/?trlllmt?ese’ considerations, Eq. (3) becomes, for the optical Faraday

effect
A9 = (JM,;LMLIAOIJ’M};L’MD = —%w;.LOCIN,,i(JMJIBHIJ’Mﬁ

(LM, ol LM, |&glLM )
kT

(6)

X + (LM, |1&|1L'M)

where we have used an uncoupled represe'ntation‘”‘41 to describe the net
angular momentum generated during the interaction of photon and atm}l.
This is justified because the azimuthal components of the opera'tors”rf(f
and Bn are both well defined in the uncoupled representation, |
whereas in the coupled representation of. the same problem the tota
angular momentum is defined but the ind1V1dugl azimuthal componlenti
are not. With these considerations, the expectation value of the angle o
rotation in the optical Faraday effect is

1 MECLImAILYCLl&lIL>
80 = F qonelN, iM,Bo\ TT TN QL + DT

(7)
[3M7 - L(L + D|<LI&IL)

+ [L(L +1)(2L + 1)(2L + 3)(2L - 1)]1/2

ectation value of the photon’s By
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operator is +M,B,, positive for left circularly polarized radiation and
negative for right circularly polarized radiation from the generator laser.

This is an expression for the angle of rotation induced in plane
polarized probe radiation in a sample of atoms by a circularly polarized
laser generating the flux quantum Bj. The observation of such a rotation
would provide a test for the existence of BH. Equation (7) is written out in
terms of reduced matrix elements of dipole moment and atomic polariz-
ability operators, matrix elements that are products of electric and magnetic
dipole transition dipole moment matrix elements from time-dependent
perturbation theory.>” These introduce frequency dependence into the
angle of rotation of the optical Faraday effect. The selection rules govern-
ing the various atomic property tensors are as follows:

&p: AL =0, AM, =0

(8)
&@5: AL =0, +2; AM, =0

where the AL = +1 part is parity forbidden, as in magnetic dipole
transitions.

III. OPTICAL MCD: FREQUENCY DEPENDENCE OF A9

The origin of frequency dependence in the optical Faraday effect can be
traced to semiclassical time-dependent perturbation theory, which pro-
duces expressions for the polarizability components as given in the conven-
tional theory of magnetic electronic optical activity.>” These can be further
developed as usual in terms of reduced matrix elements of electric and
magnetic transition dipole moment operators. For a given generator laser
inten§ity and frequency, therefore, the optical MCD spectrum is a plot of
the By induced angle of rotation Af against the frequency of the linearly
polarized probe. Experimentally, this is built up by replacing the conven-

tional magnet of MCD apparatus by the circularly polarized generator
laser.

IV. DISCUSSION

Using the concept of BH the theory of the optical Faraday effect can also
be developed and understood simply by replacing the magnetic flux
density vector component B, wherever it occurs in the conventional
theory of MCD by the quantity +B,M,, where B, is the magnetic flux
density amplitude of the generator laser, and +M , are the two possible
azimuthal quantum numbers of the photon. Thus, the optical Faraday
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effect can be developed along the lines of the conventional gougterpart in
Serber’s A, B, and C terms, a convenient description of which is given by
Barron®’ in his Egs. (6.2.2) and (6.2.3). It follows that the optical MCD
spectrum, which would test for the existence of By, would have'the same
characteristics as the conventional spectrum. If confirmed experimentally,
this would be strong evidence for the photon’s fundamental flux quantum
BH introduced in Refs. 1-6. If the optical MCD spectrgm were found to
differ from the conventional MCD spectrum, it would indicate the pres-
ence of other mechanisms of magnetization by the generator laser, such as
the induction of a magnetic dipole moment through*~*

m, ="Bi5(E,EL — E(EF) =BT ®

where "5 is a hyperpolarizability, al}g %Y is the antisymmetric conju-
gate product of the generator laser.*? =%

Finally, for an order of magnitude estimation of the expected .angle 'of
rotation in a linearly polarized probe due to a generator laser of 1ntgn§1Fy
I, = 10° W m 2, we use antisymmetric polarizabilities computed ab initio
by Manakov et al.'* in atomic § = 3 ground states as a gP:de to orders'c3)£
magnitude. For example, in Cs at 9440 cm~! we have @, = 3.4 X 10.
C?>m?2) . Focusing attention on the term in &; in Eq. (7), and using
N = 6 X 10% molecules m~3 and the Bohr magneton for 77t;, we obtain
for a generator laser delivering at 300 K

By~ 10771/2=10"*T (10)

an angle of rotation of 0.8 rad m !, easily measurable with a spectropo-
larimeter. This result should be proportional to the square root of the
intensity I, of the generator laser and inversely proportional to‘ tempera-
ture. There is also a contribution from the rank three perturbatl.ng tensor
of Eq. (7). These features would add to the evidencge 1f:)r the 'ex1st‘ence of
BH already available from the inverse Faraday effect™ and light-induced
NMR shifts.!> 16
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THE PHOTON’S MAGNETOSTATIC FLUX DENSITYL?H *
THE INVERSE FARADAY EFFECT REVISITED

I. INTRODUCTION

Intense, circularly polarized laser pulses produce a net magnetization M,
(A m™!) in atomic, molecular, and other condensed material such as
dilute magnetic semiconductors.” > This magneto-optic property was first
proposed by Piekara and Kielich,>~® and was demonstrated experimentally
in the early 1960s by Pershan et al.”®> % and Shen.? Since then, no further
experimental work appears to have been reported on the effect. The
theory of the inverse Faraday effect rests on the foundations built by
Piekara and Kielich,>~® and was developed by Pershan et al.” > 1 in terms
of the antisymmetric part of the tensor E,E, where E, is the electric field
strength of a circularly polarized laser pulse inVm - and EF is its own
complex conjugate. This antisymmetric intensity is conveniently expressed
in vector notation as the cross product E X E*  which is negative!" % to
motion reversal (1) and positive to parity inversion (P). It therefore has
the necessary Pand T symmetries of magnetic flux density, which is the
qualitative explanation for the ability of a circularly polarized laser to
magnetize.

Further development of the theory is due to Kielich,"*~!°* Atkins and
Miller,'* Wagniere,!” Wozniak et al.,'® ' and Evans et al.?’~?? with
computer simulation of the magnetization. These theories all rely on the
property E X E* of the laser pulse. However, it has been shown
recently>-?7 that this property, E X E*, is directly proportional to a
novel, fundamental, magnetic flux density vector, By, of the classical
electromagnetic field. In quantum-field theory?* this becomes the novel,

3 (1993).
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fundamental, and ubiquitous magnetic flux density operator, EH, of the
photon itself. In this paper it is argued that the inverse Faraday effect
must be described semiclassically as a combination of terms in all positive
integral powers of the classical By. The original theory, which relies on
E X E*, is shown to be equivalent to considering only the term in IBHI

II. DESCRIPTION OF B

It is straightforward to show that!! 1217 23-27

E X E* = 2EZ ik (1)

where k is a unit axial vector, negative to T and positive to P. This is
purely imaginary and proportional to the square of E, the scalar electric
field strength amplitude of a circularly polarized laser. In free space
E, = ¢B, and

E X E* =2E,ciByk = 2E,ciBy (2)

where B, is the scalar magnetic flux density amplitude (tesla) and c is the
speed of light. The vector By; is the product Byk, which is in units of tesla.
From these simple considerations,

E x E* E 1, \'?
By=———— =Bk=—k=|—=| k~107"I)"k
2E)ci c £(C
1/2
N
_ IN| 3)
26063
Here I, is the scalar intensity in W m 2, which in free space is
Iy = &4CE§ (4)

where ¢, is the free space permittivity. In Eq. (3), IN| is the scalar
magnitude of Poynting’s vector

1
N=—E X B* (5
Ho

where p, is the free space permeability. The vector N (Ref. 28) is a flux of
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energy density, and the novel vector By is a flux of magnetic density.
Although N and By have the same negative T symmetry, the former is
negatlve to P and the latter, as we have seen, is positive to P. We note
that N is nonzero in linear polarization, but By, vanishes, because the
latter reverses sign with circular polarity, whereas the former does not.
Furthermore, N can be expressed as

N =2In (6)

where n is the vector whose scalar magnitude is the real refractive index in
the direction of propagation, and which is well known?® ?° to be propor-
tional to the A- and T-negatlve polar wave vector . This must be carefully
distinguished from the P-posmve T-negatlve unit axial vector Kk, which is
multiplied by B, to form the novel Bj. Note that both N and By are
independent of the phase of the laser, and therefore of its angular
frequency w. In other words, the time averages over many cycles of both N
and B, are nonzero, and it follows that By; is quite different from the
usual oscillating B field of the electromagnetic plane wave, which vanishes
when averaged over time. B is a complex quantity, with components
mutually orthogonal (i.e., in X and Y') to the propagation direction (Z) of
the wave, but none in that direction itself. In contrast, B is a purely real
guantity,?~?" and is directed exclusively in Z, with no components in X
and Y. Remarkably, its existence appears to have gone unrecognized in
the long and illustrious history of the theory of electromagnetic fields.

III. THE ROLE OF B IN THE INVERSE FARADAY EFFECT:
SEMICLASSICAL TREATMENT

Using the vector By, it becomes straightforward to develop any magnetic
effect of the circularly polarized electromagnetic plane wave, because we
can now say that such a wave can magnetize material with which it
interacts. There exists in nature an optical magnet, which delivers a
magnetic flux density in tesla of

Byl ~ 10771172 (7)

Thus, for a circularly polarized laser of intensity [, = 10000 W m~?

(1.0 W cm™?) the By; field is 107> T, or 0.1 G, about a tenth of the earth’s
mean magnetic field.

When B, is used, the theory of magnetization by circularly polarized

light becomes standard and straightforward, because we have only to
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adapt the existing semiclassical theory?®*=*° of magnetization by an ordi-
nary magnetostatic field, Bg, and replace By everywhere by B;- Thus, the
magnetization is given by

1
M, = ;(1+K)BHZ=N<mZ>U (8)

where « is the volume susceptibility, W is the vacuum permeability, N is
the number density, and (m,) is the mean magnetic dipole moment. It is
assumed here that the total magnetic dipole moment is a sum of perma-
nent and induced components:

my = mY + mind
%)

(indy __ 1
myd = 7€22Bnz/1g

where £2z is the molecular magnetizability.*=>° The ensemble average
appearing in Eq. (8) is assumed to be the usual thermodynamic average?-3°

J(m® + mGrd)eV/kT g )
[e—U/deQ (10)

<mz>U =

where the energy of interaction U is defined by

y 22

U~ 9By, - 3B}, a
0
The approximationZ8-3°
1
(myyy={my)e — ﬁ«sz)O - <’"Z>0<U>0) T (12)

is used for the thermodynamic average. Here ( ), denotes ensemble
averaging in the absence of U, and { )y denotes ensemble in averaging the
presence of U. Since {m,), is zero in an initially isotropic material such
as a gas or liquid, we have

1
(mzdy = = {mzUdo + - (13)

This entirely «



S

the temperature-dependent part of the effect we seek to describe:

1 1 ,
(mzdy = ﬁ <m(zo)2>Oan + M_<§zzm(£)>031212 + ZM_%<§ZZ>OB?12
0
4o (14)

which shows that the magnetization (A /m) is described by terms in the
first three powers of By, within the first approximation (12) of the
thermodynamic average (10). The term in Bf, in Eq. (14) vanishes,
however, because the theory of tensor invariants®®~* shows that the
ensemble average (£,,mP)o must vanish in isotropic media (but not in
certain crystals). So we are left with terms in By, and Bj, for which the
premultiplying ensemble averages do not vanish in liquids or gases.

In addition to these temperature-dependent terms, there exists the
temperature-independent term considered in the usual theory of the
inverse Faraday effect,’> 2> which has recently been put in the following

simple form by Wozniak et al.'8:

Eg m m
(myyy = ?( yiss +7ys5 + i) (15)

Here "y are molecule fixed-frame components of the appropriate!® 1

molecular hyperpolarizability tensor. Using
E, = c¢|By| (16)

it is immediately clear that this term is proportional to IBHI2. The
complete expression for the inverse Faraday effect within the approxima-
tions we have made here is therefore

ch m_ ee m_ ee m_ ce 2
M, = 3 ( Yzt o van T 7312)an
(17)

N
+ *T (mP*)oBnz + — 5 Buz
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IV. ORDER OF MAGNITUDE ESTIMATES

To estimate the various orders of magnitude of the contributing terms in
Eq. (17), the magnetic dipole moment is estimated roughly as a tenth of
the electronic Bohr magneton, i.e., as 1072 J T~'. A rough order of
magnitude approximation to the volume magnetic susceptibility k is ob-
tained from a model calculation given by Atkins,?® which gives k of about
107°. From this, the magnetizability can be obtained using k = N¢,,
where N is the number density.?® The order of magnitude of the
hyperpolarizability '"yfﬁ( is obtained from the Faraday effect theory of
Wozniak et al.'™® 3! as about 10°% A m*V~2 for a typical diamagnetic.
For a paramagnetic with a permanent magnetic dipole moment it is
assumed that the hyperpolarizability is roughly 100 times bigger, i.e.,
10°*Am*v2

In Eq. (17) N is set at 10?2 molecules for the molar volume in meters
cubed (Ref. 18) and kT at 4 X 102" J molecule ™!, equivalent to 300 K.
The order of magnitude of By, is set at 1.0 T, corresponding to a pulse of
intensity about 3 X 10 W m 2, available from a contemporary mode-
locked laser, which must be accurately circularly polarized.

These rough estimates give an order of magnitude of magnetization
(Am™") of about 2.5 Am ™! for the term in By, about 2.0 A m ! for the
term in Bj,, and about 30 A m~' for the temperature-independent term
proportional to Bjj,. Clearly these figures depend on the estimates we
have used for m%, £,,, and "y but all three terms contribute to the
total magnetization. In our estimate, the term in B, happens to be
dominant, but at very low T and with less intense laser pulses, the term in
By, dominates, provided there is a permanent magnetic dipole moment.
(If the latter is zero, there are terms in B3, and B; ,, but not in By ,.)

Note that the magnetization changes sign with the circular polarity of
the laser. The term in By, changes sign because the vector B, is switched
from positive (left) to negative (right). The conjugate product E X E*
changes sign with circular polarization,'® and the product E X E* is
proportional to IBnlzk, where k is a unit axial vector.

V. CONCLUSION

The inverse Faraday effect is characterized by a laser-induced magnetiza-
tion that is proportional to all positive integral powers of Bp,. The
conventional theory'® is based solely on a consideration of E X E*, and
produces a magnetization proportional to Bﬁz only, from E X E* multi-
plied by the sample’s hyperpolarizability. We have argued that there is
also a magnetization produced by a product of B, and the sample’s
magnetizability.
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THE PHOTON’S MAGNETOSTATIC FLUX QUANTUM:
THE OPTICAL COTTON-MOUTON EFFECT

I. INTRODUCTION

The ability of circularly polarized electromagnetic radiation to produce
anisotropy in magnetic permeability was first proposed by Piekara and
Kielich,? who systematically described light-induced anisotropy in mate-
rial electric permittivity (Ag), magnetic permeability (Ap), and refractive
index (An). In Ref. 1 for example, formulated in the pre-laser era, it was
proposed that “On observe alors des changements de £, w, ou n, dus a
l'action du champ polarisant.” We are concerned in this paper with the
formulation of an optical Cotton-Mouton effect, a relative of the optical
Kerr effect first proposed by Buckingham?® and classified by Piekara and
Kielich in their references. We define the novel optical Cotton-Mouton
effect as a change in refractive index (linear dichroism) due to the novel,
recently proposed, static magnetic field (By) of a circularly polarized
electromagnetic plane wave.*~® Piekara and Kielich"? described “satura-
tion optique dans un champ optique.” This effect later became known as
the optical Kerr effect, or Buckingham effect.’

This paper is developed from the recent deduction*~® that the photon
carries a magnetostatic flux quantum, l-?n, whose classical equivalent is a
phase-independent magnetic field By generated in a circularly polarized
light beam, an axial vector with the symmetry characteristics of a static
magnetic flux density (tesla). The latter must be an axial vector positive to
the parityAinversion operator 15, and negative to the motion reversal
operator 7 (Ref. 9). The classical field By; of the circularly polarized
electromagnetic plane wave is a purely real quantity that is proportional to
the antisymmetric (purely imaginary) part of the tensor E,E*, where E; is
the electric field strength of the wave in volts per meter. The scalar part of
the tensor E,E is proportional to the phase-independent intensity of the
plane wave in watts per meter squared, and we have shown elsewhere*~®
that the vector part of E;E} (i.e., its antisymmetric part) is proportional to
the phase-independent magnetic flux density B}, and vanishes if there is
no degree of circular polarity. Furthermore, we have shown® that B; can
be expressed in terms of the ubiquitous third Stokes parameter S5 (Ref.
10) and therefore that phenomena such as circular dichroism and elliptic-
ity are fundamentally magnetic.

The definition*~® of the By, operator per photon allows a wide range of
novel optical /photonic phenomena to be forecasted straightforwardly, on
the grounds that circularly polarized electromagnetic radiation can magne-
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tize. This conclusion is independent of the phase of the plane wave, and
therefore independent of its angular frequency, w (rad/s). It follows that
the time average of the classical vector By is nonzero. It is emphasized
that B; is fundamentally different from the usual oscillating B field of the
plane wave!®: B vanishes when time averaged, because it is phase depen-
dent, and has no component in the propagation axis Z of the wave. The
vector By, is directed exclusively in Z, and has no components in X and Y.
By expressing the antisymmetric part of the tensor F,E as a vector
product, E X E* (refs. 4-8), it becomes clear that By, is a relative of the
Poynting vector,® ' N = (E X B*)/u,, where u, is the free space perme-
ability. However, the polar vector N is 7- and ﬁ-negative, whereas the
axial vector B, is T-negative, P-positive,*”®!! a critically important sym-
metry difference. Accordingly, N is interpreted physically as a flux of
energy density, and Bp; as a flux of magnetic density. Remarkably, N has
been well known for many years, and B, appears to be entirely novel.

The flux density vector By is clearly generated in vacuo (i.e., in free
space), in direct analogy with N. Both vectors N and By, are generated
from solutions of Maxwell’s classical equations through vector cross prod-
ucts of the usual, oscillating, phase-dependent E and B components of the
electromagnetic plane wave solutions, cross products that multiply a vector
with a complex conjugate vector, thus removing the phase dependence.
For example, the complex conjugate (E*) of E, a plane wave solution of
Maxwell’s equations, is also an allowed solution of Maxwell’s equations,
and the vector product of E and E*, two allowed solutions, generates the
purely imaginary conjugate product 1Y, which is proportional*~® to By.
Similarly, the vector product of E and B* is proportional to N. Therefore,
although Maxwell’s equations allow no direct, phase-independent solu-
tions in free space, vector products of allowed solutions, such as N and
B, are physically meaningful phase-independent quantities whose time
averages are nonzero.

It follows that B can interact with material to produce observable
effects, again in direct analogy with N. The scalar part of N is the intensity
I,, and the intensity (for example, of a laser) is clearly a free space
quantity that affects and interacts with material. (For example, a sample is
heated by intense light, light that travels through a vacuum.) Similarly, B,
i1s a free space magnetic flux density that can also affect material. For
example, B;; forms a vector dot product with an electronic or nuclear
magnetic dipole moment to give an interaction Hamiltonian (whose expec-
tation value is an observable and measurable energy). This leads to the
recently observed phenomenon of optical NMR!? in which a circularly
polarized laser shifts NMR resonances in new and unexpected ways,
leading to useful new fingerprints for the analytical laboratory.!*> These
shifts were found experimentally to vanish in the uncertainty of measure-
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ment when the laser’s circular polarization was removed, strong evidence
that they depend in an as yet incompletely understood manner on By;.
(There are as many, if not more, mechanisms involving By; in optical NMR
as there are involving the ordinary magnetostatic field in conventional
NMR))

It is easy to see that if circularly polarized light is simply regarded as an
“optical magnet,” there should be observable in one way or another all the
well-known phenomena of conventionally produced magnetism,'* such as
the Faraday, magnetic circular dichroic, Zeeman, Cotton-Mouton,
Gerlach-Stern, Aharonov-Bohm, NMR, and ESR phenomena. Thus far,
the B concept has been developed for the optical Zeeman effect,’
anomalous optical Zeeman effect,® the optical Faraday effect,” optical
effects in Compton scattering,* and the inverse Faraday effect,® which is
bulk magnetization by B of a circularly polarized laser. In general,
whenever a magnetic can be used in physics, so can a circularly polarized
laser, which generates B;. The magnitude of By, is approximately 1077
1)/ 2 in tesla,*~® so that an accurately circularly polarized laser of intensity
1.0 W cm 2 generates 107> T, about a tenth of the earth’s mean magnetic
field. Clearly, pulses of laser radiation of say, up to 10'® W m 2, available
in principle,’® generate a substantial 10 T over the duration of the laser
pulse. (Normally incoherent radiation, such as daylight, produces no By,
because there is no mean circular polarization; a linearly polarized laser,
however, intense, produces no B,;, because such a laser always contains
equal and opposite amounts of right and left circularly polarized
light—right and left photons.)

In this paper, an example is given of the straightforward way in which
the B, vector can be used to anticipate the existence of a novel optical
phenomenon—the optical Cotton-Mouton effect. Section 1I defines By; in
its classical limit in terms of fundamental constants, and brings out the
precise analogy between By; and an ordinary magnetostatic flux density,
B,. This allows the semiclassical theory!® of the Cotton-Mouton effect to
be developed straightforwardly in terms of By, in section III. The order of
magnitude of the linear dichroism (or ellipticity) induced by B, is esti-
mated in Section IV.

II. DEFINITION OF THE CLASSICAL B{; OF A CIRCULARLY
POLARIZED LASER

The classical vector B|; of a circularly polarized laser in free space is
obtained straightforwardly*~® by a consideration of the 7 and P symme-
tries of the conjugate product—the vector part of E,E*:
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Here the axial vector By is in tesla, is f"—negative and ﬁ—positive, and is
directed in the propagation axis of the laser. Thus, By; has the necessary
and sufficient characteristics to define a magnetic flux density vector. This
simple derivation shows that circularly polarized radiation magnetizes
material with which it comes into contact from free space. A relation
between By; and the Poynting vector N is obtained straightforwardly from
a consideration of 1

1 c
B=-nXxE E=—-—nXxB 2
¢ P (2)

Here, nis a T- and ﬁ-negative polar vector, whose scalar magnitude is the

refractive index, and which is related to the classical wave vector of the
laser by

K= ;l’l (3)

In free space, the scalar magnitude of n is unity, and it follows that
N =2In (4

where the magnitude of N is defined through the scalar intensity of the

laser in W m~2:

I, = eycE} (5

Here g, is the vacuum permittivity in S.I. units and ¢ is the speed of light.
It follows that B, is related to the square root of the Poynting vector:

1/2
IN| \"

3
2g)c

I, 172
) (6)

3
£C

BH=BOk=—k=(

From these simple derivations it follows that the scalar part {or trace) of
the tensor E;E} is responsible for the Poynting vector’s magnitude, and
that the antisymmetric (vector) part of the tensor E,E* is responsible for
the novel phase-independent magnetic flux density By;. In quantum field
theory it has been shown elsewhere®~? that B;; becomes a novel elemen-
tary magnetic field of the photon itself—an operator Bn.
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III. APPLICATION TO THE OPTICAL COTTON-MOUTON EFFECT

Since By has all the characteristics of a magnetostatic flux density, it can
be used to describe a variety of novel magneto-optic effects, an example of
which is an optical Cotton-Mouton effect, developed in this section with a
standard semiclassical approach. The optical Cotton-Mouton effect is the
development of linear birefringence in a probe light beam propagating in
axis Z through a suitable sample and linearly polarized at 45° to the
direction of an applied pump laser in the X axis. The latter is circularly
polarized and generates Bp,. Elliptical polarization in the probe is
produced by By, of the pump, which plays the role of the ordinary
magnet of the original effect discovered by Cotton and Mouton'® in 1907.
The pump’s Bp, produces a phase difference in the two coherent re-
solved components of the probe, linearly polarized parallel and perpendic-
ular, respectively, to the direction X of By, of the pump. This phase
difference is'’

8= %l(n“—nl) (7

where n; and n, are the refractive indices for light linearly polarized
parallel and perpendicular to X. The resulting ellipticity is § /2.

At absorbing wavelengths, the two components n and n | are accom-
panied by two different absorption coefficients, signaling the presence of
linear dichroism due to By of the circularly polarized pump laser. There
is a rotation of the major axis of the polarization ellipse of the probe laser
because a difference in amplitude develops between two orthogonal re-
solved components for which no phase difference exists.'?

Kiclich and Piekara’? have summuarized the various theories of the
standard Cotton-Mouton effect, under their classification scheme denoted
“optical saturation in a magnetic field.” In our case this magnetic field is
By of the circularly polarized pump laser in direction X. The novel By
concept allows these theories to be adapted directly for the optical
Cotton-Mouton effect suggested here. We have simply replaced an ordi-
nary magnet with an optical magnetic, which is an intense circularly
polarized pump laser, operable at any electromagnetic frequency, from
infrared to X-ray regions. Notable theories include those of Raman and
Krishnan,'” Piekara,'® ' Peterlin and Stuart,” Snelman,?' and the semi-
classical approach at Buckingham and Pople.?*?® Kielich has developed
the conventional Cotton-Mouton and related effects in several directions,
for example, (1) the theory of the inverse Cotton-Mouton effect,?® which
he described as the induction of magnetic anisotropy by an intense laser
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beam; (2) the theories in colloids of the inverse Cotton-Mouton effect?
and the important but neglected Majorana effect®® in colloids, liquid
crystals, and polymers; and (3) general theories of magneto-optics.?’

These theories can now be recast to great advantage, in principle, using
the By; concept, or its equivalent for magneto-photonics, the operator én
(Ref. 15) of the photon itself. As an example we take the semiclassical
theory of Buckingham and Pople? given originally for the ordinary Kerr
effect, and adapt it straightforwardly for the optical Cotton-Mouton effect
by substituting By; for the ordinary static electric field E, of the Kerr
effect, or the ordinary static B, field of the standard Cotton-Mouton
effect.'® In so doing it is convenient to follow the summary given by
Barron!® for the Kerr effect and indicate the simple changes needed for
the optical Cotton-Mouton effect along the way.

The starting point is the expression for probe ellipticity in Rayleigh
refringent scattering theory!'°:

n= —%N“’.Uvod[a'xx(f) - a,YY(f)] (8)

in terms of laboratory frame components of the real parts of the polariza-
tion tensor a,; of a molecules of the sample. Here N is the number of
molecules in the sample, w is the angular frequency of the probe laser, i,
is the vacuum magnetic permeability, and / is the sample length in meters
through which the probe passes. The B; vector of the circularly polarized
pump laser generates anisotropy in the sample because B interacts with
the permanent and induced magnetic dipole moments in each molecule
(or atom). The total magnetic dipole moment per molecule is, accordingly,

ma=m0a+X;BBHB+ (9)
where m,, is the permanent molecular electronic magnetic dipole mo-
ment (if nonzero), and X.op 18 the real static susceptibility, a symmetric

second-rank property tensor.! The dynamic polarizability is perturbed by
B; of the pump laser as follows:

a,5(Bpn) = a,p(0) + afp, + g5 BryyBrs + (10)
and in the evaluation of n in Eq. (8) an ensemble average is taken of the
polarizability tensor components perturbed by B; of the pump. In forming

this ensemble average, an interaction potential energy is used of the type

V(Q) = —myxBnx — %X:\'XBlg[X + (11)
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From tensor invariant theory'® the ellipticity is finally obtained, in precise
parallel with the theory of the Kerr effect, as

1

n= - mwMOClNBlg[Xl:a’aBaB(f) - a:m[s/s(f)

2
+ 17 (3eusu(F)mag — ag(F)mag)
(12)

1
+ k—T(3a;B(f)X;p = &oa(f) Xpp)

1
+ kT2 (3a’a/3(f)m0am0[i - a’aa(f)mOBmOB)

which is valid rigorously at transparent frequencies only.
IV. DISCUSSION

For simplicity we consider a sample that has no permanent magnetic
dipole moment. For this sample the probably dominant term in Eq. (12)
involves a product of the molecular polarizability and molecular suscepti-
bility. The ellipticity developed in the probe is second order in By, or
first order in the intensity I, of the pump laser. Accordingly, the sign of 5
should not be changed by switching the circular polarization of the pump
from left to right, thus reversing By; (Refs. 4-8). However, if the pump is
linearly polarized, By, and thus 7 should be zero for all 1 of the pump.

With these overall considerations and taking a sample molecular elec-
tric polarizability >’ of the order 10~ *C?m?*J~!, a static molecular suscep-
tibility of the order 1072*C?>m~*J~'S™! N of the order 10°° molecules
m 3 [ of 1 m, o about 10" rad s™', and kT of 4.14 x 107%' J,
corresponding to 300 K, we obtain

n =107?Bjx (13)

Therefore, for a pump laser delivering a By, pulse of 1.0 T, the ellipticity
change is 0.01 rad, or 0.6° m'. As first discussed by Kielich,? this could
be enhanced by up to six orders of magnitude in colloidal solution, or in
suitable liquid crystals just above the isotropic to mesophase transition,
i.e., in a state where the sample is still transparent to pump and probe
lasers. The effect of the pump’s By pulse can be picked up by a probe
using highly developed contemporary timing technology, as in work on the
rotation of the elliptical polarization ellipse by a circularly polarized, giant
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ruby laser pump pulse.? =3 It therefore appears possible to observe the
optical Cotton-Mouton effect as proposed in this work in terms of the
novel B, vector, whose photon equivalent is the BH operator, the photon’s
magnetostatic flux density.
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THE PHOTON’S MAGNETOSTATIC FLUX QUANTUM:
FORWARD-BACKWARD BIREFRINGENCE
INDUCED BY A LASER

I. INTRODUCTION

When a magnetostatic flux density Bg is applied to an initially isotropic
chiral liquid, that liquid develops forward-backward birefringence, other-
wise known as magneto-chiral birefringence and magneto-spatial disper-
sion. The refractive index in the direction (+Z) of forward propagation of
a probe laser becomes different from that in the backward direction (—Z).
The Kramers-Kronig theorem implies that the same happens to the power
absorption coefficient. The presence of this effect in liquids has been
proposed several times theoretically, but has never been detected experi-
mentally. The effect appears to have been first proposed by Portigal and
Burstein' in magnetic crystal symmetries, and was measured by Mankelov
et al.2 The theory was extended by Kielich and Zawodny? to crystals with
magnetic ordering. Working with liquids, Baranova and Zel’dovich* de-
scribed the refractive index change in circularly polarized probe radiation
in terms of the dot product Bg - «, where « is the classical wave vector of
the probe, and implied the presence of forward—backward birefringence.
The first detailed papers on the subject in chiral liquids are due to
Wozniak and Zawodny,>® who defined the molecular point groups able to
support the effect, and developed a theory based on electronic distortion
and reorientation of the permanent molecular magnetic dipole moment, if
nonvanishing. Wagniére and coworkers’® developed the theory of the
effect for power absorption as well as refractive index, and Barron and
Vrbancich'® contributed a comprehensive paper on forward-backward
birefringence and dichroism in chiral liquids based on time-odd, complex,
molecular property tensors. In this work, an unsuccessful attempt to
measure the effect experimentally was reported briefly. WozZniak later
developed the semiclassical theory of the effect in diamagnetic molecules
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in the presence of electric'™'? and optical®® fields, and later!* for para-
magnetic molecules. Wagniére!® considered the consequences of using the
effect to measure parity violation in atoms, and has also proposed a
similar, but much weaker, forward-backward effect, which he named
“inverse magneto-chiral birefringence.”!® The latter has recently been
developed in the context of frequency dependence by Wozniak et al.'™'®
Barron' has reviewed the effect in the context of motion reversal (7') and
parity inversion symmetry (P).

Recently?®~? the present author has proposed an optically induced
forward-backward birefringence, in which the magnetostatic field is re-
placed by a circularly polarized pump laser, wherein the antisymmetric
component (IIY) of the intensity tensor of the pump laser is the optical
property responsible for the development of forward—-backward birefrin-
gence in a probe laser directed parallel to the circularly polarized pump.
The component I can be expressed as a T-negative, P-positive axial
vector directed in the propagation axis Z of the circularly polarized pump.
This effect, known as spin chiral dichroism,”°~2° is proportional to the
scalar magnitude /;, of the pump laser intensity, and vanishes if there is no
degree of pump circular polarization.

In this paper, we use the recently proposed?~3! magnetostatic flux
density operator ﬁn of the photon to demonstrate straightforwardly that
there exists a first-order optically induced forward—backward birefrin-
gence in which the traditional Bg field produced by a strong magnet is
replaced by the ﬁn operator of a circularly polarized pump laser pulse. In
the classical theory of fields, I§H becomes the axial flux density vector B,
directed along the propagation axis Z of the pump laser. This new effect is
proportional to the square root of the pump laser scalar intensity, i.e.,
172, We refer hereafter to this effect as I§H-induced forward—backward
anisotropy (BFBA), an effect that is one of a large number of new
magneto-photonic phenomena based on the existence of I§H, or its classi-
cal equivalent Bj;. Among these are optical NMR, recently detected
experimentally,® in which Bj; causes unexpected and characteristic shifts
in conventional NMR resonance patterns in N dimensions, optical ESR
and the optical Zeeman effects,?’ the optical Faraday effect,?® the optical
Cotton-Mouton effect,” and other Bj-induced effects. It has also been
shown3%3! that I§H is ubiquitous in physical optics, being interpretable in
terms of the third Stokes parameter S5, and is therefore the origin of such
\yell-known phenomena as circular dichroism and ellipticity. The operator
By also provides a new fundamental explanation for the de Broglie wave
particle duality in photons,® in that it can be defined simultaneously in
terms of the angular and linear momenta of the photon. The same
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conclusion applies for other massless leptons that propagate at the speed
of light in any reference frame, for example, the neutrino.

In Section 1I we summarize briefly the pertinent properties of the By
vector of a circularly polarized pump laser, and relate it to such well-known
quantities as the Poynting vector N (Ref. 34) and the usual electric field
strength amplitude (E,) and magnetic flux density amplitude (B,) of the
classical electromagnetic plane wave. A simple equation relates the scalar
magnitude (tesla) B, of By; to the square root of /, of the pump laser
(watts per square meter). Section 11l is a straightforward applicatioq of the
B, vector to the various theories proposed for forward-backward blrgfrm-
gence due to an ordinary magnetostatic field, Bg. An order of magnitude
of the BFBA is given in terms of the intensity /, of the pump laser, thus
anticipating the feasibility of an experimental investigation of the effect.

II. SUMMARY OF B;; PROPERTIES

The By; vector is the classical equivalent of the quantum-field operator By
(Ref. 26), and can be expressed in terms of the vector cross product
E X E* of the free space electromagnetic plane wave. Here E is the usual,
oscillating, electric field strength vector of the wave, and E* is its complex

conjugate. We have

B,= ——— =Bk=—k= .

E x E* E, I, )‘/2
2E,ci 0 c £yC

|N| 1/2
" o

3
2g,C

Here k is an axial unit vector in the propagation axis of the wave, ¢, 1s the
vacuum permittivity in S.1. units, and c is the speed of light. From these
definitions2®~? it is clear that the novel By; is a member of the same class

of optical properties as the Poynting vector N:

E x B*

N = (2)

Ho

where p, is the vacuum permeability in S.I. units and B is thg usual
oscillating electromagnetic flux density vector of the plane wave in free
space. (Note that the novel By is independent of the phase of the plane
wave, is directed exclusively in its propagation axis Z and is purely real,
reversing its sign with a left to right-switch in circular polarization and
vanishing, therefore, in linearly polarized or incoherent radiation such as
normal daylight. On the other hand, B of the plane wave is known* to be
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a complex quantity, phase dependent, with components in X and Y,
mutually orthogonal to the propagation axis.) The novel By and the
well-known N are both derived by forming vector cross products from
oscillating plane wave solutions of the Maxwell equations, but are them-
selves independent of the phase of the plane wave, and thus of its angular
frequency w. The vector N is a flux of energy density, and By, is a flux of
magnetic density in tesla (i.e., magnetic flux density). However, the P
symmetrigs of By and N are opposite: The former is ﬁ-positive and the
latter is P-negative, implying that the By, is an axial vector and that N is a
polar vector. The T symmetries of both vectors are identical, both are
T-negative,>~38 a conclusion arrived at after a careful consideration of the
T symmetries of E X E* and E X B*. The scalar magnitude of N is the
quantity 2/, which is the trace (or scalar part) of the tensor product E,Ef
in tensor subscript notation.** The magnitude of By is derived from the
antisymmetric part of E;E, which is its vector part.*

The following approximate relation is useful for assessing the magni-
tude of By in terms of /;:

Byl = By = 107 71}/2 (3)

so that a circularly polarized laser delivering one watt per square centime-
ter (10000 W m~2) generates a By; field of 107° T, which is 0.1 G or
about one-tenth of the earth’s mean magnetic field. A laser pulse of 10
generates 10.0 T, equivalent to a contemporary superconducting magnet
for the duration of the pulse.

HI. EXPRESSIONS FOR FORWARD-BACKWARD
ANISOTROPY DUE TO B

Using the novel By vector, it is possible to adapt immediately the key
results of previous work on forward-backward birefringence. Adapting
the results of Wozniak and Zawodny>® shows, for example, that the
magneto-spatial change in the refractive index is proportional to the scalar
product By, * k, where x is the wave vector of a circularly polarized probe
laser parallel to the pump laser generating B,,. By substituting B; for By
in the development of these authors, this change in refractive index can be
interpreted through the same electronic distortion mechanism and through
the same reorientational process mediated by the permanent magnetic
dipole moment. Furthermore, the molecular symmetries (magnetic point
groups) mediating the magneto-spatial effect of B; are the same as those
derived by WoZniak and Zawodny for the magneto-spatial effect of an
ordinary magnetic field, Bg. The key semiclassical expression of magneto-
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spatial dispersion due to By, is the precise analogue of the last term of Eq.
(52) of Wozniak and Zawodny®:

n,=—(V+VHBy-S)+ (4

where n . are the real refractive indices measured by the probe laser in
the +Z directions, the quantities ¥ and VT are defined in terms of
molecular property tensors by Egs. (58) and (59) of Ref. 6, and s is a unit
vector in Z. In an addendum to their original paper,® these authors
discuss other contributions to their original Eq. (52). They have provided
extensive tabulation of the symmetry of the molecular property tensors
making up V and V'T; but no order of magnitude estimate was made.

Similarly, it is possible to adapt straightforwardly the development of
magneto-chiral birefringence due to Barron and Vrbancich.! These au-
thors make extensive use of tensor algebra and invariant ensemble aver-
ages to describe the phenomenon semiclassically. They provide an approx-
imate estimate of the anticipated order of magnitude of the effect, and
also report an attempted experimental observation with a modified
Rayleigh interferometer. Qur purpose here is to adopt their main results
for use with By of a circularly polarized pump laser, thus providing
immediately a theory of BFBA in chiral liquids. This is achieved by
replacing the B field of the permanent magnet, wherever it occurs, by the
B, field of a circularly polarized pump laser. The symbol B in the
development by Barron and Vrbancich'® is replaced wherever it occurs in
their paper by By,. It is therefore unnecessary to repeat the complicated
tensor algebra here and we focus on a result such as their Eq. (3.17a),
which gives the magneto-chiral birefringence in terms of appropriate
molecular property tensor elements, averaged with the principles of tensor
invariants.'®3* This result is later approximated'® to base an estimate
upon

é:u‘(JCNBHZEaBymOyGaB(f) + o
kT

nll —ptt =

where n'" —n 't is the forward-backward refractive index difference due
to a pump laser generating + By, and —By, (left and right circular
polarizations, respectively) to a probe laser in the Z axis. Here ¢, is the
Levi-Civita symbol and G,4(f) the appropriate'” molecular property ten-
sor elements in semiclassical approximation. The tensor GaB( f) is sup-
ported only by chiral ensembles. The property m,, is an appropriate
component of the permanent magnetic dipole moment, and kT is the
thermal energy per molecule. Under the conditions discussed on page 728
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of Ref. 10:
n'' =t ~1077 (6)

for a By field of 1.0 T delivered by a pump laser pulse. To generate
optically a B of 1.0 T requires a pulse of intensity about 10'* W m™?
(10" W cm~2). Such an intensity is a practical possibility with a picosec-
ond pulse from an instrument such as a mode-locked dye laser,* which
is circularly polarized and if necessary, focused. To detect the change
n'l —n'' experimentally requires the most sensitive type of Rayleigh
refractometer,'® in which a right circularly polarized pump pulse is deliv-
ered in one arm of the refractometer and a left circularly polarized pump
pulse is delivered simultaneously in the other arm. The sample is chosen
optimally as described by Barron and Vbrancich'” in the context of a
conventional magnetostatic B from a superconducting magnet.

Wozniak!!'"'* and Wagniére’® have made some interesting develop-
ments of the theory of magneto-spatial dispersion. WozZniak has consid-
ered the effect of additional electric and optical fields, and Wagniére the
possibility of detecting p violation with forward-backward effects in
atoms. It is straightforward to adapt these theories for use with an optical
magnet by replacing the conventional B by B, in precisely the same
manner as considered already. Additionally, it is possible to use a combi-
nation of B and By;. These considerations point toward a range of new
optically induced forward-backward anisotropy, whose variations with the
probe frequency are novel spectroscopic signatures.

The disucssion has been restricted thus far to BFBA to first order
in By, and in this context, the various phenomena of spin chiral dichro-
ism?0-? suggested by the present author are effects that are mediated by
the antisymmetric conjugate product E X E* which from Eq. (1) is seen to
be proportional to the magnitude of By squared, and to the axial unit
vector k. These terms therefore also change sign with circular polarity of
the laser and mediate forward-backward birefringence. In general, spin
chiral anisotropy is present in addition to BFBA, the former being
proportional to /, and the latter to 1)/2. The molecular property tensors
involved in spin chiral anisotropy and BFBA are clearly different proper-
ties. This can best be seen from the fact that B, forms an interaction
energy with a magnetic dipole moment, but E X E* must form an interac-
tion energy with the antisymmetric part of the electric polarizability.?’~%

Note that there is no forward—backward birefringence proportional to
an ordinary magnetostatic flux density squared because such a quantity is
positive to the T operator. Forward-backward birefringence needs an
influence that is f“—negative, such as By, E X E*, or the ordinary B. This is
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a direct result of Wigner’s theorem on motion reversal in the complet
experiment, as discussed by Barron!®** and the present author.>
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THE PHOTON’S MAGNETIC FIELD By;:
THE MAGNETIC NATURE OF ANTISYMMETRIC
LIGHT SCATTERING

1. INTRODUCTION

The classical intensity of electromagnetic radiation is a tensor (/; j) propor-
tional to the tensor product E,E* (Refs. 1-3). Here E, is a component of
the electric field strength and E denotes its complex conjugate.* In free
space, the scalar part of the intensity is

Il = EOCEg (1)

where ¢, is the free space permittivity, ¢ the speed of light and E, the
scalar amplitude of the electric field strength of the electromagnetic plane
wave.>® The vector part of E,E I is conveniently expressed as the conju-
gate vector cross product:

O™ = E X E* = 2E2ik (2)

which is purely imaginary as a consequence of the fact that E,E* is a
Hermitian tensor of rank two.”® It has recently been shown’~'? that the
conjugate product II™ is directly proportional to a novel magnetostatic
flux density vector By, of the classical electromagnetic plane wave:

A I B 1/2k= Bl 1/2k (3)
3 2g,c?

n= - 0 k
2E,ci c £0C
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Here k is a unit axial vector in the propagation axis of the plane wave, B,
is the plane wave’s scalar magnetic flux density amplitude, and N is the
Poynting vector:

1
N=—E x B* (4)

Remarkably, the vector B_, a flux of magnetic density (in tesla) indepen-
dent of the phase of the plane wave, has been overlooked in the long and
illustrious history of the classical theory of fields,® whereas its close
relative N, a flux of energy density, has been well known for many years.
Furthermore, the interpretation of By in the quantum theory of fields
leads straightforwardly'® to the conclusion that the photon generates on
the most fundamental level a magnetic flux density operator

By = B+ (5)

directly proportional to its angular momentum f, a well-known boson
operator.'®> Here # is the unit of angular momentum in quantum mechan-
ics, the reduced Planck constant.

Quite generally, therefore, the ubiquitous antisymmetric part of the
electromagnetic intensity (denoted by Iij) can be rewritten in terms of the
novel magnetic vector B, leading immediately to novel insights about all
processes in physical optics that depend on [;;.

In this paper we illustrate this conclusion with reference to the antisym-
metric part of Rayleigh scattering from molecular liguids, a process first
considered by Placzek'* in 1934. Section 1I defines the antisymmetric part
of the scattered intensity in terms of the scattered B; vector, adapting the
arguments of Knast and Kielich.” Section III continues the development in
terms of Rayleigh refringent scattering theory, used to relate the incoming
and scattered magnetic vectors By;. Section IV is a discussion of these
results, leading to the conclusions that antisymmetric light scattering in
general can be reinterpreted fundamentally as a purely magnetic process,
whereby the incoming B, (or én of quantum field theory) interacts with
the molecular ensemble forming the scattering volume, and is scattered as
the vector Bys. The two magnetic vectors By and Bg are related through
the molecular property tensors of the scattering volume.
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II. DEFINITION OF THE SCATTERED B VECTOR

It is convenient to define the scattered Byq vector in terms of the
development of Knast and Kielich,” who have also tabulated extensively
the magnetic point group symmetries of the antisymmetric part of the
molecular and atomic polarizability. In so doing we define the intensity
tensor of the incoming light as

I;; = eycEE} (6)

from which it follows that the vector part of the intensity, the antisymmet-
ric component I, of Knast and Kielich’ can be expressed simply as the
purely imaginary axial vector:

"= 32, (1; — 1) = il,k

J

I

£0cE By (7)
where k is a unit axial vector in the propagation direction. From these

definitions we deduce immediately that the incoming By, vector is propor-
tional to the square root of the incoming I

1/2
By = [ oo (o] (8)
i g4c’E, g4c°

The antisymmetric part of the scattered light intensity tensor is defined
by Knast and Kielich to be:

1500 = (22 Mo ) M (e ), )
where
M(r, ty) = P (ty)expli(Ax - r(z))] (10)

where p" is the ith component of the electric dipole moment induced in
a molecule p by the light’s electric field strength vector, as usual in the
theory of scattering.'> 1% The quantity Ak is a difference in wave vectors of
incident and scattered light, as usual, and the summation extends over all
the N molecules of the volume. The angular brackets in Eq. (9) denote a
time-correlation function!” of the fluctuating quantity M,. It is well known
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from the theory of nonequilibrium statistical mechanics'” that the normal-
ized time-correlation function starts at unity and evolves to zero with time
t. Its Fourier transform is a spectral function of angular frequency w. In
Rayleigh scattering'>~!” the spectrum is the experimental Rayleigh band-
shape, which is Fourier transformed to give the time-correlation function.
The scattered antisymmetric intensity /,;, (k) is therefore frequency depen-
dent, and forms the antisymmetric part of the Rayleigh scattering spec-
trum. However, I;;(¢) is directly proportional to the scattered Byg vector,
(or in quantum-field theory' the scattered flux density operator By¢) and
we reach the significant conclusion that the spectrum of antisymmetric
Rayleigh scattering is a graph of the scattered B(w) plotted against the
change in frequency (@ — ), where w, is the incoming laser frequency.
Antisymmetric Rayleigh scattering is therefore a process that can be
described entirely in terms of the vector By;.

This conclusion can be underlined by expressing the fundamental
equation (9) in terms of a mean magnetic dipole moment {(mg(¢)), formed
at time ¢ from the antisymmetric part of the time correlation function
(Mr, t,)M*(r, 1)), This development is based on the relation

(mg(2)) = £(M(r, ty) X M*(r, 1)), (11)

where ¢ is a proportionality coefficient; i.e., the vector cross product of
two nonidentical electric dipole moment vectors is proportional to a
magnetic dipole moment. This conclusion can be illustrated by the follow-
ing simple model.

Express the electric dipole moments w and p* as products of electronic
charge e and position vectors r and r*. Then the cross product can be
expressed as an area

p X wt=e’r Xr¥ = ek (12)

Considering the simple model of the motion of charge with instantaneous
linear velocity v around a circle of radius r, the magnetic dipole moment
is known'® to be proportional to the product I4, where A is the area of
the circle, and I is the quantity ev/(2mr). It follows that, in general, a
magnetic dipole moment is proportional to area, and therefore to the
cross product of p and p*. The same conclusion is derived for the cross
product of transition electric dipole moments by Atkins and Miller.!? It is
also a consequence of the fact that antisymmetric electric polarizability is
proportional to the cross product of transition electric dipole moments,
and therefore has the same symmetry?” as a magnetic dipole moment.



From these considerations, we reach the equation

mg(t) = é(mio)4£0C2EOSBHS(t) (13)

showing that the magnetic dipole moment mg(?) is proportional to the
scattered Bpg() vector at time ¢. Fourier transformation leads immedi-
ately to the conclusion that the magnetic dipole moment at frequency w is
proportional to the scattered Bg(w) vector at the frequency w of the
antisymmetric Rayleigh scattering spectrum.,

HI. REFRINGENT SCATTERING APPROACH

In this section we adapt straightforwardly Rayleigh refringent scattering
theory to provide an expression linking the incoming B o and the scattering
Byg in terms of a parameter E,, which is defined in terms of the
molecular property tensors of the scattering volume. The scattered light
intensity tensor is defined in semiclassical Rayleigh refringent scattering

theory by %

I = egcESESS

cuz,u 2
- goc( 4771;’) a,,a% EVEF® (14)
~here
o’u R
E® = 4715 exp(iw(? - t”aaﬁE‘gO) (15)

s the scattered electric field detected in the wave zone at a point d at a
listance R from the molecular origin. The origin of scattered light is
;onsidered to be the characteristic radiation field generated by the oscillat-
ng electric and magnetic multipole moments induced in a molecule by the
idlectromagnetic fields of the incident light wave. Here a,g is the scattering
ensor, a molecular property of the scattering volume for particular
ncident and scattered directions given by unit vectors n® and n®. In Eq.
14) w is the angular frequency of the incoming wave, whose electric field
trength vector is denoted E©, so that the scattered intensity tensor 1S is

it
el

expressed in terms of the incident intensity tensor Iﬂ) by

2 2
W o
led = ( ) Gy 3 12 (16)

4R

It is immediately clear, therefore, that the incident B; in antisymmetric
scattering can be expressed in terms of the scattered Byg in a similar way.
Thus, we arrive at the conclusion that antisymmetric light scattering, in
general, is a process whereby the incoming By, is transformed into a
scattered Bq; i.e., antisymmetric Rayleigh scattering is a purely magpeto-
optic process. This argument is developed by consideration of the antisym-
metric (vector) part of the scattered intensity tensor

I = g eI

2

(as _ | “ko E®SE*S) _ E(S)E*(S)) (17)
1 P R s Lo
For the Z component
Ny = 2EP?E, (18)
where
4 2
—_ @ o
£, = ‘*_—32772R2'i’[(axxa:§x — ayxaxx) + (axydyy — @yyaxy) (19)

+i(ayyayy — ayxaky) — i(ayyayx — aYYa?\(’X)]

is in general a complex quantity. Using the result

Y = 2EO? (20)
it follows that

Ny = NOE, (21)
and that

Busz = Eanz (22)

For forward scattering, there is no component of B¢ other than By ;
but there are components of Bpg in X, Y, and Z, depending on the



scattering angle. These are all generated from the incoming By, by tensor
multiplication with E_; in its second-rank tensor form.

Without loss of generality we concentrate on forward scattering in the
rest of this section, so that?

Re(als) = ug(f) + Lugy ()M, + dig(8) + Lip,(8)n (23)

Im(als) = ~dop(f) = Lip, (F)M, + @up(8) + Ll (8)n, + -+ (24)

where a,, and o}, are respectively the real and imaginary parts of the
molecular polarizability tensor?® and {ap, and {5 are those of the zeta
tensor defined by Barron.?® In the forward direction, the process becomes
one of antisymmetric spectral absorption, in which the incoming and
outgoing By, and By, define the absorption coefficient:

I B
A(A) o V4 _ nsz _ E
1(0) BHZ z (2’5)
After ensemble averaging?®
- w'n
<‘:Z> - m(aaaaﬁﬁ aBa:B) (26)
and
Busz = (Ez)Bp; (27)

describes the process in terms of tensor invariants?® of the molecular
ensemble constituting the scattering volume.

IV. DISCUSSION

The historical development and experimental evidence for antisymmetric
Rayleigh scattering has been reviewed in detail by Barron.? In this work
and that of Knast and Kielich,” the magnetic nature of the phenomenon is
mplied indirectly, for example, through the fact that the process is
described with the antisymmetric part of molecular property tensors such
1s the electric polarizability. Using the relation

ay = %Eijk(a;lj - ai%) (28)
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this tensor can be described as an axial vector, o (Refs. 21-25), which has
the same symmetry as a magnetic dipole moment, and whose irreducible
representations in various molecular point groups are the same as those of
the magnetic dipole moment or angular momentum. Knast and Kielich,’
their Eq. (36), also point out that the vector «, is negative to the motlon
reversal operator T, and it follows?'~?° that it can form an interaction
energy only with another f—negative property, the antisymmetric conjugate
product E X E* of Eq. (2) of this paper. This argument shows that E X E*
must have the symmetry of a magnetic field, since «) has the symmetry of
a magnetic dipole moment. In fact, as discussed in the introduction,
E X E* is proportional to the novel magnetic field By, the classical
equivalent of the operator B for each individual photon. Equation (13) of
this paper now shows that antisymmetric scattering can be thought of as
the induction by the scattered magnetic field By of the magnetic dipole
moment (mg(¢)) (which is the value at ¢ of a time-correlation function),
and this result can also be generalized in quantum field theory, or the
theory of magneto-photonics. The Fourier transform of (mgy(¢)) is a point
on the spectrum of scattered light at the frequency w. The magnetic dipole
moment (m5> has the same irreducible representations in the appropriate
point groups as the antisymmetric polarizability considered by Knast and
Kielich,” and By(¢) has the same symmetry as the antisymmetric part of
the scattered intensity, denoted in tensor notation by I;; by these authors.”
It follows that the same conclusions arrived at by Knast and Kielich’ for
the properties of the antisymmetric polarizability hold for the novel
magnetic dipole moment (mg(¢)). For example, (mg(¢)) is nonzero only in
the presence of a T—negatlve influence, which in Eq. (13) is the magnetic
field By;(¢).

Another conclusion that becomes immediately obvious in our magnetic
interpretation of forward antisymmetric Rayleigh light scattering is that it
involves circular polarization. The magnetic fields B;; and B vanish if
there is no degree of circular polarization, respectively in the incoming
and scattered radiation. These findings are reinforced by the arguments,
summarized in Section 3.5.3 of Ref. 20, for Rayleigh scattering in the near
forward direction from refringent scattering theory. In this case, the
degree of circular polarization is directly proportional to the pseudoscalar
magnitude'? of the scattered By, which is the third Stokes parameter of
the scattered radiation. Thus, in purely antisymmetric, near forward
Rayleigh scattering, if the incident beam is completely circularly polarized,
so is the scattered beam. This is summarized in our terms by Eq. (27), in
which By, and Bpg; are both well defined, and in which the coefficient
(E,) is a finite ensemble average. Clearly, if By, is zero (no degree of
circular polarization in the incoming beam), then B, is also zero,
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because the molecular ensemble average (E,) is nonzero in general.
Therefore, there is no near forward scattering.

V. CONCLUSION

The phenomenon of antisymmetric light scattering has been interpreted in
terms of the novel incident and scattered magnetostatic flux density
vectors By; and By, respectively. This shows that antisymmetric scattering
is a purely magneto-optic phenomenon, giving information on the nature
of the scattered Bpg vector. In magneto-photonics, the vector By is
replaced by the operator én, and the appropriate quantum theory must be
employed.
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MANIFESTLY COVARIANT THEORY
OF THE ELECTROMAGNETIC FIELD
IN FREE SPACETIME, PART 1I:
ELECTRIC AND MAGNETIC FIELDS
AND MAXWELL’S EQUATIONS

I. INTRODUCTION

It has recently been shown'™> that there exist longitudinal solutions of
Maxwell’s equations in free spacetime which are independent of the phase
¢ of the traveling plane wave. These longitudinal electric and magnetic
fields, denoted E® and B®, respectively, are consistent with the conclu-
sion of quantum electrodynamics that there exist four photon polarizations
in free spacetime, one timelike ((0)), two transverse spacelike ((1) and ),
and one longitudinal spacelike ((3)).%’ However, the existence of four
photon polarizations has to date been regarded’ as being in conflict with
the deduction that the photon can have only two helicities, +1 and —1.
This in turn has led to the arbitrary assertion that only the two transverse
spacelike polarizations (1) and (2) can be “physically meaningful” in free
spacetime. The timelike ((0)) and longitudinal spacelike ((3)) are conven-
tionally discarded as physically meaningless. This implies that the theory
of the electromagnetic field in free spacetime loses manifest covariance.”
This fundamental difficulty is well described by Ryder,” from whose
Chapter 4 we quote the following: “the electromagnetic field, like any
massless field, possesses only two independent components, but is covari-
antly described by a (potential) four vector 4,. In choosing two of these
components as the physical ones, and thence quantizing them, we lose
manifest covariance. Alternatively, if we wish to keep covariance, we have
two redundant components.”
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Clearly, if the theory of the electromagnetic field in free spacetime is to
be made manifestly covariant and therefore rigorously consistent with
special relativity, then all four photon polarizations must be physically
meaningful. This implies that electric and magnetic fields in vacuo must be
four vectors, E, and B,, respectively, in spacetime. The difficulty with this
notion to date appears to have been the preconception that any longitudi-
nal solution of Maxwell’s equations in free spacetime must necessarily be
phase dependent, so that the longitudinal spacelike solution cannot be
solenoidal. This means that Gauss’s theorem in differential form is vio-
lated by such a solution.®~'® However, with the recent discovery!~> that
the longitudinal solutions to Maxwell’s equations in vacuo are not phase
dependent, the conflict with Gauss’s theorem disappears, and one of the
most intractable difficulties of electromagnetic field theory is removed. In
so doing, the very basis of electrodynamics is changed profoundly, because
at present the subject is based on the existence in vacuo of a potential four
vector A,, whose four-curl gives the antisymmetric electromagnetic field
tensor F,, = —F,, in spacetime. The components of F,, contain no
explicit reference to the timelike component of the four vectors E, and
B,, and the longitudinal components that appear in F,, are evidently
discarded as unphysical. To maintain manifest covariance the timelike and
longitudinal components must be retained, and must have physical mean-
ing. In other words, the electric and magnetic parts of the electromagnetic
plane wave in free space are treated conventionally as three vectors in
Euclidean space, and not as manifestly covariant four vectors in pseudo-
Euclidean spacetime. This reveals an internal inconsistency in electrody-
namics in vacuo, in that the d’Alembert equation

04,=0 (1)

allows four photon polarizations, but the Maxwell equations

aF,, _ oF,, _
dx, ax, (2)

(x=(X,Y,Z,ict))

link only the spacelike components of E, and B,. They make no explicit
reference to their timelike components E©@ and B®. (In Eq. (2), the
Maxwell equations are stated in terms of the four divergence of F,, and of
its dual, F,, (Ref. 7).) A consistent, manifestly covariant, and rigorous
theory of electrodynamics in vacuo must link E, and B, to the tensor F,,,
which is the four-curl of 4,,.
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In Section II of this paper, a brief review is given of the phase-indepen-
dent longitudinal components E‘® and B® of the electromagnetic plane
wave in vacuo. These are identified with the conclusions of quantum field
theory’ that physical photon states in a manifestly covariant gauge such as
the Lorentz gauge are described as admixtures of operators of the field,
namely the creation and annihilation operators.

Section 111 links the four vectors E, and B, to the four tensor F,,, and
shows that E, and B, take the form of a Pauli Lubanski vector and
pseudovector, respectively, in spacetime. These are well defined’ within
the inhomogeneous Lorentz group (or Poincaré group). This leads in turn
to the conclusion that the two photon helicities, +1 and —1, can be
reconciled rigorously with four physically meaningful photon polarizations,
because the helicities can be described equally well in terms either of (1)
and (2) polarizations or of (0) and (3) polarizations. This is consistent with
our earlier!? conclusion that one photon generates the longitudinal mag-
netic field component:

BO

B® = (y|BOy) = T<://lfl://> (3)

where |4//>Ais an eigenstate of the photon and where the eigenvalues of the
operator J are M,h; M, = +1 and —1, the photon helicities. The result
(3) is generalized in Section III through the definition of E, and B, as
Pauli-Lubanski types in spacetime.

Section IV deals with some consequences in vacuum electrodynamics of
the existence of manifestly covariant E, and B,, with four physically
meaningful components. The Maxwell equations, in particular the differ-
ential form of Gauss’s theorem, are developed covariantly in terms of E,
and B, . Specifically, Gauss’s theorem in differential form becomes

IE, 1 9E®
— =0 or V:E+ — =0 (4a)
dx, ¢ dt
and
3B, 1 9B©
=0 or V-B+ — =0 (4b)
ax c 0t

I

The electromagnetic energy and energy flux densities in vacuo are
expressed in terms of products of E,, and B,,, showing that the (3) and (0)
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polarizations do not make explicit contributions to either on a time-aver-
aged basis. The four Stokes parameters, however, are profoundly affected
by the manifest covariance of E, and B, in that it is no longer sufficient
to describe S, S}, §,, and S; in terms of Pauli matrices.!” It is shown that
the covariant description of the Stokes parameters in vacuo can be
obtained through the use of Dirac matrices.'® This description maintains
the fundamental relation

S§=St+ 582+ 52 (5)

on the Poincaré sphere, while at the same time showing that S, and S,
become different in a description based on E, and B, rather than on the
usual transverse spacelike E and B. A new term appears in both S, and §,
due to the existence of physically meaningful (0) and (3) states of the
electromagnetic field. The parameters Sy and §;, on the other hand, are
unaffected.

Section V is a discussion of the available experimental evidence for B®,
and suggests several experimental tests of its physical existence when the
electromagnetic field interacts with matter.

II. THE LONGITUDINAL SOLUTIONS OF MAXWELL’S EQUATIONS
IN FREE SPACETIME: (0) AND (3) POLARIZATIONS

Longitudinal solutions of Maxwell’s equations in vacuo appear not to have
been considered as physically meaningful in the great majority of standard
texts. Jackson® simply states that the differential form of Gauss’s theorem
demands that phase-dependent solutions are transverse. The possibility of
phase-independent solutions appears not to be considered. It is frequently
considered®~! that a plane, monochromatic, electromagnetic wave travel-
ing in Z (the propagation axis) in vacuo is simply the sum of two coherent
waves linearly polarized in the orthogonal axes X and Y. Atkins!! and
Landau and Lifshitz'? similarly consider only transverse fields, and thus
transverse polarizations, in a Cartesian or circular basis. Whitner,® how-
ever, mentions briefly and without further development that “Plane waves
are an important example but they do constitute a special case; we must
not conclude that all electromagnetic waves are transverse.” Similarly,
other authors®~5 in classical and quantum electrodynamics in vacuo make
little or no mention of longitudinal solutions.

Recently, however, Evans!~* and Farahi and Evans® have systematically
considered the theory of phase-independent longitudinal electric and
magnetic fields, which are solutions to the free spacetime Maxwell equa-
tions and thus obey the differential form of Gauss’s theorem in free
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spacetime. This work has developed rapidly from the observation' th
spacelike components of the plane wave in vacuo are interrelated by

ED x E®
B = —— ((
‘ icE,
where
ED = EeMe'? (7
E@ = E,e@e~i¢ (7t

are the transverse electric field components. Here

i— ij

V2
i+ ij

o) =

@ =

V2

are unit vectors in the circular basis,!® where i and j are unit cart‘esiz
vectors in X and Y, orthogonal to the propagation axis Z. Here ¢ is tt
phase of the traveling monochromatic plane wave, defined by

d=wt—k-'r

where o is its angular frequency at instant ¢ and & its wave vector .
position r in Euclidean space. We have from Egs. (6) and (7)

B® = B,e® (t
with
o) x 8@ = @ (¢
and the well-known free spacetime relation®!3
Ey =B, (1
With B, = B® we write Eq. (8) as
B, — IB®| =0 (1

where |B®| denotes the scalar magnitude of the vector B®.
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From Egs. (6), (7), and (11) it is clear that field polarizations (0) and 3)
are not independent of polarizations (1) and (2). Furthermore, by consid-
ering the results of quantum field theory,’ polarization (0) can be identi-
fied as being timelike in a manifestly covariant description, and (3) as
longitudinal spacelike. The field B® is consistent with Maxwell’s equations
in vacuo and therefore with Gauss’s theorem. The key to this result is that
the phase ¢ has been removed in the conjugate product (6). The electric
counterpart of Eq. (11) is, in general:

E® - |[E®| = 0; E® o E, (12a)
E® = E@g® (12b)

Equations (12) also represent solutions of Maxwell’s equations in vacuo.
Equations (11) and (12) are, furthermore, related’ through conservation
of electromagnetic energy by the Euclidean space equation:

E® % B® = B® x E® (13)

showing that if B®) is real, as in Eq. (6), E® is imaginary. Relations such
as (6) and (11) to (13) show that there are only two independent states for
E and B because from Eq. (6) either of states (1) and (2) can be expressed
in terms of (3); and the latter can be expressed in terms of (0) through Eq.
(11) for B® and Eq. (12) for E®. Finally, states (0) for E and B are related
by Eq. (10) and states (3) by Eq. (13). This result, that there are only two
independent states out of the four possible, (0) to (3), is evidently the
classical expression of the fact’ that the massless gauge field possesses only
two independent components, but is at the same time covariantly de-
scribed by a four vector, A4 . made up of four physically meaningful
polarization states (0), (1), (2), and (3).

Thus far, we have used a conventional, classical description in terms of
spacelike vectors E and B, but have introduced the novel E® and B®, By
1sing the refativistic quantum description of the electromagnetic field” we
10w introduce the concept of electric and magnetic field four vectors E
ind B,, respectively.

It is well known’ that the quantization of Eq. (1) in the Lorentz gauge
roceeds through a condition derived by Gupta and Bleuler in the early
lays® of quantum field theory:

'3

dAH

— ) =0 (14)

3x“
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where A is the operator equivalent of A, a7nd acts on a photon
eigenstate |g). Equation (14) leads to the result’ that physical photon
states are admixtures of (0) and (3) photon polarizations in such a way that

(3?0 — )y =0 (15a)
(@O a0y = (pla®+aD)y) (15b)

where 4 and 4% are annihilation and creation operators, respectiv;aly.
Furthermore, the energy density of the quantized field is proportional’ to

the sum

3
Z (&(/\)+d(/\) _ ﬁ(0)+5(0)) (16)
A=0

and from Eq. (15b)7 the contribution of the longitudinal ((3)) and t.imelike
((0)) states cancel. It will be shown in this section that the cla'sswal but
manifestly covariant equivalents of Eqs. (15) and (16) are obtained from

the four vectors E, and B .
* ® 18,20 ¢ .
We use the well-known relations'”?’ (in S.I. units),

1,2 o \ /2
£O — 2ha 4O £E® = 2he Pe)
gV NG

(17)

1/2 2 h 1/2
2’”’;"") 40 B = ( Ko w) 4@

30)
5 ( 4

to link the annihilation operators in states (0) and (3) to the eguivalent
field operators. Here ¢, is the permittivity and g, the permeabillty.of Fhe
vacuum state, # is the reduced Planck constant, and V' the quantization
volume. From Egs. (15a) and (17),

(EO —EMNyy=0 (BY - B)y) =0 (18)
and from Eq. (15b),

(WIEOTEOyY = (Y|EDTEP|y) (19)

(WIBOTBOW) = (plBD*BDly)



The classical equivalent of Eq. (18) is

E® -~ |E® =0 BO® - |B® =9 (20a)

and that of Egs. (19) is

2 . g3 . g®
E E®-E (20)

BO2 = g® . g®

where E® = (y|E®|y), etc. Equation (20a) is identical with Eq. (11), and
Eq. (20b) is consistent with Egs. (11) and (12a). However, Eq. (19) was
derived from a quantized counterpart, Eq. (15a), which is manifestly
covariant in that physical photon states are admixtures of states (0) and (3)
of the quantum field.” It follows that classical field states in vacuo are also
admixtures of the classical (0) and (3) polarizations as defined by Egs. (19)
and (20). From this we arrive at two fundamentally important conclusions:

1. The electric and magnetic components of the electromagnetic field
in vacuo are manifestly covariant four vectors in spacetime, E, and
B,, respectively, all of whose four components must be physically

meaningful.

2. From Eq. (19) the fields E® = E@¢® and B® = B@&¢® are inde-
pendent of the phase of the traveling plane wave, which is consistent
with Eq. (6) and the development thereof.

The four physical states of the classical, manifestly covariant, electro-
nagnetic field are formed from the (0) and (3) admixtures E©@ — |[E®|
and B — |B®| and from the well-known transverse ((1) and (2)) compo-
1ents.8~15 Although Maxwell’s phenomenological equations of the 1860s
are conventionally accepted as being consistent with special relativity, the
:lectric and magnetic fields that they relate in vacuo are purely spacelike.
T'he field potentials in terms of which E and B are described in the
>onventional theory®~'° are, on the other hand, taken to be components of
‘he potential four vector in spacetime:

A, = (A, +i¢) (21)

vhere A is the spacelike (vector) potential and ¢ is the timelike (scalar)
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potential. The four-curl of A4, conventionally produces the electromag-
netic field tensor in spacetime (see Appendix A):

0 B, —-cB, —iE,

—cB, 0 cBy -k,
= — = 22
F‘“’ Fu= 2o cBy —cBy 0 —iE, (22)

iEy iE, iE, 0

The difficulty with F,, and with the conventional theory is that F,,
contains no explicit reference to the timelike components of £, and B,,.
These are removed by the mathematical nature of the four-curl:

T (23)

A method must be found to relate E, and B, to the four potential A4,
thus making the theory rigorously self-consistent and manifestly covariant.

It is reasonable to base this method in contemporary quantum field
theory,” in which the electromagnetic field is an example of a massless
gauge field (as opposed to a spinor field), described in general by the
Poincaré group. The latter incorporates three Lorentz rotation generators
(J,), three Lorentz boost generators (K;), and four generators of space-
time translation (PM). Details are well summarized in Ref. 7. The differ-
ence between the Poincaré and Lorentz groups is that the former incorpo-
rates the generator of spacetime translations, defined by

a
P =i— (24)

i ax,

and which is proportional through a factor # to the momentum energy
four vector operator. The Pauli-Lubansky pseudovector in spacetime, W,,
characterizes the Poincaré group by forming its second (spin) Casimir
invariant W, W, . (The first (mass) Casimir invariant is formed from P.P)
The Pauli Lubansky pseudovector is defined by

W, = —te, J P (25)

N prpoept o

where ¢,,,, is the totally antisymmetric spacetime tensor of rank four,



and where the four tensor J,, is
Jij = —Ji = €iudk
Jo(n,0=0,...,3) " v
ol B )[Jio = ~Jy = K,

i j,k=1,2,3 (26)

III. THE LINK BETWEEN £, B, F,,, AND 4,

The photon helicity is defined in the lightlike condition applied to Eq.
(25), in which condition W, becomes proportional to P,, so that the
helicity is a number, +1 (Ref. 7). The opposite value, —1, is given by
considerations’ of parity inversion. We show in this section that E, and
B, can be defined in terms of F,,, and therefore of the four curl of A, by
an equation whose structure is the same as that of Eq. (25). Thus, E, and
B, are identified as a Pauli Lubansky vector and pseudovector, respec-
tively. This procedure succeeds in expressing electric and magnetic four
vectors in terms of a single potential four vector, and covariantly describes
the conventional® ' relations between E, B, A, and ¢ in vacuo.

The primary basis of the derivation is the observation that J,, has the
same structure as F,,, both being antisymmetric four tensors of the type
(26). The ij = —ji components of F,, are therefore identified as being
proportional to rotation generators of the Poincaré group.” With this
observation, it becomes obvious that the spacelike electric components in
Eq. (22) are proportional to boost generators of the Poincaré group.” Pure
boost Lorentz transformations’ are those connecting two inertial frames
moving at a relative speed v. A Lorentz rotation is a four vector rotation
in spacetime. Therefore, the conventional assertion that ¢B and E® in
F,, are physically meaningless is tantamount to asserting that one out of
three rotation generators and one out of three boost generators are
physically meaningless. This is a reductio ad absurdum, and a vivid
demonstration of the fact that the conventional assertion that E® and
B® are unphysical is flawed fundamentally, i.e.,is geometrically unsound.

Secondly, Eq. (3), which we have derived elsewhere? using independent
considerations in the quantum field, shows that B® is directly propor-
tional to the photon’s quantized angular momentum boson operator J.
Classically, the rotation generators J, Jy, and J, of the Poincaré group
are matrices of numbers which obey the commutation relations

[JX’JY] = ilg (27)

and cyclic permutations thereof. These are immediately recognizable to be
the commutators of quantized angular momentum within the factor #.
This suggests that F,, is proportional to J,, through a four scalar
invariant of spacetime. For example, components 12 and 21 of F,, are
respectively ¢B® and —cB, and all other off-diagonal components of
F have the same dimensions as the 12 and 21 components. The 12 and
21 components of J,, are the angular momenta J & and —J within a
factor #. The 21 and 12 component proportionality is therefore embodied
in Eq. (3).

Thirdly, the contemporary quantum field description of photon helicity
in terms of W, and P, clearly involves the concept of spacetime transla-
tion within the Pomcare group, introduced by Wigner?' in 1939, and
whose generator, as we have seen, is P, This is missing from the Lorentz
group.” The concept of spacetime translation is also missing from the
Maxwell equations, which do not deal explicitly in the timelike field
polarization (0). Spacetime translation is implied in d’Alembert’s equation
(1),” but if and only if all four field polarizations are taken to be physically
meaningful. To see this, recall (1) that the four-curl (23) removes the (0)
polarization, and (2) that the Maxwell equations (2) are equations’ in F,,
and its dual FW. From the proportionality of F,, to J,, it becomes clear,
however, that the components of F,, must be either rotation or boost
generators of the Poincaré group, and there is no reference within F,, to
spacetime translation. Photon helicity, on the other hand, is described in
terms of the proportionality and orthogonality in spacetime of W, to P,
(Ref. 7) in the lightlike condition. Therefore, the description of electric
and magnetic components in vacuo in terms of F,, is inconsistent with the
contemporary description of helicity. This inconsistency can be remedied if
and only if electric and magnetic components of the electromagnetic field
in vacuo are manifestly covariant four vectors E, and B,,.

Fourthly, defining a photon state |k) in the lightlike condition, the
photon helicity (A) in contemporary thought is given by the condition

(W, — AP)Ik> =0 (28)

so that for the massless photon, A is a number (+ 1), which is the ratio of
W, to P, and which has the dimensions of angular momentum,’ provided
that P, has the dimensions of linear momentum/energy by multiplication
by #. For lightlike particles with no mass, such as the photon’,

k, = (0,0,k, ~ik) (29)



208 M. W. EVA

which can be regarded as a unit four vector
8, =1(0,0,1, ~1i) 30)

describing a massless particle moving at the speed of light in the Z
spacelike axis (the propagation axis of the electromagnetic wave). Equa-
tion (30) can be incorporated into Eq. (25) by dividing the left and right
sides of Eq. (25) by #, so that W, J,,, and P, become numbers. This is
consistent with the definition of rotation and boost generators as matrices
of numbers (Egs. (2.65)—(2.67) of Ref. 7).

With these considerations, we are led to the following fundamental

definitions of B, and E, in terms of F,, and §,,:

CB# = — TEOEALVPUFVpaa (313)
1 -
E, = 5 (31b)

I zeoepvpapr o

In these equations, we recall that if £,,,; = 1, then its other nonzero
elements are +1 and —1, according as to whether ¢,,,; can be generated
by an even or odd number of subscript pair permutations. Thus, for
example,

€320 = —1 €310 = 1 Exp0 = — 1 (32)
€310 = — 1 €z = 1 €123 = —1
and so on. All elements of ¢ are zero in which two or more subscripts

rvpor
are equal. The elements of F,, are labeled explicitly as

11 12 13 10
21 22 23 20
31 32 33 30 (33)
01 02 03 00

F (v,p=0,1,2,3) =

With these definitions it is verified by tensor algebra (Appendix B) that the
real elements (labeled (1), (2), (3), and (0)) of the magnetic and electric
field four vectors

E# = (E(l), E(Z)’ E(3), _iE(O))

B# = (B“), B(Z), B(3), _iB(O)) (34)
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are given by Egs. (31). (The dual F of F,, is obtained by the well-known’
dual transformation F = WWFM)

Equation (31a) covarlantly defines B, as a Pauli-Lubansky pseudovec-
tor, and Eq. (31b) covariantly defines E, as a Pauli-Lubansky vector.

These definitions imply several properties of both B, and E,:

1. Since F,, is the four-curl of A, (Eq.(23)), Egs (31) covariantly relate
B, and E, to A, in spacetime.

2. Since E, and B, are four vectors in Minkowski spacetime, it follows
in pseudo-Euclidean geometry that £, E, and B, B, are constants in
spacetime, and that

oE, 3B,
—— = constant —— = constant (35)
dax dax

n n
3. Equation (31a) is dual with Eq. (31b), because under the dual
transformation of fields

F,,—F, E, - —icB, (36)

4. The parity inversion P and motion reversal T symmetries of B, are
consistent with those of F,, and §,, bearing in mind that the latter is
the unit generator of spacetime translation. Since Eq. (31b) is dual
with Eq. (31a), its symmetries are consistent with those of Eq. (31a).
B, isa pseudovector because its spacelike component B is posmve to
P and negatlve to 7. E, is a vector because E is negative to P and
positive to T.

5. From the properties of the Pauli-Lubansky pseudovectors and vec-
tors,” both E, and B, are orthogonal to §, in spacetime:

B, =0 EB, =0 (37)

6. Both £, and B, are defined in Egs. (31) in terms of the unit
generator of spacetime translations 8, allowing E, and B, to be
covariantly and consistently interpreted in terms of helicity in the
lightlike condition.”

7. Since E, and B, are defined covariantly, the timelike components
E® and B, respectively, are both explicitly and implicitly stated to
be physically meaningful in spacetime.

8. The products B, B, and E, E, are both Casimir invariants’ of the
Poincaré group, specifically Casimir invariants of the second kind, or
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“spin” invariants. The product 8,8, is a Casimir invariant of the first
kind (“mass” invariant). This deduction follows from the definition
(31) of B, and E, as Pauli-Lubansky types. In the lightlike condi-
tion, i.e., for the massless electromagnetic gauge field,

8,6,=0 EE, =0 B,B, =0 (38)
Equation (38) is a classical statement of the fact that the photon in
the quantum field is massless and possesses spin.

9. From Egs. (37) and (38), E, and B, are both orthogonal and
proportional to 8, in spacetime. The proportionality constant (a
scalar in spacetime) expresses the helicity of the electromagnetic
gauge field.

It can be verified explicitly that the fundamental conditions (37) and (38)
are satisfied by the circularly polarized transverse components of Eq. (7) in
combination with the longitudinal components of Egs. (8) and (12b). For

example,
EE, = EW?2 4 E@2 4 g2 pO2
= E(O)Z(é(l) . eDe2id 4 82 . a@e—2id L a3 . a®) _ 1)

- E(O)Z(é(l) . g(hp2id 4 2. é(2)642id>) (39)

E©? _ .
(G — i) - (i —ij)e?® + (i +ij) - (i — +ij)e™ )

2
=0

IV. CONSEQUENCES FOR VACUUM ELECTRODYNAMICS

Equations (31) covariantly define the four vectors E, and B, in space-
time. This means that the fundamentals of vacuum electrodynamics are
changed. One immediate consequence is that Egs. (35) restate the Gauss
theory in covariant form. Using the polarizations defined in Egs. (7), (8),
and (12b) it is clear that the constant in Egs. (35) is zero and that the
Gauss theorem in differential form is covariantly written as

dFE 1 9E©®
—+£ =<0 or V-E+ ——— =0 (40)
6x# c dt
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and
IB, 0 v 1 dB®
— = or B+ — =
(?xu c ot 0 (41)

Equations (40) and (41) replace the conventional spacelike statements of
the Gauss theorem in differential form in vacuo:

V-E=0 V-B=0 (42)

Therefore, it becomes clear that the covariant definitions (30) lead to the
following covariant statements of the Maxwell equations in vacuo:

BFLV HBL
=0 =0
ﬁxu 6xu
) (43)
flv oB
=0 =0
ﬁxu Bxu

in which B, is the dual of B,, and I*:w that of F,,. The Maxwell equations
in the form (43) are covariantly consistent with the d’Alembert equation
(1), which was the starting point of our development.

The vacuum electromagnetic energy density is, from Egs. (31), covari-
antly defined in S.I. units as (see Appendix C)

1 1
U= 5 |EuEu + BB, (44)

where u, is the permeability in vacuo. (Note that it is not consistent to
refer to the vacuum as “free space”; it is covariantly described as “free
spacetime.”) From the example of Egs. (39), it is clear that field polariza-
tions (0) and (3), although physically meaningful, do not contribute to U,
so that Eq. (44) happens to reduce to the conventjonal®!® spacelike
definition of U:

1 1
gE-E+ —B-B (45)

U(conventional) = 3
Mo



This deduction is consistent with the quantum field theory leading’ to Eq.
(16).

Similarly, the vacuum electromagnetic flux density (the conventional,
spacelike, Poynting vector®~!°) is covariantly defined from Egs. (30) as the
four vector product of E, and B, the four tensor, in S.I. units:

ny

1
S, = —(EuBV - B‘LEV) (46)
Mo

The conventional statement of the law of conservation of electromagnetic
energy in vacuo is the Poynting theorem,®~!> expressed through the conti-
nuity equation:

V-S+—5—=0 (47)

This is already Lorentz covariant in structure, because it is an equation in
the four divergence of the Poynting four vector S, = (S, — iSO ie.,

as
P =9 (48)

6x“

However, the conventional definition (47) implies that the two spacelike
components of the Poynting four vector S, orthogonal to the propagation
direction of the electromagnetic wave in vacuo must vanish. The definition
(47), although Lorentz covariant, is not necessarily manifestly covariant,
because it is based on the conventional®~'> assumption that E and B are
spacelike and transverse.

In a manifestly covariant description it is necessary to relate the
Poynting four vector of Eq. (48) to the Poynting four tensor S, formed
from the vector product in spacetime of the novel four vectors E, and B,,.
It is reasonable to propose that this relation is

i
S, = S,.5 (49)

o Eguvprr vpYo
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where ¢ and &, have the same meaning as in Eq. (31). Explicitly,

i
s =8 = 5(5123052350 + €132053280 + €120352003 T €162350283)
(50a)

i
2) = —_
§9=S,= 3 (£231053180 + €213051300 + €201350185 + £310351083)

(50b)
i
§P =5, = 5(5321052150 + €31205128¢)
i
—i§¥V = —is§, = 5(5012351253 + £021352103) (50c)
with 6, =1 8= —i (6,=06,=10)

Eoiz = 1 €gp3 = — 1 €310 = —1 €30 = —1
€30 = 1 €310 = — 1 €013 = 1 €03 = —1  (50d)

€z = —1 &3 =1 €03 = 1 Eyo3 = — 1

Equations (50a) and (50b) show that in this definition, the Poynting four
vector in spacetime develops components in the spacelike axes orthogonal
to the propagation axis (3).

The definition (49) of the manifestly covariant Poynting vector intro-
duces the unit generator of spacetime translations, 8, for an electromag-
netic wave traveling in vacuo in the spacelike axis (3). In direct analogy
with our fundamental definitions, Eqgs. (31), of E, and B,, S, is thereby
defined within the Poincaré group rather than the Lorentz group, and
spacetime translation is included explicitly in the definition. This means
that the manifestly covariant Poynting vector is also a Pauli-Lubansky
vector within the Poincaré group in spacetime. Note that from Egs. (50c)
and (504),

SO —|sO] =0

51
§P . 5O _|sO = g 1
i.e., the conventional, spacelike Poynting vector, which has only one
spacelike component, (3), and no timelike component, (0), becomes within
the structure of Eq. (49) a physical state that is an admixture of (3) and (0)
polarizations. The other spacelike components of S, i.e., (1) and (2), also
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become physically meaningful through Egs. (50a) and (50b). At an instant
in spacetime, these components (1) and (2) are experimental observables.
However, observations (Appendix 3) of the electromagnetic energy flux
density, known as the Poynting vector,® !* are made by the observer with
an instrument such as a power meter, which gives only the time-averaged
value of the Poynting vector. The components S,3, 32,5205 S025 S35
S35 So1» S1o disappear upon time averaging (Appendix 3) because they are
made up of products of one phase-dependent component and one that is
phase independent. The components S,; and S;,, on the other hand, are
products of two phase-dependent components, one of which is the com-
plex conjugate of the other, so that the phase disappears in the product,
which is thereby nonzero after time averaging. For these reasons, the
conventional Poynting theorem (47), which is not manifestly covariant,
happens to be an adequate description of the law of conservation of
electromagnetic energy, but only on a time-averaged basis. If it were
experimentally possible to observe electromagnetic energy flux density in
an instant in spacetime, then the components S,; and so on would
contribute explicitly to the law of conservation of energy. Clearly, if S, is a
Pauli-Lubansky vector in the Poincaré group, then the product is a
Casimir invariant of type two of the Poincaré group, and S, is orthogonal
to 8, in spacetime.

The description of the electromagnetic field polarization in vacuo
through the four Stokes parameters in terms of E, and B, requires a
modification? of the conventional description® based on Pauli matrices:

[1 0][EX
So = [ExEy] * (52a)
0 1(|EY
(1 0 ||EX
Sl = [EXEY] 0 -1 Et (52b)
[0 1]|[EX
S2 = [EXEY] 1 0 E$ (52C)
0 —illEx
so that
sg = S12 + 527' + S32 (53a)

[S),8,] =155 (53b)
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Within a factor %, the Stokes parameters obey the commutation rules of
quantized angular momentum, and form a four vector S, = (S,iS,). (The
Stokes vector S, should not be confused with the Poynting vector, unfortu-
nately also denoted S in the conventional literature.) It follows from Eq.
(53b) that the Pauli matrices also obey the angular momentum commuta-
tion rules. Equations (52) omit the longitudinal and timelike polarizations
of the four vector E,, and for a manifestly covariant description, these
must be included in the basic definition of the four Stokes parameters
(real numbers in the conventional theory®~'%). The generalization of S, to
S; must conform with Egs. (53), and §,, which is proportional to the
electromagnetic energy density in vacuo,®~!> must conform to our earlier
results (16) and (39). It is natural to propose the replacement in Egs. (52)

¥
of the field vectors [Ey, E,] and i; by their manifestly covariant
equivalents (four vectors), and to replace the Pauli matrices by Dirac
matrices (angular momentum operators®*). The latter obey the same
commutation rules and their structure is that of a “doubled” (4 X 4) Pauli
matrix. The following generalization is manifestly covariant and conforms

with Eq. (53):

1 0 0 0 E}
E, —iE®]0 1 0 0 E}
Sy = | EyEy—= y
T EXEY T T (o 0 1 o] Eyn2 (342)
(0 0 0 1] -iE©/2
1T 0 0 o0 E%
E, —iE9ll0 -1 0 0 E}
S, = |EyE,—2 y
0 0 —1|| —iED/,2
[0 1 0 0 E%
o g pE —iE@]|1 0 0 0 E}
2T EY T o 0 0 1| Eue (34¢)
0 0 1 0| —iE©,2
[0 —-i 0 o E}
E, —iE®]li 0 0 0 E}
S, = |EyEy—2 Y
3T T o —il| £, | O
I i 0 || —-iE®/2




(The factor + follows from the definitions, Egs. (31) and Appendix B, Eq.
(B.7).) Explicitly written out, the covariant Stokes parameters for one
sense of circular polarization become

So=ExE} + EL,E} = E®? (55a)
S, =ExE} — EyE} + §(EZ + E©%) = JEO? (55b)

i 1
Sy = ExEf + EyE} = (EzE® + EOB;) = — —iE™  (55¢)

Sy= —i(ExyE%¥ — E,E}) = EO? (55d)
We find that the conventional result §, = S, = 0 in circular
polarization®" is replaced by

S, =iS, = tE@* = JE® . E® (56)

Our covariant theory leaves the value of §, unchanged, as required, and
finally, S, is also unchanged. Significantly, the results (55) can be ex-
pressed entirely in terms of E® (or B®):

Sy = |8,/ = E® - E® (57)

together with Eq. (56). Since E® = ¢B© in free spacetime, Egs. (56) and
(57) can be represented in terms of B®. In particular,

|S,] = c?B® - B® = ¢?BO|BY)| (58)
a result derived previously!~> through the relation

ED x E@
B(3) = W (59)

It is interesting to note that the following eigenvalue (operator type but
classical) equation consistently reconciles the existence of only one photon
helicity for one sense of circular polarization:

0 —i 0 0 Ey Ey
i 0 0 0 E | E

. o= e v (60)
0 0 —il]l Eyn2 E,/2
0 i 0 || -iE©,2 —iE© /2
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The eigenvalues are

A0 = —;EY=_1 /\(2)=1—§-£=—1
X y
_.E(O) —E (61)
A = =1 D=2
E, E©®

For the opposite sense of circular polarization, E, and E, change sign
and the four eigenvalues A becomes + 1. Equation (60) therefore pro-
vides the result

for different senses of circular polarization, and reconciles the existence of
four different field polarizations with only two different field helicities.
(The four polarizations are right and left circular spacelike, longitudinal
spacelike, and timelike. The two helicities are +1 and —1.) In the
conventional theory,® "> Eq. (60) becomes

0 -—i

i 0
i.e., helicities A and A® are missing, and the remaining two ““transverse”
helicities are generated by a Pauli matrix rather than a Dirac matrix.

It is therefore concluded that the structures of the Stokes parameters
are changed in the manifestly covariant description of electrodynamics in
vacuo, and therefore so is the fundamental specification of the polariza-
tion characteristics of light: the Hermitian polarization density, or co-
herency matrix of Born and Wolf'® and the polarization tensor of Landau
and Lifshitz."? Specifically, the Stokes parameters S, and S, no longer
vanish in circular polarization, and this is a direct consequence of the
covariant nature of E,, in that its longitudinal and timelike components
now contribute to a purely real, nonzero, §,, and a purely imaginary S,
with the opposite sign. Conventionally,~'> S, and §, are nonzero only in
elliptical polarization. They can be described in terms of excess of linear
polarization, and conventionally it is considered that there is no excess of
linear polarization when the beam is fully right or left circularly polarized.
However, in the covariant description, there is an additioinal longitudinal

component in the propagation axis of the beam, even in a completely
circularly polarized beam. The longitudinal components E® and B®

Ex
Ey

Ey

=\
EY

(63)
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vanish, however, if the beam has an equal amount of transverse right and
transverse left circularly polarized components. In this state of transverse
linear polarization, the imaginary contribution to S, vanishes, but the real
contribution to S, doubles. This can be interpreted to mean that although
E® changes sign between right and left transverse circular polarization, its
square E®? evidently does not. It is E®? that contributes to S;. This
emphasizes the fact that the Stokes parameters are quadratic in the
electric part of the electromagnetic field.

S, is unchanged in the covariant description, because S, is defined in

this description by

o ED x E®@ o
B = —m— = B%Yk (643)
. £ 1/2
B( ) = —I_C |S3l (64b)
0

V. DISCUSSION

The covariant description of the electromagnetic field in vacuo shows that
there are physically meaningful fields B® and E® that satisfy Maxwell’s
equations. These fields do not appear explicitly in the conventional
theory,®~'> and are assumed to be physically meaningless. It is therefore
necessary to identify experiments that can distinguish between the conven-
tional theory and the manifestly covariant theory of the electromagnetic
field. One immediately obvious consequence of B® is that circularly
polarized electromagnetic radiation can magnetize matter. Before embark-
ing on a development of these properties, however, we show that effects
such as natural optical activity, the electrical Kerr effect, and the develop-
ment of ellipticity in an initially circularly polarized light beam can be
explained in terms of changes in B® as they traverse a sample. The
essential reason for this is that whenever the Stokes parameter §; appears
in physical optics, it signals (vide supra) the existence of B®, to whose
magnitude it is directly proportional:

1/2
€py |S';|
|B®| = (__c) 1S, = 50 (65)
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Therefore, S, can be replaced whenever it occurs by the scalar quantity
+¢2By|B®| = +c2B® - B® (66)

In material media, as opposed to free space, Kielich® has shown that
linear and nonlinear optical activity depends on S5, and in the Rayleigh
theory?® of natural optical activity in chiral media, it is well known that
whatever the nature of the several molecular property tensors participat-
ing in the polarization and magnetization of the material, the observable
of circular dichroism has pseudoscalar symmetry and is proportional to the
third Stokes parameter. For different enantiomers for a given sense of
transverse circular polarization, or for one enantiomer for different sense
of transverse circular polarization,

IR_IL Ss

_— = 4 =
I +1, 8, (67)

where I and I are the intensities of right and left components transmit-
ted by structurally chiral material, with
Iy=1Ig + 1, (68)

for the transmitted total beam intensity. From Eqgs. (67) and (68) we derive
the result (with S, = ¢2B©?),

S, 13 B A
So B" o+, )

which reveals the fundamental origin of the phenomenon of circular
dichroism at all electromagnetic frequencies, because it shows that the
observable (I, — 1, ) is proportional to |[B®?.

The origin of circular dichroism, therefore, resides in the photon’s
;;)(I;)gitudinal magnetostatic flux quantum I§<3’, whose expectation value is

The observable Iy — I, is therefore a spectral consequence of the
interaction of B® with structurally chiral material. From Eq. (69), I — I,
is proportional to the real pseudoscalar + |B®| after they emerge from
the chiral material through which the beam has passed, i.e., after interac-
tion has occurred between the flux quantum B® and the appropriate
molecular property tensors.?® For one photon, the observable I, — I;
provides an experimental measure of the transmitted elementary B® at
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each frequency. Although B® itself is independent of frequency, the
interacting molecular property tensor is not. Semiclassical perturbation
theory?® gives, for linear optical activity,

s, 1Be?| /
_S_ = Wtanh[wﬂOClNgXYZ(g)] (70)
0

where p, is the permeability in vacuo, w the angular frequency of the
beam, ! the sample path length, and ¢%,, a combination® of molecular
property tensors, which may be electric and /or magnetic in nature. For
nonlinear optical activity, Eq. (70), as shown by Kielich,® contains addi-
tional terms.

Therefore, every time natural optical activity is observed with Iy — I,
as in circular dichroism, the quantity B®, has been measured. In this
context, a covariant description of the electromagnetic field is one that
identifies the phenomenon of circular dichroism with the longitudinal field
B®, showing that the latter is physically meaningful and is, indeed, well
measured in the literature although not explicitly recognized as a magnetic
field. In the conventional description on the other hand, natural optical
activity is measured by S;/S,, which is given by

Sy _ ~i(ExEf - EyER) o
So EyE% + E,E}

and E® and B® are conventionally supposed to be physically meaningless.
However, S,/S, is, of course, also expressible in the covariant description
by Eq. (71), showing that the covariant description is both simpler and
more complete than the conventional one. The conventional assertion that
B be physically meaningless conflicts with Eq. (6), and becomes unsus-
tainable, because EV x E® is a physically meaningful quantity directly
proportional to ;. It is more complete, more revealing, and more “natu-
ral” to describe optical activity as changes in B® as a medium is traversed
by a light beam. In other words, the phenomenon of natural optical
activity is definitive experimental evidence for the existence of B in
physical optics.

More generally, it can be shown that any phenomenon in optics that
involves §, must involve B® in its quantized or classical forms, whichever
is the more appropriate to a given situation. Throughout the contemporary
literature?’ that there are many of these optical phenomena, one common-
place example being the development of ellipticity in an initially circularly
polarized light beam. For example, in the electric Kerr effect,”® beam
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ellipticity (n) is expressed in terms of §,, and is induced with an electric
field in a probe laser. The electric Kerr effect is therefore

|B®?|
W = sin(2n) (72)

where 7 is the ellipticity developed in the transmitted probe as a result of
the application of an electric field to a sample. This is experimental
evidence for the existence of the longitudinal field B®. Note that for an
initially linearly polarized beam, B® is zero, and so Eq. (72) shows that
the development of ellipticity in the Kerr effect is a direct consequence of
the interaction of B® with the medium through which the probe laser has
passed.

Rayleigh refringent scattering theory?® shows that the third Stokes
parameter S, is associated with a change dn/dZ in ellipticity in a beam
passing through a sample of thickness Z. Therefore, dn/dZ measures
changes in B® as it traverses the sample thickness Z. We arrive at the
generally valid conclusion that ellipticity in the electromagnetic plane
wave is directly related to B®, and that the development of ellipticity can
be expressed in terms of these fields. The scalar magnitude of B® is |B®|,
respectively, associated with the timelike polarization (0) of the electro-
magnetic field. The timelike polarization always appears as an admixture
with the longitudinal polarization, and both are physically meaningful
because they are observed in fundamental optical phenomena. Equation
(70), for example, shows that circular dichroism is related to the molecular
property tensor sum represented by ¢”, which is made up of the Rosenfeld
tensor and the electric quadrupole tensor. Note carefully, however, that {”
is a material property, while B® is a property of free spacetime, which
interacts with matter. The definition of S, in free spacetime in terms of
B® is obviously unaffected by any material property because B® is
associated with fundamental photon polarizations. In Eq. (70) we have
used the result that |B®?| is directly proportional to the Stokes parameter
S, in free spacetime, and have replaced the Stokes parameter by a term
proportional to |B®?|,

In summary, there is copious experimental evidence for the existence of
B®, which is a physically meaningful magnetic field in free spacetime.
Through Eq. (6), the conventional description is supplanted in physical
optics by the more complete and more rigorous covariant description, i.e.,
by a description that is fully compatible with the theory of special relativ-
ity. Although the conventional description is self-consistent up to a point,
the key equation (6) of this paper shows that it lacks the polarizations (3)



and (0), which are present in the quantum field” but usually wrongly
asserted to be physically meanmgless Note that Eq. (6) is 1nvar1ant to the
fundamental symmetries of physws : charge conjugation ¢, parity inver-
sion P and motion reversal 7' and is therefore a rigorously self-consistent
equation of electrodynamics in free spacetime.

It is also interesting to note?’ that in the field of high-energy particle
physics, experimental evidence exists for timelike photons that can be
produced in electron positron annihilation processes at extremely high
energy. This presumably means that in such processes the concommitant
magnetic and electric field amplitudes B and E© exist independently,
and are therefore physically meaningful.

Having established with available data the existence of B, it is now
possible to reinterpret known optical phenomena and to predict with some
degree of confidence the existence of hitherto unmeasured optical phe-
nomena based on B, The everyday phenomenon of optical absorption is
described by the Beer-Lambert law:

I,
a(v) = loge T (73)

Here I, is the incident beam intensity, I the transmitted beam intensity,
and d the sample length. « is the power absorption coefficient®’ in neper
m™!, and this quantity can be reinterpreted in terms of B®, because the
zeroth Stokes parameter S is proportional to beam intensity. Therefore,
simple optical absorption is a process that can be interpreted in terms of
the longitudinal electric and/or magnetic fields of the electromagnetic
plane wave, an interpretation that is just as valid as the usual one®® in
terms of the transverse components E or E@. In general, since all four
Stokes parameters in covariant electrodynamics can be expressed in terms
of B®, all optical phenomena involving beam polarization or optical
coherence processes in linear physical optics can also be described in
terms of these longitudinal fields.

In nonlinear optics,®! the light beam is used to induce phenomena in
material media (e.g., molecular matter such as liquids), phenomena that
depend nonlinearly on the electric and magnetic components of the
intense laser beam. A large number of such phenomena have been
observed in the past thirty years,®! and the theory of such processes has
been systematically developed by Kielich and coworkers,*® following early
inroads by Piekara and Kielich,®> who were among the first to consider
systematically statistical molecular theories of optically induced phenom-
ena in isotropic dielectric and diamagnetic media. These earlier theories
are, of course, formulated in terms of the transverse spacelike components

of our covariant description, and should be modified to take into account
the existence of B® in free spacetime. These fields are expected to
produce observable magnetization and polarization when they interact
with matter. For laser beams that are intense enough, various optical
saturation phenomena due to B> should occur. A classic work such as the
early paper by Kielich* on frequency and spatially variable electric and
magnetic polarization induced in nonlinear media by electromagnetic
fields should be covariantly developed, so that the Born-Infeld elec-
trodynamics® to which it refers can be extended to include B® within a
manifestly covariant structure. Terms such as E X E* in the work by
Kielich** can be replaced by B®, for example, thus predicting birefrin-
gence effects proportional to the square root of intensity, in addition to
the traditional effects proportional to intensity, such as the inverse Fara-
day effect.®

In another classic paper by Kielich,>’ on nonlinear processes resulting
from multipole interaction between molecules and electromagnetic fields,
it would be interesting to explore the role played by B® in the various
nonlinear optical phenomenon proposed in this work, for example, (1) a
covariant reformulation of the Dirac theory to describe the absorption of a
flux quantum B®; (2) a covariant scattering theory for B®; (3) the role of
B® in the nonlinear optical processes where linear superposition is lost;
(4) investigations of the probability of an n photon process with magnetic
transitions involving an incoming B® flux quantum; (5) scattering theory
involving the classical B®). Again, in the theory of nonlinear light scatter-
ing from colloidal media,*® B® is expected to play a basic part in defining
the depolarization ratio, since, as we have seen, B is proportional to
Ix — I.. In general, in Rayleigh refringent scattering theory, the Stokes
parameters in our covariant description enter in terms of B®, so that the
longitudinal field is fundamental to any description. The role of B® in the
Majorana effect,’® and intensity dependent optical circular birefringence*
is also fundamental. The interesting phenomenon of ellipse self-rotation
by a circularly polarized laser?! is also fundamentally dependent on the
longitudinal field B®.

More recently, the phenomena associated with light squeezing in quan-
tum electrodynamics have become prevalent in the literature*? and in this
context Tana$ and Kielich'® have systematically investigated the effect of
squeezing on a large number of optical phenomena, including the effect on
the four Stokes operators, the quantum equivalent of the four Stokes
parameters.*’ It was deduced that the parameters S, and S, are in general
affected by squeezing, and it would be interesting to develop this result in
a manifestly covariant description, where classically, as we have seen, the
four Stokes parameters are affected in basic structure, and new terms are



added to S, and S,. The field B® also plays a role in light self-squeezing
in Kerr media, discovered by Kielich et al.** and in general in all nonlinear
quantum electrodynamics, fundamentally changing the structure of the
theory.

For example, Frey et al.** have recently observed azimuth rotation due
to an intense laser beam (the optical Faraday effect), and this has been
shown by Farahi and Evans® to be a linear function of the square root of
laser intensity, i.e., to be linearly dependent on the magnitude of B®. This
is the first experimental evidence for the ability of B® to magnetize a
material, in this case a magnetic semiconductor.*” Magnetization by a
circularly polarized light beam has been observed as the inverse Faraday
effect,® and recently, as laser-induced shifts in NMR spectra.*® Light
shifts in atomic spectra have also been observed experimentally*’ and can
be reinterpreted in terms of B®. In general, a large number of phenomena
can be reinterpreted in terms of longitudinal®® fields in vacuo phenomena
that are at present attributed solely to the transverse fields E® and E®. In
theory, optical effects due to B® can be identified and separated from the
concommitant effects due to E® and E®, or B and B, because the
former are expected to be proportional to the square root of laser intensity
(and integral powers thereof), and the latter to even powers only of laser
intensity.

APPENDIX A: CARTESIAN AND CIRCULAR
REPRESENTATIONS

The subscripts in the matrix in Eq. (22) are conventionally®~" given in the
Cartesian basis, (X, Y, Z), while circular polarization is described in the
circular basis ((1), (2), (3)). Any physical phenomenon should be indepen-
dent of the basis (i.e., laboratory frame of reference) used in its descrip-
tion, and in this paper the link between the two representations is given in
terms of the following unit vector equations. Superscripts (1), (2), and (3)
refer respectively to the first and second sense of transverse circular
polarization, and the longitudinal polarization:

1 ve
éb = ﬁ(l — ij) (A1)
é®=7%@+u) (A2)

éd =k (A3)

where i, j, and k are Cartesian unit vectors in X, Y, and Z, respectively.
Thus,

6 x 6@ = j8® = ik (A4)

The circular basis is used in Eq. (34) to define E, and B, in terms of
polarizations (0), (1), (2), and (3), which are respectively timelike, trans-
verse circular spacelike (1) and (2), and longitudinal spacelike. In Eq. (33),
F,, is accordingly defined in the circular basis. In Appendix B, however,
the explicit demonstration of Egs. (31) is carried out in the Cartesian
basis. Equations (31) are, of course, valid in any frame of reference fixed
in the laboratory. The longitudinal spacelike and timelike components are
the same in the Cartesian and circular basis, while the transverse compo-
nents can be interrelated with Egs. (A.1) and (A.2). Equation (22) has
been obtained from a Cartesian representation of A4, the four potential,
using a four curl, Eq. (23), in the Cartesian frame for the spacelike
components.

APPENDIX B: EXPLICIT DEMONSTRATION OF
EQUATIONS (31)

In this Appendix we provide an explicit demonstration of the self-con-
sistency of Egs. (31), both for the B, and E, vectors, because these

equations form the basis of our manifestly covariant theory of vacuum
electrodynamics. From Eqgs. (31a) and the definition of §, in Eq. (30),

1
By = - 5(51230F2350 + &30 F 3,80 + £1203F2085 + £03F,085) (B.1)
0

i
cB, = - Z(52310F3150 + £3130F 1380 + £2013F 0103 + £2103F1083)  (B.2)
0

1
By = — 2—(532|0F2150 + £3120F120) (B.3)
)
) i
— 1By = — X(50123F1253 + £0213F2103) (B.4)
0



th
8,=06,=0 6;=1 8y = —1
Eor3 = 1 ggo13 = — 1 310 = — 1 €3210 =
£330 = 1 £x310 = — 1 €013 = 1 C€2103 T
£330 = —1 €139 = 1 1203 = 1 €3 T T

Fy = cegBy = —F3,
Fy = cegBy = —Fi3
Fy = —cggBy; = —Fy,

Fo = iggEy = -F

yr one sense of circular polarization, we have

By, =Ey ¢By=—FEy
that in Egs. (B.1) and (B.2),

¢B, =By — Ey = 2cBy
¢B, = cBy + Ey = 2cBy

Fy = —iggEy = —Fp,

-1

B (B
7 (B.5)
(B.6)
(B.7)

id so the left sides become magnetic components in vacuo with the

cuum relation E, = cB,.
Similarly, the dual of F,, is the four tensor®~13,

0 iE, —iE, —cBy
~ _iEZ 0 iEX _CBY
FI-‘- = _80 . . _

v iE, —iEy 0 cB,
cBy cBy cB, 0

id in Eq. (31b),

(B.8)

E, = %(5123()}’:2350 + £1320F 380 + €1203F 2003 + 51023F0253) (B.9)

E,= %(523101‘:3150 + £2130F 1380 + £a013F 0183 + 52103F1053) (B.10)

Ey=+ %(53210172150 + 53120F1250)

—iEy= — %(50123171253 + 50213F2153)

(B.11)
(B.12)

With the relations (B.5) and (B.6) it can be shown that the components in
Egs. (B.9) and (B.10) are the electric components 2 F, and 2 E,, with

Fi, = —F, = iggE, Fi3= —F; = —igEy
Fig= —Fy = —cgyBy Fpy= —Fy, = iggEy

Similarly, it may be checked explicitly that

B,5, =B, 18, + |B,| 18, + |Bs| 1851 — Byl |8,
0O + 0 + B, - B,
= 0

'

APPENDIX C: THE ELECTRODYNAMICAL ENERGY
DENSITY AND TIME-AVERAGED ENERGY DENSITY, OR
INTENSITY, I,

Equation (38) produces the free spacetime result
E,E, =0 (C.1)

This is interpreted to mean that the scalar product of the two four vectors
E, and E, is zero in the lightlike condition. In the conventional theory®~"
the equivalent of Eq. (C.1) is

E-E=0 (C2)

Equations (C.1) and (C.2) do not mean, however, that the time-averaged
electromagnetic energy density I, is zero in vacuo. The quantity I,
(W m™2) is defined covariantly by

I, = e,cE™?
| (C.3)
= 580CE,LE:
where E is the complex conjugate of E, in vacuo. Explicitly,
E = (E(l), E(Z), E(3), —iE(O))
’ (C.4)

E: = (E(])*, E(Z)*, E(3), _iE(O))
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and
E(O)Z
EEf = ——(G-i) - G+id) + G +i) G-i) (s
=2E®

This result shows that E, E: is covariantly described because it is a
constant in free spacetime. Equation (C.3) is known as the time-averaged
energy density®~!° or beam intensity. This is invariant to Lorentz transfor-
mation and is a scalar quantity. Note that although E is defined in Eq.
(C.4) as the complex conjugate of E,, the sign of the timelike component
~iE® does not change, because the operation E, — E¥ takes place in a
fixed frame of reference (X,Y, Z, —ict) in pseudo-Euclidean spacetime.
Finally, E® is defined as having no imaginary part, and is invariant under
E, — E*. Thus, E® and —iE® do not contribute to I,.

APPENDIX D: SIMPLE LORENTZ TRANSFORMATION
OF E, AND B,

The simple Lorentz transformation of the four vector E, is given covari-
antly by

EO E9%; E® = E®¢ E® = E@' ED = O (D.1)
and, similarly, the transformation of B, is
B® = B(")g B® = B‘3)§ B® = B’ B = p' (D.2)

The transform is from the covariantly defined frame (X,Y, Z, —ict) to
(X', Y',Z', —ict'); which translates along Z at speed v relative to the
former. In Egs. (D.1) and (D.2),

1-v/c
) o7

This is referred to as a simple Lorentz transformation because there is no
rotation and no translation generator considered. In other words, the
origin of frame (X, Y, Z, —ict) does not translate, and no rotations are
considered in spacetime. For the electromagnetic plane wave in vacuo,
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v = ¢, and Egs. (D.1) and (D.2) give

) — O 0 — pO
E E B B

(D.4)
E® = F®’ B® = p®’
which confirm that the equations
IE®| = EO IB®| = p©® (D.5)

are invariant to the simple Lorentz transformation. The results (D.1) to
(D.4) confirm that the E, and B, fields are the same for all v, because
v =c in vacuo, and c¢ is the universal constant of special relativity.
Therefore, all four components of both E, and B, are formally invariant
to the simple Lorentz transformation.

It is important to note that this result is fully consistent with, but
contains additional information compared with, the standard approach,'?
which applies the simple Lorentz transformation to the four potential
vector 4, and to the second rank tensor F,,. In S.I. units the standard
approach gives the well-known result

E, —vB
Ey = = Yn/z
(1-v?/c?)
E, +uvB
o ¢! —sz/cz))(l/2 o
E,=E,

and using the free space relations
we obtain
Ey=¢Ey Ey =¢E, E; = E; (D.8)

For v = 0, these equations show that the three spacelike components of
E, (and of B“) are separately invariant to Lorentz transformation, but say
nothing about the timelike component E© or its relation to E®. For this,
a more complete theory, as in this paper, is needed. Since the simple
Lor.entz transformation does not involve the generator of translations, it is
an incomplete description of the properties of the electromagnetic field.
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The photon is never at rest, but being massless, always moves at the
velocity of light ¢, implying that the origin of frame (X,Y, Z, —ict) also
moves at c¢. The generator of spacetime translations is automatically
required, therefore, for a description of the photon, since the latter always
translates at ¢ in any frame of reference. Since ¢ is a universal constant,
the assumption that there is a frame (X’,Y’, Z’, —ict') which moves at v
relative to (X,Y, Z, —ict) conflicts with Einstein’s second principle. In
other words it is not possible for the photon to define a frame moving at a
speed v relative to one that is moving at speed
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MANIFESTLY COVARIANT THEORY
OF THE ELECTROMAGNETIC FIELD
IN FREE SPACETIME, PART 2:
THE LORENTZ FORCE EQUATION

I. INTRODUCTION

In Part 1 of this series a manifestly covariant v& .cory was developed for the
electromagnetic field in free spacetime, in wh.ich! the electric and mag-
netic fields are treated as four vectors E, and B,, all of whose compo-
nents are physically meaningful. This is a departure from the eon\fentlonal
approach suggested by the recent discovery?~> that the longitudinal ((3))
and transverse ((1) and (2)) components of the electromagnetic field are

linked by?

E(l) X E(2)

= 1
B ick, M

Here B? is the longitudinal magnetic field of the electromagnetic plane
wave, and E and E® define the transverse electric fields through

ED = E eV el (2a)
E® = £, e (20)
where E, (proportional to the timelike polarization E® is the sealar
amplitude of the plane wave, and ¢ is the speed of light in free spacetime,

. .. . a A2
the universal constant of special relativity. The unit vectors 8 and @ are
defined in the circular basis' by

i—ij
e® = (3a)
¢ N3
i+1j
6@ = (3b)
¢ N
80 x &® = g™ (3c)

where i and j are unit vectors in X and Y, mutually orthogonal to th.e
propagation axis Z of the electromagnetic plane wave. The phase ¢ is
defined as usual®~® by

=0t —k-r (4)

where k is the wave vector at position r, and w is the angular frequency at
instant ¢ in free spacetime.

Equation (1) is the key to the theory of covariant electrodynamics,
essentially because the novel longitudinal field B® is independent of the
phase of the plane wave, and thus satisfies the conventionally defined
Gauss theorem in differential form. Equation (1) is invariant to the
fundamental symmetrles charge conjugation C parity mversron ﬁ and
motion reversal T i.e., the right and left sides have the same C P and T
symmetries.! > Furthermore the numerator on its right side is propor-
tional'®~'8 to the antisymmetric part of the light intensity tensor I,;. The
latter is known to be proportional to the third Stokes parameter S 3 and to
mediate experimentally observable phenomena, such as antisymmetric
light scattering'®~'® and the inverse Faraday effect,'® and can therefore be
considered a nonzero property of a circularly polarized electromagnetic
wave in free space. Inter alia, B® from Eq. (1) is similarly nonzero in free
space, because the denominator on the right side of Eq. (1) is nonzero for
finite E©. It is more logical to state that the right side of Eq. (1) is
nonzero because B is nonzero rather than the other way around,
because B® is a fundamental solution of Maxwell’s equations in free
spacetime. The quantity E®V X E® is, on the other hand, built up from a
cross product of fundamental transverse electric fields. It is clear, however,
that if the antisymmetric part of the light intensity is nonzero, then B is
nonzero. In other words, B® is the source of the antisymmetric part of
light intensity and all concommitant experimental phenomena. It is worth
noting in the context of ¢ symmetry!? that

C(4,) = -A, (5)

where A, is the well-known potential four vector in free spacetime. The C
symmetrres of 4, , E,, and B, are all negatlve so that the concomitant
fields of the photon change 51gn under C. Although the photon is stated"’
to be its own antiparticle, the antiphoton, generated by C from the
photon, is associated with electric and magnetic fields of the opposite sign.
For this reason, the antiphoton is a distinct entity from the photon.
Furthermore all four components of 4 w E,, and B, must change sign
under C; i.e., all four polarizations (0), (1), (2), and (3) change sign. On the
other hand, spacelike quantltles such as the propagation vector «, by
definition are unaffected by C so that the C operator produces an
electromagnetic wave propagating in the same direction, but with all four
polarizations reversed. The electromagnetic wave produced in vacuo by ¢
defines the antiphoton in the quantum field, a distinct entity from the



photon. The fact that the concommitant fields are reversed in sign does
not mean that B® of Eg. (1) violates C symmetry. In the same way, Eq. 5
does not mean that A, violates ¢ symmetry in vacuo. We conclude that
Eq. (1) satisfies C, P, and T invariance in vacuo, and is a legitimate
equation of electrodynamics.

In Part 1 of this series the vectors E, and B, were defined in terms of
the electromagnetic field four tensor®™" F,,, and its dual, F,,. It was
shown! that both E, and B, are Pauli-Lubanski types within the Poincaré
group (the inhomogeneous Lorentz group), and that the products EE,
and B, B, form Casimir invariants of the Poincaré group. The Maxwell
equations, Poynting theorem, and Stokes parameters were derived in
manifestly covariant form, and it was shown that phenomena such as
natural optical activity, ellipticity, and the electric Kerr effect can be
expressed in terms of changes in B, (or its electric counterpart E #). It was
shown that optical absorption can be defined in terms of B, and E,, and
suggestions were made for experiments to detect the magnetizing effect of
B, and the polarizing effect of £, as an electromagnetic wave interacts
with matter. In this paper (part 2), the Lorentz force equation is investi-
gated in manifestly covariant form; i.e., a manifestly covariant theory is
given of the interaction of an electromagnetic wave with the electron.

In Section II, the Lorentz force equation is derived from the covariant
definitions of E, and B,, and expressed in terms of its magnetic and
electric components. Section III examines the individual terms in the
equation and shows that in manifestly covariant form, the Lorentz equa-
tion contains extra terms that, in principle, produce experimentally observ-
able effects on the electron. There follows a discussion that suggests
possible experiments for the detection of the extra manifestly covariant

forces on the electron.

[I. DERIVATION OF THE MANIFESTLY COVARIANT
LORENTZ FORCE EQUATION

Our aim is to derive the equation describing the interaction of E, and B,
with an electron, this being a manifestly covariant description of the
interaction of an electromagnetic wave with particulate matter. In Part 1,
the four vectors E, and B, were defined as'

E, = 3¢ F, 6 (6a)

I3 urpo T Vp o

B = ——¢€,,,,F,0 (6b)

where va is the four curl of A, in free spacetime, and va is its dual.
Th.e unit tensors ewpa.and §U are respectively the totally antisymmetric
unit ter.'nsorllrzl0 four dimensions and the unit generator of spacetime
translations.” = These quantities are written out for reference as follows:

E# = (E(l)’ E(Z), E(3), —iE(O)) (7a)
B“ = (B(l)’ B(2)’ B(3), _iB(O)) (7b)
8, = (0,0,1, —i) (7¢)
[0 ¢B®  —cB® —iE®
—¢B® 0 B —{E®
F o= c 1E
e cB®  —cBO 0 —iE® 7d)
| iEY HE® E® 0
[ o —iE® {E® D
F o= iE® 0 —iED  B®
# —iE® {E® 0 cB® e
| —cB" —cB® —cB® 0

The need to define £, and B, as four vectors in spacetime is a direct
consequence of Eq. (1), because the latter implies that there is a relation
between the transverse and longitudinal spacelike components of the
electromagnetic wave in vacuo. The conventional assertion that longitudi-
nal components be “unphysical”’®"> is no longer tenable in view of Eq.
(1), because if EV and E® be physically meaningful, then so must B®. It
has been demonstrated' > that the existence of B® implies the existence
of E®, and quantum field theory?® leads to

Bl - B® =0 |E®|-E® =9

\ B®.B® =pg02  E®.E® = pO2 )
i.e., that physical states are admixtures of polarizations (3) and (0).
Therefpre, all four polarizations are physically meaningful. This is consis-
tent with the fact that 4 .. has four components.

The Lorentz force equation can be expressed covariantly by

fu=FEuJ, %)

;Vhere f,isa fprce four vector® and J,, 1s the charge current four vector.
n the conventional theory this is taken to be an adequate description of
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the interaction of the electric and magnetic components of the electro-
magnetic field with an electron. The conventional approach, however,
assumes that the longitudinal and timelike components of these fields are
unphysical, which means essentially that the longitudinal component is set
to zero. In view of Eqs. (8) this is an illogical procedure, because if £ or
B® be zero, then so must £@ and B, but the latter are also propor-
tional to the amplitudes of transverse components such as E and E®,
and in defining these, E© is obviously not zero. The conventional ap-
proach is therefore logically inconsistent. In the manifestly covariant
theory,! on the other hand, this inconsistency is remedied. The inconsis-
tency of the conventional approach is “hidden” by the mathematical
nature of the four curl, which defines F,, as

v i
= — 1
m ax dx (10)

since this four curl leaves the timelike components of E, and B, unde-
fined, i.e., the matrix F,, contains only the spacelike components on its off
diagonals. The conventional antisymmetric tensor F,, contains no refer-
ence to the timelike polarizations E©® and B©. It follows, therefore, that
the Lorentz force equation in covariant form (9) cannot be manifestly
covariant, because F,, is used to define the Lorentz force vector f,.
Manifest covariance means that the physically meaningful polarizations (0)
and (3) must be taken into consideration when calculating the force on the
electron.

This is achieved by solving Egs. (6a), (6b), and (9) simultaneously as
follows. We note firstly the definitions of J, and f,:

v v®@ v® )
J# pP——H PP 1P (113)
c c c

(fO, f®, fO, fO) (11b)

Il

H

fu

where p is the charge density, and v, v®, and v® are the spacelike
velocity components of the electron. The inverse of J, is defined so that

JJ =1 (12)

w'p

Multiplying both sides of Eq. (9) from the right by J;° 1 we obtain

F,=fJ" (13)
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so that in Eq. (6b)

i
cB, = - Ee#VprVJPAISU (14)

Multiplying both sides from the right by 5, ! yields
B,6;' = —=¢,, f.1! (15)

and multiplying both sides of this equation from the right by J, gives

i
CB/J.JpS(r f=— Efuvpafv (16)
Here we have used the fact that

1,6, =57", (17)

pro

Finally,. multiplying both sides of Eq. (16) from the right by &_ gives the
magnetic part of the Lorentz force equation in manifestly covariant form:

i
cB,J, = — Eewpofﬁo (18)

Similarly, the electric part of the Lorentz force equation is
E/.LJp = %Euvpagv(ﬁo (19)

wher\é g, is defined through the dual Iiy of the electromagnetic field
tensor F,,:

gu F:LVJV (20)
IIl. COMPONENTS OF THE MANIFESTLY COVARIANT
LORENTZ EQUATION

%ﬂ tl}is 'se.ction the structure of the tensor Egs. (18) and (19) is investigated
1(3; individual terms, and the result is compared with the conventional
rentz force equation for an electromagnetic plane wave interacting with
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TABLE 1
Summary: Generalized Lorentz Equation
Force Components
fo EyJi, EyJyi
New E3J5i
fi —2¢B,J5
2¢B,p = 2Ep
New 2¢B, = 2¢BY,
fa 2¢ByJ;
—2c¢Bp =2Eyp
New —2¢BOY, = —=2¢BYJ,
fa c(ByJ; — ByJ,)
New —E;p

an electron. Note that in the conventional approach, only the two trans-
verse components (1) and (2) exist, the components (0) and (3) are
discarded as unphysical. In our manifestly covariant approach, compo-
nents (0), (1), (2), and (3) are physically meaningful. Explicit calculations
are given, and the individual results from Eq. (18) are presented in

Table I.
A. Components f, and f,

The Lorentz force on the electron due to By is given as follows:

i

cByJ; = — 550123f153
(21)
cByJ, = — 550213f253
and with the definitions B, = —iB® and &; = 1 we obtain the 1 and 2

components of f,

- Oy — B©®
fi = 2¢B™J, = 2pv, 2)
f, = —2cBOJ, = —2pvB?
Similarly, it may be shown that
- 3
f, = 2¢B™, (23)

fo = —2¢B®,
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so that

Il

2¢B"J, = 2¢B¥J,
—2¢B0J, = —2¢BYJ,

fi
f

which is consistent with Eq. (8), i.e., with the quantum theoretical result
that physical photon states are admixtures of (0) and (3) polarizations such
that Eq. (8) holds.

Clearly, the forces in Eq. (24) are absent from the conventional Lorentz
equation. It is seen by inspection of Eqgs. (22) and (23) that they have
precisely the same form as the equations of motion® of a charge in a static
magnetic field B, whose magnitude is equal to B®. This is consistent
with the phase-independent definition of B, Eq. (1), although B® is
generated by a photon traveling at the speed of light and cannot be
regarded as a conventional magnetostatic field. It is a longitudinal mag-
netic field which travels with the photon at the speed of light. In principle,
an experiment can be devised for measuring these extra forces on the
electron in the manifestly covariant theory. This possibility is discussed
further below.

Additional contributions to f, and f, arise from the timelike compo-
nent of the charge current four vector J,, but unlike the contributions
from Eq. (24), these are also present in the conventional theory. They
arise as follows:

(24)

i

B Jy = — Eglzosfz (25)
fa= —2cBp
and u‘\" .g the relation in circular polarization,
¢B, = —FE, (26)
we obtain
fr=2Ep (27)
Similarly,
fi = 2cByp (28)
and using
B, = E, (29)



we obtain

fi=2Ep (30)

B. The f, and f, Forces
The timelike f, components from Eq. (18) are obtained by

fo
fo

and correspond to the well-known® E - J force from the conventional
Lorentz force equation in covariant from. Therefore, the manifestly co-
variant Eq. (18) provides no new terms in E - J.

The f, component is obtained from

—2¢B,J,i = E,Jyi
2¢B,Ji = E\J,i

(31)

2
fotifs= 7031]2 (32)
together with
) 2
fotifs= - 7032]1 (33)

Solving Egs. (32) and (33) simultaneously gives

fo=0 (34)
f3=c(BJ, — BJ;)

i.e., there is no contribution to f, from the B, and B; components

interacting with J, and J, respectively, and the overall f; component is

the same as that in the conventional Lorentz force equation. Finally, there

are manifestly covariant forces:

fo=Fpls= 1E57;

(35)
fy=FyJo= —Esp

direct from Eq. (9), the equation from which (18) is derived using (6a) and

(6b).

These results are summarized in Table I, which shows that there.are
additions to the conventional f,, f,, f,, and f; in the mamfgstly covariant
description. From Table I, Eq. (18) reduces to the conventional Lorentz

equation if B® = 0. However, this assumption of the conventional ap-
proach is illogical, because it conflicts with Eq. (1).

IV. DISCUSSION

The question arises immediately as to whether the extra terms in Table I
marked “new” are observable experimentally. This type of observation
might be able to distinguish between the conventional theory and the
manifestly covariant approach based on Eq. (1). It is probably difficult to
isolate a single electron in a vacuum in order to test the theory directly,
but the use of electron beams may be feasible. The resultant force on a
single electron due to an electromagnetic plane wave is given in the
manifestly covariant approach by a combination of Egs. (9) (the conven-
tional equation) and (18), taking into account thereby the existence of Eqgs.
(1) and (8). In the conventional approach, the force is described by the
spacelike components of Eq. (9) alone, and Egs. (1), (8), and (18) are not
considered.

The conventional calculation of the trajectory of an electron in a
monochromatic, circularly polarized plane wave is a standard problem
(e.g., Landau and Lifshitz,' p. 118), in which there are no linear forces
such as — E5p of the manifestly covariant theory. Presumably, such a force
would cause the linear deflection of an electron beam when the latter is
acted upon by a circularly polarized electromagnetic beam, such as an
X-ray beam. However, this assumption does not consider statistical effects
in either the electromagnetic or electron beam. Extra Lorentz precession
terms due to f, and f, are expected in the manifestly covariant theory. If
extra forces can be observed unequivocally, this would add to the consider-
able experimental evidence for the manifestly covariant theory reviewed in
Part 1 of this series, evidence from sources suci as absorption of circularly
polarizex light, circular dichroism, ellipticity, and the electric Kerr effect.
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MANIFESTLY COVARIANT THEORY OF THE
ELECTROMAGNETIC FIELD IN FREE
SPACETIME, PART 3: C, P, AND T SYMMETRIES

I. INTRODUCTION

It has recently been observed!~3 that there exists an equation of electrody-
namics in vacuo that defines a longitudinal magnetic field, B, which is
independent of the phase of the electromagnetic plane wave, thus showing
for the first time that there exist physically meaningful longitudinal solu-
tions to Maxwell’s equations in vacuo. Parts 1 and 2 of this series! 2
developed the theory of manifestly covariant electrodynamics from this
basic observation, and recent work by Farahi and Evans® has shown that
the existence of B® implies the existence of its longitudinal electric
counterpart iE®. In Part 1' it was shown that iE® and B® do not
contribute to the electromagnetic energy density, and that Poynting’s
theorem can be expressed in terms of four, rather than two, polarizations.
The existence of four photon polarizations, (0), (1), (2), and (3), was
reconciled with two photon helicities, +1 and —1, by noting' that the
helicities can be defined in terms either of (0) and (3) or of (1) and (2).
Here (0) denotes the timelike photon polarization, (1) and (2) the trans-
verse spacelike, and (3) the longitudinal spacelike. In Part (2), the Lorentz
force equation was expressed in manifestly covariant form.
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In this paper (Part 3), the fundamental symmetries of physics are
applied to the basic equation

, ED x E@
B( Y —
iEyc (1)

of manifestly covariant electrodynamics (MCE). Here B® is linked' > tc
the transverse, oscillating, electric fields E and E‘® of the plane wave in
vz:g)uo, where ¢ is the speed of light. Here EV is the complex conjugate of
E*:

EO = E g0 el (2a)
E@ = Eé@e ' (2b)

where
¢ =wt—kKk-T 3

is the phase of the plane wave, with, as usual, w as the angular frequency
at instant ¢, k the wave vector at position r. The circular basis® 7 is used to
define the unit vectors & and é@:

1

é(l) = —‘/—‘5'(1 - l]) (43)
1

67 = (i + ij) (4b)

where i and j are unit vectors in axes X and Y of the Cartesian frame
(X,Y,Z ‘)\

In Sectiun 11, it is shown that Eq. (1) is invariant under the following
conditions:

1. The charge conjugation operator ¢ , which changes the sign of
charge in classical electrodynamics, and in particle physics produces
the antiparticle from the original particle

2. The parity inversion operator P

3. The motion reversal operator T

In ther words, ths: left and right sides of Eq. (1) remain balanced after
application of C, P, and T to each variable on both sides. Equation (1) is
therefpre a legitimate equation of electrodynamics, and B has the é, ﬁ,
and T symmetries, and units, of magnetic flux density. B® is also a
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solution of Maxwell’s equations! > in vacuo, and is therefore a real,
physically meaningful, longitudinal magnetic field with polarization (3). It
has been shown in Parts 1 and 2 of this series that as a direct consequence,
electrodynamics (both classical and guantum) must be made manifestly
covariant in nature. . .

In Section II, the fundamental symmetries C, f;, and 7T are applied to
electromagnetic radiation in vacuo, represented by the helicity A and the
potential four vector 4,. These are the two fundamental elements 9f the
electromagnetic plane wave in vacuo. The helicity A is negative to P, and
is a number, +1 or —1. In contemporary quantum field theory® A is
defined for the massless electromagnetic gauge field as the ratio of the
Pauli-Lubansky pseudovector W, to the generator of spacetime transla-
tions P,. It is related in the lightlike condition to the second (spin) Casimir
invariant of the inhomogeneous Lorentz group (or Poincaré group). The
first (mass) Casimir invariant is zero for the electromagnetic field, and so A
is the only nonzero quantity that is invariant to the most general type of
Lorentz transformation in the theory of special relativity. The Lorentz
invariant spacetime character of the electromagnetic wave is described
therefore in terms of A. In the quantum field the photon is described by
two helicities, +1 and — 1. On the other hand, the concommitant electro-
dynamic properties of the electromagnetic field in vacuo are described by
d’Alembert’s equation:

0Ad,=0 (5)

where O is the d’Alembertian and 4, the potential four vector. The
electric and magnetic parts of the electromagnetic field can be described
in terms of A, (Refs. 9-14). It is therefore necessary and sufficient to
describe electromagnetism in vacuo in terms of the fundamental spacetime
quantity A, and the fqndgmental Aelectrodynamic quantity A4,,. Section II1
therefore considers C, P, and 7 symmetry applied to A andA A, and
defines the response of the electromagnetic field to C, P, and T in terms
of A and 4,. Specifically, it is shown that nonzero lqngitudinal solutions
of Maxwell’s equations are consistent with C, P, and T in vacuo. Ijinglly, a
dAetailed discussion is given of the correct way in which to apply C, P, and
T to manifestly covariant electrodynamics, addressing some misconcep-
tions in the recent literature."

II. THE C, P, AND T SYMMETRIES OF THE
FUNDAMENTAL EQUATION (1) OF MCE

We first note that the numerator on the right side of Eq. (1) is the
antisymmetric part of the light intensity tensor'°~2! of the standard
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literature. It is a nonzero quantity in vacuo whose absolute magnitude i
tbe same as the absolute magnitude of the Stokes parameter S i
circularly polarl‘zed light.® The denominator in Eq. (1) is the produét gf
the scalar amplitude, E,, of the electric component of the radiation with
the speeq of light ¢, and is also nonzero. The quantity B® is therefolr
nonzero m(3 general, provided that there is some element of circulat;
pc()ll)arlty.(z? ) changes sign with the sense of circular polarity, as does
E X E® (Refs. 1-5). Since B® is a magnetic field, and is ,ph sicall
meamngful, conventional electrodynamics becomes unt’enable bec);use )tl
is no lor}ger .suﬂicient to consider just two polarizations ((1) and7 (2)) and tl
arbltr'arlly discard'’~'* polarization (3) as being “physically meanin lnessS
It is funda}mentally imporEanE, therefore, to show that Eq. (1) congservc;,s
the symmetries of physics, C, P, and f, and is therefore legitimate in all
respects as an equation of electrodynamics in vacuo, because Eq. (1) must

mean that conventional electrod ics i i
‘ ' ynamics is an incomplete descripti
in the classical and quantum fields. g’ iprion, both

A C Symmetry

The charge conjugation operator C is defined as®

é(Au) = —Au (6)

lz;:d in Earticlg phy;ics, the photon, represented by A,, is negative to ¢
Ing changed to the antiphoton. By definition, all Aceti ities
are unaffected by C. Therefore, ’ spacetime quantities

. C(A) = A (7)

From this, it follows that C changes the sign of the scalar amplitudes E,

and B, of the plane wave in vacuo, and therefore changes the sign of the

C(B(3)) = —B® C(E(') X E®) = EO x E®

C(E,) = -E, C(ic) = ic ®

so that it is clear that E ; :
: q. (1) conserves C symmetry. (Th
both sides of Eq. (1) is negative.) - (The € symmetry of
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B. P Symmetry

The P operator,? parity inversion, is defined as P(r) = —r; P(v) = ~v;
where r and v = r are position and velocity, respectively. It has been
shown?® that

P(ED x E®) = E® x E® (9)

The P symmetry of magnetic flux density is positive,® and since ¢ and E©
are scalars, Eq. (1) conserves P symmetry (both sides are positive).

c. T Symmetry

The 7 operator,2® motion reversal, is defined as T(r) = ; T(v = ) = —v;
and reverses all motions in the same frame of reference. It has been

shown?® that
T(E® x E?) = —E x E® (10)

The T symmetry of magnetic flux density is negative,” and since ¢ and
E®© are scalars, they are positive to 7. Therefore, Eq. (1) conserves 7'
symmetry (both sides are negative).

Therefore, Eq. (1) conserves C P and T the fundamental symmetries
of physws, and is a legitimate equation of electrodynamics in vacuo. B®
has the C P T symmetries, and units, of magnetic flux density in vacuo,
and is a solution of Maxwell’s equations in vacuo. It is therefore physically

meaningful, longitudinal, and phase independent.

III. THE FUNDAMENTAL SYMMETRIES OF THE
ELECTROMAGNETIC PLANE WAVE

Since B® (and its electric counterpart E®) are physically meaningful
solutions of Maxwell’s equations, they must be invariant to C, P,and T, in
the same way that the well-accepted, oscillating, transverse solutions (1)
and (2) are invariant to C P and T. The invariance of Eq. (1) is already
sufficient proof that B® satisfies these basic symmetry constraints in
vacuo. However, a set of self-consistent rules is necessary by which the
symmetries of electromagnetic radiation can be identified in terms of its
most fundamental variables. We take these to be the helicity A and the
potential four vector 4, for reasons given already.
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The symmetry properties of the electromagnetic wave in vacuo can now
be defined as follows:

(A A S [2-4,]
p
[A, 4, 6] —; -A4,¢] (11)
[A, A4, ¢>] — [A, -4, ¢]
= (4,i¢)

Therefore, the C operator leaves the spacetime quantlty A unchanged by
definition, while changing the sign of A, by definition. C thus produces a
distinct entity which we identify class1cally as the antiwave and quantum
mechanically as the antiphoton, since, by definition, C produces the
antiparticle from the original particle. The antiwave is defined as the
classical electromagnetic entity with the same A as the original wave but
with reversed A .. and therefore with concommitant electric and magnetic
fields of the opposite sign. The spacetime parameter A of the antiwave is
the same as that of the original wave, while the electrodynamic parameter
A, of the antiwave is opposite in sign. This emphasizes that the antiwave
is a dlstmct entity from the wave.

The P operator reverses the sign of A by definition. The P symmetry of
the spacelike part of A, (the vector potential) i is negative, and that of the
timelike part (the scalar potential) is positive. P again produces a distinct
entity, classically the wave with opposite hellclty, and quantum mechani-
cally the phot, ' . with opposite helicity. The T operator does not change
the sign of A, 3\ 4 the T symmetry of the spacelike part of A4, is negative,
while that of the timelike part is positive. T again produces a distinct
entity from the original wave or photon.

Therefore, d1st1nct entities are produced by the application of all three
symmetries, C, P and T, to the two fundamental properties, A and 4, of
the classical electromagnetic wave or quantized photon. We denote A :lnd
A, as symmetry elements of electromagnetic radiation in vacuo. Note that
ln the above, we have implicitly assumed that the scalar potential is
nonzero, and have thus worked in a gauge such as the Lorentz gauge that
allows this. In the Coulomb gauge it is assumed that the scalar potential is
zero, but this loses manifest covariance unless a zero scalar potential be
regarded as physically meaningful. The C P and T symmetries of a zero
scalar potential are, however, the same as a nonzero scalar potential,
respectlvely, negative, positive, and positive. In the Coulomb gauge, there-

L fore, the C P and T symmetries are no different from a manifestly
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covariant gauge such as the Lorentz gauge. Conventionally, gauge invari-
ance means that electric and magnetic fields obtained are invariant to
gauge transformation. In MCE, however, it is necessary to regard the
scalar potential as physically meaningful, because Eq. (1) implies the
existence of four physically meaningful polarizations. Equation (1) auto-
matically satisfies the principle of gauge invariance, because the longitudi-
nal magnetic field B® is formed from the vector product of two transverse
electric fields E and E@ which are separately gauge invariant.

IV. DISCUSSION

In Sections II and IIl it has been demonstrated that Eq. (1), the key
equation of manifestly covariant electrodynamics, is invariant to the funda-
mental symmetries of physics, and defines a quantity B®, which is a
physically meaningful, gauge invariant, magnetic field. Equation (1) defines
B®, a solution in vacuo of Maxwell’s equations, in terms of other compo-
nents of the electromagnetic plane wave in vacuo, thus showing that if the
transverse components are physically meaningful, then so must be the
longitudinal, making the conventional view of electrodynamics untenable,
both in the classical and quantum ﬁelds. )

The fundamental symmetries C, }5, and T have been applied to the
symmetry elepeqts A ang A, of the electromagnetic field, and it has been
shown that C, P, and T all produce distinct entities, or “distinct situa-
tions” by operating on the original entity or situation. The symmetry
elements have been defined as A and A, because these parameters are
necessary and sufficient to define the spacetime and electrodynamic prop-
erties, respectively, of electromagnetic radiation in vacuo. The spacetime
symmetry element A has been chosen because it is the only nonzero
Casimir invariant of the Poincaré (inhomogeneous Lorentz) group for
electromagnetic radiation; and the symmetry element A, has been chosen
because it is the only electrodynamic element that appears in d’Alembert’s
equation.

It is important to find a reasonable (i.e., objective) basis such as this for
the definition of symmetry elements for electromagnetic radiation in
vacuo. Other, arbitrary, choices of symmetry elements can (i.e., may or
may not) lead to erroneous conclusions that conflict with the symmetry
invariance of Eq. (1). For example, Barron'® has recently examined the
symmetry of electromagnetic radiation in vacuo using three symmetry
elements, which appear to have been chosen subjectively. Since A and A4,
are sufficient to describe the spacetime and electrodynamic properties of
the radiation, Barron has one superfluous element in the three chosen,
these being'® the wave vector k, the sense of rotation, and the axial

+
i
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magnetic field B®. It is clear that the first two of these elements can be
combined into one, the helicity, which can be regarded as a product of the
linear and angular momenta of the electromagnetic radiation, and that the
third, B®, is related to the potential four vector A4 o and can be expressed
in terms of A,. Barron asserts that since  is unchanged by C, and B® is
reversed in sign by C, then B® must be zero. In coming to this conclusion,
he asserts that “the photon is its own antiphoton.” However, Barron’s
result conflicts with our explicitly demonstrated symmetry invariance of
Eq. (1), and with the fact that the numerator and denominator on the right
side of Eq. (1) are both nonzero in general. His assertion that the photon
is its own antiphoton conflicts with the symmetry equation

(A, A4,] S [A, -4, (12)

ie., C changes the sign of A, while leaving A unchanged, and thus
produces the antiwave (or antiphoton) from the original wave or photon.
Barron’s choice of three symmetry elements has therefore led to the
incorrect conclusion tpat B® is zero.

In the context of T symmetry, Barron,'® on the other hand, concludes
that T applied to his three elements does not rule out B®. Barron argues
that 7 does not produce a distinct situation because the three symmetry
elements he uses are all changed in sign by f, and therefore 7 does not
produce a distinct situation. However, we have seen in Section III that the
use of the fundamental symmetry elements A and A, produces a distinct
situation when operated upon by T. For this reason, T° does not rule out
the existence of} ne longitudinal field B®. Similarly, P acting on A and A
produces a distinct situation that does not rule out B®. The choice o‘%
symmetry elemgnts is therefore critically important to any argument based
on C, P, and T symmetry that purports to show the existence or nonexis-
tence of electric and /or magnetic fields in vacuo.

Several other arguments may be used to demonstrate why Barron’s
f:hoice of symmetry elements has led to the erroneous conclusion that B
1S zero. These are discussed in detail as follows.

The C symmetry of all components of A4 .. 1s negative, so that it follows
by Barron’s argument that oscillating transverse components such as E
and E® are also zero in the electromagnetic plane wave in vacuo, an
erroneous conclusion. Barron’s argument also implies, incorrectly, that the
§calar amplitude, E,, of the plane wave is zero for the following reason. ¢
IS a symmetry Athat acts on a scalar, such as charge, reversing its sign, and
by deﬁqltion C leaves all spacetime quantities unchanged. Any electric or
magnetic field can be expressed as the product of scalar amplitude with a
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vector, €.8.,
E = Ey (13)

where ¢ is a vector, a spacetime quantity. Regard]ess of whether { is
transverse or longitudinal, it is unchanged by ¢ by definition, and E,
reverses sign by definition when operated upon by C. The product

C(EC(Q) (14)

is therefore always negative, and it cannot be deduced on the grounds of
¢ symmetry that in one direction the field is zero, and in orthogonal (or
any other) directions nonzero, since direction, by definition, is a spacetime
quantity invariant to C. In manifestly covariant electrodynamics, E, is the
timelike component of the electric field," % a nonzero quantlty

Maxwell’s equations in vacuo are invariant to C P and T. It follows
that all legltlmate solutlons of Maxwell’s equations in vacuo are also
invariant to C P and T and Eq. (1) shows that the novel longitudinal
solution B® is so. The solution B cannot violate C because the equation
to which it is a solution does not violate C. Similarly, transverse solutions
to Maxwell’s equations, such as E® and E®, conserve C, P, and 7 in
vacuo. Underpinning Barron’s argument is a subjective choice of three
symmetry elements, described already, and the assumption that the pho-
ton and antiphoton are the same in all respects, i.e., one is not “distinct”
from the other. We have argued that the photon and antiphoton are
different entities, i.e.:

['\’A#] - [)"_Au] (15)
Photon Antiphoton

and that the choice of A and A, as symmetry elements is rooted in

contemporary theory of electromagnetic radiation. Only two elements are

needed to define the symmetry of electromagnetic radiation in vacuo, one

being an invariant of the Poincaré group, the other being the single

variable of the d’Alembert equation.

Barron, therefore, bases his argument'> on the assumption that the
photon and antiphoton are indistinct, so that in an indistinct situation all
variables must be relatively the same, soAthat B relative to k must not
change when both are acted upon by C. We argue that C operates to
produce a distinct situation, embodied in the antiwave, or antiphoton, and
in a distinct situation, it is no longer reasonable to expect that all variables
must be relatively unchanged, so that B®) may change sign with respect to
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x, and so may E,, E®", and E®. Even within the framework of his own
argument, Barron has shown only that either B® or k must be Z€ero, SO
that on his grounds k may be zero and B® nonzero. It is therefore not
possible to assert unequivocally, even within his own argument, that B® is
Zero.

Barron proceeds to argue, on the basis of his three symmetry elements
and on the basis of his assertion that the photon and the antiphoton are
distinct, that C symmetry does not imply that the inverse Faraday effect,?*
magnetization by a circularly polarized laser, cannot exist. Before com-
menting on Barron’s viewpoint in this context, we note that the inverse
Faraday effect is accommodated straightforwardly by Eq. (1). This is
because EV X E® interacts with a C-negative rank three property tensor
to induce a magnetic dipole moment.”® Similarly, B® interacts with a
C-positive rank two molecular property tensor (the susceptibility) to in-
duce a magnetic dipole moment.2

In Barron’s viewpoint, on the other hand, B® is zero, so that by Eq. (1),
E" X E® is zero. Despite this, his argument asserts that there is a
nonzero inverse Faraday effect, showing conclusively that his v1ewpomt is
illogical. The root error in Barron’s approach is that under C, both E®
and E® are separately negative, because they are electric fields of the
antiwave, which is distinct from the wave. His assertion that the wave and
antiwave are in all respects identical (i.e., “indistinct”) implies in his view
that E and E®® must be separately zero, and that the product E® x E@
is zero. This means that there is no inverse Faraday effect, in direct
conflict with experimental data.®® It may be argued in Barron’s favor?’
that E x E{" and quantities such as E?) X B, do not change sign with
C but this 1sk nurious, because neither is an electric or a magnetic field.
On these albeit spurious grounds it can be similarly asserted that B® is
nonzero because quantities such as B® X E® and B® x B" do not
change sign under C so that B® is nonzero.

It is clear that energy is invariant to C and also that, in our viewpoint,
the interaction energy of the antiwave with antimatter is identical with the
interaction energy of the wave and matter, for example:

Cu - E®) = (=) - (~ED) = u - EO

X (16)
C(m-B?) = (-m) - (-B®)=m - B®
where w is an electric and m a magnetic dipole moment. It is therefore
quite natural in our argument that the inverse Faraday effect and similar
effects may exist in nature, because they are governed by an interaction
energy that is invariant under the basic symmetries of physics, C, P and
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T. Thus, in the inverse Faraday effect, for example, B® forms an interac-
tion energy with an electronic magnetic dipole moment, and EV x E®
with an electronic antisymmetric polarizability, both types of interaction
energy being invariant under ¢ , 13, and T.

In Barron’s"® view, however, the argument is convoluted and obscure,
because if the wave be indistinct from the antiwave, as in his view, the
interaction energy of the antiwave wiAth antimatter, produced by C from
matter, is no longer invariant under C. Obviously, matter must be distinct
from antimatter, but if wave be indistinct from antiwave, it follows that the
interaction energy of antiwave with antimatter is opposite in sign to the
interaction energy of wave with matter, an insupportable conclusion be-
cause all forms of energy must be indistinct under the basic symmetries of
physics. Thus, if matter be distinct from antimatter, wave must be distinct
from antiwave, as in our argument. Barron does not consider interaction
energy in his paper,'® but uses the fact that the induced magnetic dipole
moment is C negative, which is also naturally accommodated within our
argument, and also in that of Wozniak,” which Barron does not dispute.

There are several considerations of classical electrodynamics, for exam-
ple, in the classic text by Jackson,'® that appear to conflict with the
assertion by Barron, that all forms of longitudinal solutions to Maxwell’s
equations in vacuo are zero. The following examples are mentioned
briefly, but there are several more available.”

The Maxwell equations in vacuo have spherical solutions,'® which in
general are not transverse, as in plane wave solutions. The most general
form of these solutions is given by Jackson’s equation (16.35):

B =Y [ADAD(kr) + ADHI(kr)]Y,(6, ) (17)

I,m

where A,, are arbitrary constant vectors; where h’ and h{? are Hankel
functions, and where Y, are spherical harmonics. The longitudinal com-

ponent is found for 8 = 0:
20+ 12
Byoo= SLAPAPGr) + AP0l (=) a9
! era

and this is clearly not zero in vacuo, being a special case of the general
spherical solution (17) of the vacuum Maxwell equations:

2 2 —
(V +K)B—O (19)
V:-B=0
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Transverse solutions are also special cases of Eq. (17), cases that are
described, for example, inAJackson’s equation (16.42).1° It is impossible tc
assert on the grounds of C symmetry that the fields defined in Eq. (18) are
zero, while those in Eq. (16.42) of Ref. 10 are nonzero, because both Eqgs
(18) and (16.42) of Ref. 10 are special cases of Eq. (17).

These are longitudinal solutions of Maxwell’s equations in conducting
media, where they are augmented by Ohm’s law:

J=0E (20)

where J is a current and o the conductivity. The effect of C on Ohm’s law
is as follows:

~J =0o(-E) (21)

1.e., the conductivity is é-positive. Similarly, electric permittivity and
magnetic permeability in a conductor are both é—positive, so changing
conducting matter to conducting antimatter by operating with ¢ does not
change conductivity, permittivity, and permeability. Thus, Maxwell’s equa-
tions and Ohm’s law in conducting anti matter are the same as in
conducting matter, and longitudinal solutions exist in both situations. The
interaction of the antiwave with conducting antimatter is therefore the
same as that of wave and conducting matter, as in our argument given
already for the inverse Faraday effect. In Barron’s view there is nc
antiwave, ar- the interaction is distinct, an insupportable conclusion.

LongitudL\al, but phase dependent, solutions of Maxwell’s equations
exist in waveguide theory,!® through equations such as

X\ .
B, = B, = B, cos(w;)e‘¢ (22)

which are C-invariant. Here a is a waveguide dimension and x a coordi-
nate in this dimension. Tpe only quantity on the right side of this equation
that changes sign with C is the magnetic flux density amplitude B,. All
others are spacetime quantities which are invariant to ¢ by definition. If
we take a — oo, then for finite x,

By —== Bye” (23)
i.e., at a point x inside a waveguide of infinite dimension a, the longitudi-

nAa! magnetic field B, is nonzero. Since all parameters in Eq. (22) are
C-invariant except By, then according to Barron’s view ¢ operating on B,



of the waveguide does not produce a distinct situation, and so B, must
vanish, an erroneous conclusion that conflicts with waveguide theory.
Furthermore, if a —  in the waveguide, the wave B, is effectively
propagating in a container of infinite volume, i.e., free space, and so in this
situation B, remains nonzero in the free space limit, obtained by setting
a — . According to Barron’s view, B, is zero.

A closely related situation is that of resonant cavities, which again
support longitudinal, phase-dependent solutions of Maxwell’s equations,
as in the example of a right cylindrical cavity, in which the longitudinal
electric field is

p .
Ez = E0J0(2.4OSE)C_W (24)

Here,!® J, is a Bessel function, p is a point on the radius R of the
cylinder, and E, is a scalar electric field strength amplitude. Again, the
only quantity on the right side of Eq. (24) that changes sign with C is E,
so that all properties of the cavity are invariant to C. Therefore, applying
¢ in Barron’s view produces an indistinct situation in which the wave
vector of the field E, has not changed, no cavity property has changed,
but E, has changed. So in Barron’s view E, is zero, an incorrect
conclusion which conflicts with the theory of resonant cavities.

APPENDIX: CPT THEOREM

In the text of the paper, it has been shown that B® does not violate any of
the three discrete symmetries. é, };, and 7, and by Eq. (1), is nonzero if
ED % E@ is nonzero. It follows that the nonobservation of B would
violate éﬁf", striking at the roots of quantum theory. CPT theorem
implies that any quantum (and by implication classical) theory of fields
that is compatible with special relativity and assumes only local interac-
tions does not violate CPT® Therefore, if a physically meaningful mag-
netic flux density, B®, is inviolate of C, P, and T separately, and is
nonzero, it must be an observable by the CPT theorem. If it is a
nonobservable, the CPT theorem is violated. If B is observable experi-
mentally, on the other hand, it provides evidence for the manifest covari-
ance of electrodynamics and conservation of CPT.

In this context, we note that if B® is an observable, and if it is inviolate
of P and T, and therefore of PT, then the CPT theorem shows that it
cannot violate C. Barron’s argument'® is therefore shown to be incorrect,
because he has assumed that B® is an observable, and has himself

concluded (albeit in a subjective argument) that in consequence B® does
not violate PT. It follows that if PT is conserved, and B® is an observ-
able, as assumed by BarronlS;A then it cannot violate C. Thus, if B® is an
observable, it must conserve CPT. Conversely, conservation of CPT means
that B must be an observable.

It follows that the conventional electrodynamical notion that the longi-
tudinal solutions of Maxwell’s equations B® and iE®® (Ref. 4), be “un-
physical” implies CPT violation, thus putting in doubt the fundamentals
of quantum field theory applied to the electromagnetic field. Either B® is
an observable and CPT is conserved, or B®) is a nonobservable and CPT
is violated. In other words, the only possible reason why the left side of
Eq. (1) is not equal to the right side is if B® violated CPT. Therefore,
guantum and classical electromagnetic field theory implies that the left
and right sides of Eq. (1) must be equal, and in this field theory, since
E(® x E@ is physically meaningful, then B> must be physically meaning-
ful. Otherwise, electromagnetic field theory is fundamentally flawed.
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THE ELECTROSTATIC AND MAGNETOSTATIC
FIELDS GENERATED BY LIGHT IN FREE SPACE*

I. INTRODUCTION

The phenomenological equations of J. C. Maxwell form the basis of the
classical understanding of light. The equations were formulated in the mid
nineteenth century, before relativity was fully developed, and before the
quantum theory came into existence. They were later put on a microscopic
basis by H. A. Lorentz in his theory of the electron, and have become the
starting point of a vast number of contemporary papers on the nature of
light in free space and in materials. In this paper we show that there exist
novel electro and magnetostatic fields in the propagation axis of the
classical electromagnetic plane wave, fields that propagate in free space
and conserve the structure of the well-defined Poynting vector, and there-
fore do not affect the law of conservation of electromagnetic energy in free
space. It is usually assumed that the following are solutions to the free
space Maxwell equations for a completely circularly polarized plane wave:

E(r,t) = %Eo(i + ij)e’ (1)
1 )
B(r, ) = —E-Bo(j ~ ii)e (2)

*R. Gauthier and F. Farahi of UNCC are thanked for suggesting the possibility of Ep;.
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Here E, is the scalar electric field strength amplitude, and B, the scalar
magnetic flux density amplitude, i and j are unit vectors in X and Y of the
laboratory frame, and ¢ is the phase of the plane wave. These solutions
are oscillatory and time and space dependent through the phase

d=wt—k-r (3)

where w is the angular frequency of the wave, ¢ the time, x the wave
vector, and r a position vector as usual. A whole literature is available
concerning their properties.

However, the equations

EC = E(r,1) + Ep (4)
BS = B(r,t) + By, (5)

are also valid solutions to the free space Maxwell equations. Here E, and
By, are uniform, time-independent, electric and magnetic fields directed in
the propagation axis Z of the plane wave. It appears always to have been
implicitly assumed that E; and B;; are both zero in free space, and that
there is no component in Z of the plane wave in vacuo. There is no
mathematical reason for this supposition, however, and as we shall see,
the vectors E; and By; can be related to the well-known E(r, ¢) and B(r, ¢).
The source of Ef; and By, is therefore the same as the source of E(r, )
and B(r, t{‘. {f the latter are nonzero, then so are both Ey; and B, in
general.
Section II introduces B; using the imaginary conjugate product,

™ = Egc Im(Byy) = E(r,t) X E*(r,¢) = —iEZk (6)

of the electromagnetic plane wave,'® where E*(r,t) is the complex
conjugate of E(r, t), i.e.,

1
7

We see in Appendix A that the real and imaginary parts of B, are the
same.

The law of conservation of energy for a plane wave in free space can be
expressed through the continuity equation:

E*(r, 1) = —=Eqi - if)e ™ (7)

U
VoN= - (8)
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where N is the Poynting vector:

N = —:—E(r,t) X B(r, 1) (9

and U a scalar field. Here u, is the magnetic permeability of free space.
The vector N is the flux of electromagnetic energy of the plane wave, and
the scalar U is the electromagnetic field’s energy density. Therefore, N is
electromagnetic power per unit area, and U is power per unit volume. The
scalar amplitude of the Poynting vector is the light intensity /. Therefore,
Eq. (8) expresses, in classical electrodynamics, the law of conservation of
electromagnetic energy in free space. This idea of field energy has no
meaning’ unless the wave interacts with matter (e.g., an electron). In
Section IV, it is shown that the continuity equation (8) is unchanged for
nonzero E,; and By, provided they are both complex and

B, X E(r,t) = E; X B(r, 1) (10)

In other words, Eq. (10) is the condition for conservation of free space
electromagnetic energy given the general solutions (4) and (5) of the
Maxwell equations. Equation (10) shows that if By, is real, and defined
through the conjugate product (6), then Ey is imaginary. Finally, a
discussion is given of the physical meaning of the novel vectors Ep and
B, with order of magnitude estimates, and experimental consequences.

II. THE DEFINITION OF B; THROUGH THE CONJUGATE
PRODUCT

The conjugate product E X E* appears in the antisymmetric part of
Maxwell’s stress tensor'? and is a well-defined property of light. It is an
axial vector with magnetic symmetry,' 12 i.e., that of angular momentum:
positive to parity inversion 15, and negative to motion reversal 7. The
vector notation E X E* is equivalent to the tensor notation

I = Jou(BEL ~ EcE) (

where &, is the Levi-Civita symbol. This shows that the axial vector
E X E* is equivalent to a polar rank two tensor:

4 = L(EEF — E(E}) (12)

< ke
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which is the antisymmetric part of the tensor E,E}. Therefore, E X E* i
the vector part of light intensity.
The quantity

Im(By) = ——— (13)

is.a uniform, fiivergentless, time-independent, magnetic flux density vector
with the required symmetry and units. The magnetic field B, exists in free
space because E X E* exists in free space, and is defined in the Z axis:

Im(B,,) Loy
m = +—k=+B
i . ok (14)

wherfe K in axial unit vector. The magnitude of By, i.e., IByl, is the scalar
f'amphtude B, defined in the introduction. A real interaction Hamiltonian
is proc.luced from E X E* /(Ec) when it forms a scalar product with the
usual imaginary magnetic dipole moment operator, ift”, in quantum me-
chani'cs.”‘15 Similarly, the imaginary E X E* produces a well-defined! 8
real interaction Hamiltonian when it multiplies the imaginary part of
molecular electric polarizability operator, i&”. The latter is the vectorial
polarizability,'™ '” which vanishes at zero frequency from time-dependent
pe‘rturbatiol{ theory. Both m” and &” are directly proportional (using the
Wigner-Ec irt theorem, for example,'® 7 to the net molecular clectronic
angular momentum operator J:

AT r

m’ =vy.J (15)
&' = ypJ (16)
where v, is the gyromagnetic ratio'*~' and y,; is the gyroptic ratio.!$-2°
Consequently,

a’' = —nm (17)

Sh(c)iwmg that rhi’ and ¢” have the same f-negative, ﬁ-positive symmetry,
and are both axial vector operators. The conjugate product E X E* forms

a real o . A
: Hamiltonian operator when it multiplies 1@”, and because &" is

directly proportional to J and thus to m’, it follows that E X E* must be

i ar;))portional t? a magnetic field, which we have identified as B, in Eq.
L \13). Clearly, m” can form a real Hamiltonian operator only when multi-



260 M. W. EVANS

plied by a magnetic field. The root of Eq. (13) is therefore found in the
fact that the molecular property tensors &" and @' are both axial vectors
with magnetic symmetry. This point can be emphasized by assuming that
the real part of m” *+ By is an interaction Hamiltonian and investigating

the logical consequences. To do this, it is convenient to write the interac-
tion Hamiltonian!® !7 between i&” and E X E* as

E X E*

Ec = —E,ca’Im(By) (18)

AH = —i&" - EX E* = —{E,c&""

where we have defined By, in terms of E X E* as in Eq. (13). Using the
proportionality (17) between the magnetic dipole moment and the vecto-
rial polarizability, Eq. (18) becomes
A Yo . A
AH = —E,c—" - Im(By) = —i&" + E X E* (19)

€

showing that the product i - By is directly proportional to the product
i&@” + E x E* through a nonzero proportionality constant. Therefore, if
the energy i&” * E X E* is nonzero, then so must the energy " + By be
nonzero.

Using the Wigner-Eckart theorem, the gyromagnetic and gyroptic ratios
can be defined as follows in an atom with net electronic angular momen-
tum, J, showing that in this case v, and vy are nonzero in general:

(THm™ LT
W e J§ = vJg 20
T T S (20)
(J@" 1>
Ve~ J§ = vnly 21
a0 = iy T Y o
NIy = [1(7 + 1)(2J + D] (22)

III. THE CONSERVATION OF ELECTROMAGNETIC
ENERGY

We have assumed that Egs. (4) and (5) are solutions of the free space
Maxwell equations:

G JEC
V X EY = 'T (23)
1 9EC
VXBG:'C_E—(‘F (24)
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in SI units. It is clear that if E; and B; are defined in the Z axis of the
plane wave, then

By
V X El'l = —gt-— ={ (25)
JE
v -0 _
XBy=—==0 (26)

because the§e fields are time independent and have no X and Y compo-
nents. Consider the divergence of ES(r, ¢) and B®(r, t). Using the vector
identity,
V-(AXB)=B-(VXA)-A-(VXB) (27
it follows that we may expand:
V-(E°xB¢)=V-(EXB)+V-(EXBy)
28
+V-(EfXxB) +V-(E; XBp) (28)

vs./here E X B is proportional to the Poynting vector of the law of conserva-
tion of energy, Eq. (8). From the relations

( V- (EXBy) =B, (VXE) -E-(VXBy)

VXBy=0 (29)
and
B
B,-(V =B, — =
n (VXE)=-By:— =0 (30)
it follows that
\ V-(EXBy) =0 (31)
and\ .imilarly
V- (EpxB)=0 (32)

Also, the last term in E i i
, q. (28) vanishes because E; is parallel i
It follows, therefore, that n 15 parallel 0 Bn in

V-(E° xB°)=V-(E X B) (33)

i. . . . .
€., the continuity equation (8) is unaffected by the presence of Ej; and
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B, and the relation (Eq. (8)) of the field energy flux density (N) to the
electromagnetic field energy density (U) is unchanged in the free space
electromagnetic plane wave. In other words, the electromagnetic powers
per unit area generated by V - (E X By;) and by V - (E; X B) are both
zero, and therefore so are the associated electromagnetic powers per unit
volume.

This result is true only if E and B, are both in the propagation axis of
the plane wave. The argument so far shows that E;; and B, may be
separately non zero, or that E;; may be zero and By, nonzero, as defined
in Eq. (13).

To obtain a relation between E; and B we use the result, from Eq.

(8):

ou
V-(EGXBG)=V-(EXB)=—E (34)

which implies that the divergence of the product E® X B is nonzero and
identical with the divergence of the product E X B. This implies that

E€ X BY = E X B + constant (35)
However, we know that
ESXB°=EXB+E;XB+EXB (36)
and from Egs. (35) and (36) we derive the key result:
EpXB=B;XE (37)

assuming that the constant of integration in Eq. (35) is zero (see Appendix
D) and demonstrating that if B is real, then E;; must be imaginary.

In precise analogy with E(r, ) and B(r, ), the fields E;; and By, take
meaning only when there is wave—particle or wave—matter interaction, but
these fields propagate through free space (i.e., vacuum). Clearly, electro-
magnetic waves can be detected only when there is particulate matter with
which the waves can interact, otherwise there would be no experimental
evidence at all for the existence of electromagnetic fields. The source of
E, and By is the same as the source of the oscillating fields E(r, 1) and
B(r, t), because both the static and oscillating components are needed for
the complete solution of the free space Maxwell equations and the
presence of oscillating components implies through Egs. (13) and (37) the
presence of static components. The static and oscillating components are
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both relativistic in nature, because the plane wave propagates at the speed
of light. In quantum field theory, there are operator equivalents'®~2! of E
and By;. A fundamentally important difference between the oscillating and
static components of the plane wave is that the former vanish upon time
averaging and the latter do not. This is the source of several novel physical
phenomgna when there is wave-matter interaction. Equation (37) con-
serves P and T symmetry, and the static components of the solution are
related through Eqgs. (13) and (37) to the oscillating components with, as
we have seen, conservation of electromagnetic energy. The components
are therefore completely defined and the definition is self-consistent.

From the properties of the dual transform of special relativity (see
Appendix A) the Maxwell equations are invariant to

cB » —iE
By — —iEy, (38)
The dual transform implies immediately that
By X E = —i0 B
= —1— X — — =
o " 3 ) E; X B (39)
which c( nfirms that the sum
E;XB+EXB;=0 (40)

and that the general solution of Maxwell’s equations must be of the form
(see Appendix A)

E€ = E(r,1) + Ej(i — 1)k (41)
BC = B(r, 1) + By(i + Dk (42)

to be consistent with the theory of special relativity applied to the Maxwell
equations.
I\ is easily checked that Eq. (39) is consistent with Eqgs. (1) and (2), with

I

By
Eq

+By(i + 1)k (43)
+E(i — Dk (44)

[}

Equation (39) is also consistent with the generalized continuity equation,
and with the fact (see appendix A) that

Fp=E; +icBy (45)



and
FX:=E} - c¢*B} + 2icEy - By (46)

are invariants of the Lorentz transform. From Eq. (40), the net contribu-
tion of E;; and By to free space electromagnetic energy is zero.

IV. DISCUSSION

The orders of magnitude of E; and B; can be estimated directly from the
intensity [, of the light beam in W m~2, through the free space relations

I, 172 I, 1/2
IBH'=BO=(EC3) 'El'lleO:(—) (47)

0 €€

where ¢, is the electric permittivity in vacuo (8.854 x 1072 J7' C*m ™! in
S.L units). Thus, for a beam of 10000 W m~2, (1.0 W ecm~2), B, is about
107% T and E, about 20 V m~'. These are also the scalar amplitudes B,
and E, of the oscillating part of the solution to Maxwell’s equations, and
the scalar intensity 1, of the beam is unaffected by the presence of E;; and
B,; because I, is the magnitude of the Poynting vector. However, By is
nonzero after time averaging because it is independent of time, and forms
a real, nonzero, interaction Hamiltonian with particulate matter. This
Hamiltonian leads, therefore, to the prediction of novel physical phenom-
ena, which can be measured as a function of I, and of the polarization
state of the light beam. If the latter is linearly or incoherently polarized,
E X E* is zero and in consequence, so are By, and E;; otherwise E; and
B, are proportional to the square root of /,. Because Ey and By are
electrostatic and magnetostatic fields that form part of the general solu-
tion of Maxwell’s equations in free space, they have the properties of such
fields when light interacts with matter. This is the main conclusion of this
paper.

On the basis of this conclusion it is easy to see that the various theories
of the interaction of conventionally generated electric and magnetic fields
can be applied directly to the real field B, and examples of these
applications have been given elsewhere for By (Refs. 22-26). These
include the inverse Faraday effect, the optical Faraday and Zeeman
effects, optically induced shifts in NMR resonances (“optical NMR”,
recently observed experimentally,?” the optical Cotton Mouton effect,
optical ESR, optical forward backward birefringence, and a reinterpreta-
tion of antisymmetric light scattering and related phenomena in terms of
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B,,. It has also been deduced'®~?' that the quantum field equivalent of By,
is the operator

(48)

where J is the quantized photon angular momentum, and # the reduced
Planck constant. It has also been shown,? using the properties of the
classical Lorentz transformation, that there can be no Faraday induction
in free space due to a time derivative of the type dBy/d¢, produced, for
example, by modulating a laser beam. (Note however, that Faraday induc-
tion occurs via the inverse Faraday effect?® when a circularly polarized
laser interacts with matter inside an induction coil.) The reason for this is
that the Lorentz transformations do not allow free space X and Y
components either of By or of E;, and also show that the Z components
E[; and By, must be relativistically invariant.”

One of the simplest consequences of the presence of By is an optical
Zeeman e .ct, whose semiclassical theory regards Bp as a classical
vector.?* I\ this approximation the theory of the optical Zeeman effect is
the same as that of the conventional Zeeman effect,” with the conven-
tional magnetostatic B, replaced by By;. In the simplest case, the Zeeman
shift is proportional to

Af =+ — (49)

and therefore to the square root of the laser intensity /72 This occurs in
addition to an optical Zeeman shift caused® by the interaction of E X E*
with &”, a mechanism that is proportional to intensity /,. There appear to
be no experimental investigations to date of the optical Zeeman effect,
which requires only a minor modification of optical Stark effect apparatus
to circularly polarize the pump laser.

Because E,; is imaginary when By is real, no simple physical effects are
expet ‘ed due to E;, and significantly, none appears to have been reported
in the literature.

The experimental evidence for the presence of uniform and time-inde-
pendent components in the free space solutions of Maxwell’s equations is
available in at least three forms: (1) the inverse Faraday effect (IFE),?® the
optical Faraday effect (OFE),*" and optically induced frequency shifts in
NMR (ONMR).?” In the IFE, bulk magnetization has been observed when
a circularly polarized giant ruby laser pulse was passed through a sample
in an inductance coil, thereby producing a measurable voltage that was not
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present in linear polarization and that changed sign with the sense of
circular polarization. These are characteristic properties of By;. In ONMR,
a continuous wave argon ion laser was used?’ to shift NMR resonances
and the shifts were much larger in circular than in linear polarization of
the laser, too large to be explained by mechanisms based on the oscillating
E and B, which time average to zero. For example it may be conjectured
that the oscillating B(r, ¢) induces in semiclassical theory a magnetic dipole
moment in the electrons of a molecule in ONMR, a dipole moment that
sets up a magnetic field at the resonating nucleus. However, this induced
magnetic field would produce shifts much smaller than those observed,”’
and would time average to zero and no ONMR shift would be observable.
The novel field B;; does not time average to zero, and in principle sets up
an interaction Hamiltonian fay - Im(B;), where iy is the nuclear mag-
netic dipole moment, causing ONMR shifts in circular polarization, as
observed,?” but not in linear polarization. In general, By, is an operator in
guantum field theory, and its interaction with the operator m, must be
described properly in terms of quantization both in the applied laser field
and in the nucleus. ONMR provides information about the nature of the
interaction between fln and the nucleus. However, there are several
competing mechanisms in ONMR, and the data cannot yet be interpreted
unequivocally. Recently, Frey et al.* have reported the optical Faraday
effect in magnetic semiconductors, in which the polarization direction and
phase of a laser beam are modified by interaction with the material. The
authors interpret these changes in terms of nonlinear Faraday processes,
but it is interesting to note that a plot of their experimentally observed
rotation of the polarization of the laser by the sample against the square
root of the laser intensity is a straight line within the experimental
uncertainty (Fig. 1). This is the result expected from a mechanism of
self-rotation based on the presence of the vector By in the laser beam.
These results are suggestive, but not unequivocal, because the straight line
does not go through the origin in Fig. 1, and because it is not clear from
the experimental arrangement of Frey et al.®® whether the laser they used
was circularly polarized. The output beam from the sample was analyzed
by these authors with a Soleil compensator to determine its state of
polarization, and the fact that a rotation of polarization was observed?’
(Fig. 1) suggests an excess of circular polarization in the output beam. A
more critical test for the presence of By would consist of a completely
circularly polarized pump laser incident on a magnetic semiconductor
(showing a giant Zeeman effect) together with a linearly polarized probe
laser. The plane of polarization of the latter would be rotated by the By
vector of the pump, and this rotation should be proportional to the square
root of the pump laser’s intensity if there are no competing mechanisms.

O ——
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Figure z Plot of data from Ref. 30 of the optical Faraday effect, angle of rotation vers
the squarel, oot of laser intensity. The points and uncertainty bars are those of Ref. 30. -
Best fit line of Ref. 30; - - -, linear extrapolation (this work).

The sense of rotation should be reversed on reversing the sense of circul
polarization of the pump, and should vanish when the pump is linea
polarized. The semiclassical theory of this effect is the same as that®!
the conventional Faraday effect of 1846, with the magnetostatic field of tl
latter replaced by By of the pump laser. The quantum field theory wou
treat B, as a quantum operator, Eq. (48), and there is no reason
suppose that the results in quantum field theory would be the same as th
in semiclassical theory, i.e., there are nonclassical effects, in general, di
to By; treated as quantum field operators.

The available experimental evidence for the existence of B is sugge
tive, but not unequivocal; therefore, the challenge is to separate tl
particular influence of By; from the simultaneous influence of E(r, t) a1
B(r,7). It appears that one of the clearest ways of demonstrating tl
exis\ :nce of By would be through its characteristic square root intensi
dependence, and through the fact that both vectors change sign with tl
sense of circular polarization, vanishing in linear polarization. If 1
experimental evidence for B;, were found, such an eventuality would
itself be a major challenge to contemporary understanding of the nature
light and electromagnetic radiation in general. The reason for this is th
the vector By; is directly proportional (Eq. (13)) to the conjugate produ
E X E*, in free space, and if the notion of conjugate product is accepte
as is the contemporary practice, then B, must be accepted, and vice vers
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If By, is real then Ejy is imaginary, through Eq. (37), and it has been
demonstrated in this work that Ey and By do not affect the law of
conservation of electromagnetic energy, the widely accepted continuity
equation (8) of the classical theory of fields. The notions of E X E*, By,
and E; are inextricably and ineluctably interrelated, therefore, and exper-
imental evidence for the presence of any one is evidence for all. Con-
versely, if there is no apparent evidence for one, then all must not exist.
The inverse Faraday effect has been interpreted through the notion of
E X E* (Refs. 7 and 8), but this provides an explanation in terms of only
one mechanism, proportional to intensity. It has been argued here that
there must be another mechanism present, proportional to the square root
of intensity (the By mechanism). If these are found experimentally,
contemporary understanding would be strengthened. But if evidence for
one mechanism (e.g., E X E*) is found and evidence for another (e.g., Byp)
is not found, then the theory of electromagnetic fields would be challenged
at the most fundamental level.

Clearly, the notion of E X E* implies that this object is transmitted
through free space in an electromagnetic plane wave, and when this wave
meets particulate matter, an interaction Hamiltonian is formed between
E X E* and a material property. In atoms and molecules with net elec-
tronic angular momentum, this property is the vectorial polarizability
vector &, well defined and accepted in semiclassical time-dependent
perturbation theory, based on the time-dependent Schrodinger equation.?
Since B is directly proportional to E X E*, it cannot be argued that
E X E* exists and that By; does not. The source of E; and By is clearly
the same as that of E(r, ¢) and B(r, #). Furthermore, it has been shown that
B;; is part of the general solution of the equations of Maxwell, and is
therefore phenomenologically indistinguishable from uniform, magneto-
static flux density, whose symmetry and units it pOSSESSES. It cannot
therefore be argued that By, cannot form an interaction Hamiltonian with
the appropriate material property (a magnetic dipole moment), and it has
been shown in Eg. (19) that if i&” - E X E* is accepted as an interaction
energy, then m - Im(B) must also be accepted. Finally, the classical
presence of E;; and B;; must also have meaning in quantum field theory,
where these vector fields become operators (Appendix B).

APPENDIXA: LORENTZ COVARIANCE

The theory of the Lorentz covariance of Maxwell’s equations show!® that
the complex quantity

+icBy (A1)

=1 —1u
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is an invariant of the Lorentz transformation of special relativity. There-
fore,

FX=EZ — ¢*By + 2icE - By (A2)

is an invariant of F; with respect to rotation in (Z, t) in Minkowski four
space. This is equivalent to a rotation in the X,Y plane through an
imaginary angle in three dimensions. Thus, E4 — ¢2B% and Ep - By are
the only two independent invariants of the antisymmetric four tensor of
the electromagnetic field in the four-dimensional representation. This is
the tensor F'*, with

F, F'* = inv.
| A3
( e'kimp, F, = inv. (A3)

and where e’*’™ denotes the completely antisymmetric unit tensor of rank
four.

It is important to note that these invariants are zero only when
E% = 2B} (A4)
and
E ;- By=0 (A.S)
Because, for complex Bj; and Eyj,

|Eyl = V2E, and Byl =V2E, E,=cB,,
we obtain
E}—c*BE =0 (A.6)
H(\ zver, because E[; and By; are parallel in Z, the propagation axis,
Egj-By#0 (A7)
If Fﬁ # 0, it is known that F|; = an (Ref. 10), where n is a complex unit

vector (nn* = 1). Using a complex rotation it is always possible to direct n

a - . 10 . .
long a coordinate axis,'® and n becomes real, determining the directions
of E;; and B
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so Ey; is parallel to By;. Therefore, in any frame of reference, E;; must be
parallel to By; and there can be no components of either E;; and By
perpendicular to the direction of the plane wave.

It is concluded that E; and B}, form a nonzero invariant, Eq. (A.7), of
the Lorentz transformation of special relativity. The oscillating compo-
nents E(r, ) and B(r, t) form zero invariants, because they are mutually
perpendicular and E; = cB,,.

Furthermore, the dual transformation of special relativity corresponds

tolO

G _:rwG
cBY — iE (A9)

which leaves the Maxwell equations invariant in vacuo. The dual transfor-
mation therefore corresponds to

c(B(r,t) + iBy) > —iE(r,¢) + Eyq

(A.10)

— i(E(r,t) + E) = c(B(r,t) + By)
Therefore, the Maxwell equations are invariant in vacuo to the transfor-
mations ¢By » —iEy and —iEp — c¢Bp. Exchanging ¢Bp and —iEp
everywhere, or vice versa, the Maxwell equations are the same in any
frame of reference, which is consistent with the fact that Epy is parallel to
By in Z, and if By is real, then Ey; is imaginary. A gauge transformation
leaves the Lorentz relation unchanged, and leaves Ej; and By; unaltered.
Thus, gauge invariance means that Ej; and By, are unaltered in any valid
gauge.

It is important to note that the invariant in Eq. (A.1) is a complex
quantity, and that E;; and By; also appear in Egs. (4) and (5) as complex.
Otherwise, the invariant in Eq. (A.6) would not vanish, and E and By
would contribute to the electromagnetic energy density and flux density.
This is essentially the result of the special theory of relativity, which uses
four-dimensional Minkowski space:

m = (X,Y,Z,ict)

The Lorentz transformation describes rotations in this four space, and it
follows that E; and By are unaffected by rotations in spacetime. The
fourth coordinate of Minkowski space is ict, i.e., imaginary. The reason is
that this gives a space in which the four-dimensional Pythagorean theorem
has the same form as the usual three-dimensional theorem. This is taken
as a fundamental criterion of a Cartesian system. Maxwell’s equations can
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be written in tensor form in Minkowski space, leading to the Lorentz
transformation.

It i's concluded that E; and B, are entirely consistent with the Lorentz
covariance of the Maxwell equations, and form invariants of the Lorentz
Fransformation, The fields Ej; and By, are therefore physically meaningful
in the classical theory of electromagnetic radiation. The free space vector

F, = E; + icBy (A.11)

is a nonzero invariant of the Lorentz transformation in the special theory
of relativity. The existence of By, implies that Maxwell’s equations in free
space support the nonlinear solution:

(

G 1
B®(r,t) = B(r,t) + ﬁE(r,t) X E*(r,t) (A.12)

Finally, the dual transformations show that the Maxwell equations are
invariant to

Eo(i + ij)e'® - By(i + ij)e'
By(j — ii)e'® > Ey(j — ii)e'

A.13
— Ek - iEk (A1)
iB,k > Byk
so Eq. (40) is also satisfied by
BC = B — iB,k
‘ A.14
ES = E - Ek (A9

Therefore (A.14) is also a valid solution of Maxwell’s equations, and it is

thq efore possible to obtain valid solutions of Maxwell’s equations in

?vh h E,, is real and By, is imaginary, or in which E | is imaginary and B

is real. Since B, from eqn. (18) is real, E; is imaginary. !
It may also be verified that solutions of the type

EC = E(r, 1) + E (i — Dk

BS = B(r, 1) + By(i + 1)k (A1)

satisfy Maxwell’s equations in vacuo and also relation (40) of the text. The
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most general solution of Maxwell’s equations is therefore in this case:

EC = %[(i + ij)e® + V2 (i — 1)k
5 (A.16)
BC = Tz“[(j Fii)e' + V2 (i + 1)k]

where the normalisation factor 1/v2 has been used, as is the standard

practice.

Solutions (A.16) show that, in general, Maxwell’s equations in vacuo
support components in i, j, and k unit vectors in X, Y, and Z, respectively.
In this case, the fields E;; and By are both complex:

B, = By(1 + i)k

. (A.17)
Eq=E,(—-1+1)k
APPENDIX B: QUANTIZATION OF B; AND E;
Defining the annihilation and creation operators
a(t) = a(0)e i’
(1) = (0™ )
&‘+(t) :a+(0)elwl
the quantized equivalent of the oscillating electric field
E(t) = ﬂeix-r(ie—iwt + Ue—iwt) (B 2)
7 .
becomes the operator
o Eq ik-r( 4 N .
E(t) = N (Ax()i +iay(1)j) (B.3)
Similarly,
A EO - ~ . A .
B*(1) = e " (a3(0)i — i (1)i) (B.4)

V2
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and
E * 'Eg A At _ A A+
X E* = —17(axay—ayax)k (B.5)
where
dydi=dy(1)a5 (1) = d,(0)d5 (0) (B.6)
and
2hw
El = B
€Ly

l—}bfc L3 is the volume of quantization® and &, the vacuum permittivity.
The expectation value of the operator in Eq. (B.5) is the classical
conjugate product E X E*:

(n|E x E*|n) = —iE2k (B.7)
implying that
(nldydy—adyd}in) =2 (B.8)

It follows from Eq. (B.5) that

By = $By(ayds— dyay)k (B.9)
where
B, = | 2 - (B.10)
R ‘

witl&g‘ o denoting the vacuum permeability. As is the standard practice in
quantum field theory, |n) is an eigenfunction whose eigenvalues are
nonnegative integers n, i.c.,

Nln) = nln) (B.11)
where N is the photon number operator, whose eigenstates are photon

ngmber states of the quantized field. The photon is a quantum of the field,
with energy #w. Thus, 4* operates on |n) to produce a field increment of
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energy hw, i.e., to produce a photon, and 4 operates conversely:

*ln) = (n+ D)+ 1) (B.12)

a~|n)y =n?n - 1)
the normalization factor being chosen so that’

{nin') =8, (B.13)

which is the orthonormality condition. .

It is instructive to note that Eg. (B.9) for the operator Br‘1 can be
derived independently of the conjugate operator E x E*, showing, mtser
alia, that fln and E x E* are rigorously proportlonal to each othqr in
quantum field theory. The independent derivation proceeds from a direct
guantization of the classical magnetostatic field

By = Byk (B.14)

where we have made no assumptions concerning the origin of this field.
Here k is a axial unit vector in the Z axis of the frame (X,Y,Z):

k=iX]j (B.15)

where i is a polar unit vector in X and j a polar unit vector in Y. Thus, B,
is a scalar magnetic flux density amplitude (tesla).
It is always possible to write Eq. (B.14) as

B, = Bk = 1B e ™"
X(e—iwti X eiwtj _ e—imrj X eiwli)

= 1Bjeivtet (B.16)
i ik i j k
{11 o 0 |—[0 1 O
01 0 1 0 0

a purely mathematical identity, which leads to the well-known conclusion
of tensor algebra that an axial vector is equivalent to a second-rank polar
tensor. _

If we now assume that  is the angular frequency of the clgsswal
electromagnetic plane wave, then the quantized form of any mz?gnetlc field
operator of the form (B.14) carried by such a wave pattern in quantum
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field theory must be

B = 22 (4,85 4,at)k B.17
n- j(axay_ ayax) (B.17
which, except for sign, is the same as Eq. (B.9). The sign of fln i
switched!~7 by switching from left to right circular polarization, and it
consequence fln can always be defined as plus or minus. Equation (B.17
has been derived directly from Eq. (B.16) using the definitions (B.1), anc
using no other assumption. This shows that the magnetic field operator B L
and the conjugate product operator E x E* are rigorously proportional it
quantum field theory. Both are described by the operator (d,dy — d,dy
whose expectation values between states is always 2. .

i “urther insight to the physical interpretation of By and E X E* can be
g&ined by using the quantum field definition® of the Stokes parameter S5

83 = _T(axay‘ayax) (B.18)

so that
B 5 k B.19
n E,c (B.19)

showing that ﬁn and E x E* are both directly proportional to the scalai
operator S, the third Stokes operator of quantum field theory.

Furthermore, the Stokes operators fl, §2, and §3 obey the commutatot
equations of angular momentum in quantum field theory,’ showing that
B; has the properties of quantized angular momentum of the electromag-
netic wave. Standard theory® shows that

\ Lo
(nlSsln) = () = hz (B.20)
\\Lere J, is the Pauli matrix operator:
6, = (? 6‘) (B.21)
so that
Eo ({1 0
v {lo)+ 3] (5.2
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is a spinor. The operator J, is defined by
(n\f,ln) =4S, (B.23)

Using Eq. (B.21), we obtain

>

A

B, = Bofk = B, (B.24)

x|~

i iven by Eq. (B.10) in SI units. .
wnlht Iigso s%:en fr(zlm (IIEq. (B.23) that the expectation value of J, between
eigenfunctions |n) is S;, the classical third Stokes parameter, multlpl}ed
by #, the unit angular momentum in quantum theory. The expectatlon
value of fZ is S, units of quantized angular rpomentum for any glgenstate
In) of the quantized field. Classically, the third Stokes operator is

1 . B
S3= — E(EXiE;kf +iEyE}) = 3(ExEY + EyEX) = Ef (B.25)

a real quantity. The intensity of the beam is classically
I, = e,cEL (B.26)

showing that the expectation value of the angular momentum operator J is

L alginy = 21 B.27
Z<"m">_eoc (B.27)

which is directly proportional to the intensity of a beam that is fully 'left
circularly polarized. In a beam that has elements of both left and right

circular polarization,
1 . 1
—(n|Jlny = — (I, — Iy) (B.28)
h £4C

If the beam were to consist of a wave pattern correspondipg to one photon
of energy fiw, then |n) = ll) and {11J11> i§ the expect?tlon value of J for
one photon. In this case, By; is the magnetic ﬂlux density operator of one
photon, whose scalar magnitude we denote B{":

he )1/2 (B.29)

B§Y = (2M0—LTO
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which is proportional to the square root of #w, the energy of the single

photon under consideration. The energy of n photons is describable by the
expectation value’®

(n|HRIn) = (n + 3)ho (B.30)

Le., by an integer number n of energy quanta fw, plus a “background”
hw /2 independent of n. Therefore,

2nw,

Ly

nB{M* =

hw (B.31)

and the enegby nhw is proportional to nB{"?. Using E, = cB, and Eq.
(B.26), it becomes clear that the intensity of a beam of n photons is
proportional to nB{"?, so that B§" is an elementary quantum of magneto-
static flux density associated with one photon. This is in analogy with the
fact that the quantum of energy associated with the photon is #w. From
Eq. (B.29), B§" vanishes if = 0, i.e., if the frequency of the wave is zero.
In this case the energy Aw is zero, and there are no photons. Alterna-
tively, if L} — o, ie., if the quantization volume tends to infinity, then
B§" tends to zero, even for finite w.

Under all other conditions, B{" is nonzero, and produces finite and
measurable physical effects, as described in the text.

The quantization of the imaginary E;; proceeds similarly using the
classical dual transformation

i

B~ — EEH (B.32)
And Eq. (B.9)
By = 3Ei(dydy—ayay)k (B.33)
wh{ se expectation value is
E; = (nlEgyln) = —E k (B.34)

is an acceptable definition (see Appendix A) of E;. Here k is of course a
polar unit vector.

It is seen that both B, and ik, are defined in terms of the operator
dydy— d,d}, which operates on any number state |n) to give the con-
stant expectation value of 2. This expectation value is independent of the
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number state |n) of the photons, and generates the third Stokes parame-
ter S, of the classical field.

Classically, the By, is an axial vector, P-posmve and 7- negative, and
proportlonal to angular momentum. The field Ey is a polar vector,
Pnegatlve and Tposmve and cannot therefore be proportional to an
angular momentum. It is essential to note, therefore, that k in Eq. (B.9) is
an axial unit vector (T “negative and P-posmve) and that k in Eq. (B.33) is
a polar unit vector (T~posmve and P-negatwe)

Finally, we note that d,d% — d, a% operates to give an eigenvalue of 2,
and this does not change the energy nhw of n photons. This is in
agreement with the classical theory (see text), which shows that By and Ey
do not contribute to the field energy.

APPENDIX C: DEFINITION OF B;; AND E;; IN TERMS OF
THE VECTOR POTENTIAL IN FREE SPACE

In free space, the oscillating fields E and B of the plane wave are defined
in terms of the vector potential A. Using the Coulomb gauge:

dA
E=-— -Vé B-VXxA (C.1)

In free space the scalar part, V¢ is zero and the Lorentz condition and
Coulomb gauge are both describable by

V-A=0 (C2)

From the definition in the text,
B 1 (0A  OA* Bk c3

=—|—= X — .
T Eye ( at at ) 0 (€3)
where
IA*

E* = — e Vo* (C4)

Using the condition for conservation of energy,

E;XB=ByXE (C.5)
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with the definition (C.3) implies

E,=iEsk (C.6)
and
B X E, =iB,E (C.7)
From (C.1) in (C.7),
‘ oA
{ (VXA) XEyg=iB,E= —iB (—t—Vqﬁ) (C.8)

which defines E; in terms of A.
Equation (C.8) can be simplified to

A
V(Eg - A) = iBO(Et— - V¢) (C.9)
using
(VXA)XE;=A(E;-V) —V(E; - A) (C.10)
and
E-V=V-E;=0 (C.11)

Note that (C.9) is a type of continuity equation which defines the imagi-
nary E;; in terms of A of the oscillating components E and B of the plane
wave.

In texts on the electromagnetic plane wave it is usually asserted that E
and B are transverse plane waves, with no components in the direction of
propagation. Equations (C.1) and (C.2) are usually taken as justification
“or this conclusion. Most texts assert that electromagnetic plane waves in

acuo are necessarily time-varying, because the solutions for constant E
and B from Maxwell’s equations in the absence of charge and current are
zero. While this is true for linear solutions, we can form a nonlinear
solution, Eq. (C.3), for By;, which is well defined as in this paper, and
which is a product of time-varying solutions. With the condition (C.5),
derived in the text of this paper, the field E; is also well defined in terms
of A as in Eq. (C.9), a novel continuity equation.

Nonlinear solutions of Maxwell’s equations therefore support the exis-
tence of E,; and By; in the axis of propagation of the plane wave in vacuo.
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APPENDIX D: THE CONSTANT OF INTEGRATION IN
EQUATION (35)

Most generally, from Eq. (35),

E; X B =By X E + constant (D.1)

The dual transformation of special relativity means that E;; and —(c/i)By,
for example, are indistinguishable solutions of Maxwell’s equations; i.e., it
is possible to replace E; everywhere by —(c/i)By without changing the
Maxwell equations, and therefore without changing the solutions to the
equations. The dual transformation, however, does not affect the constant
in Eq. (D.1), which is independent of E, B, E;, and By;. Thus, applying the
dual transform,

By X E = E X B + constant (D.2)

Adding Egs. (D.1) and (D.2) yields

Constant = 0
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ON LONGITUDINAL FREE SPACETIME ELECTRIC
AND MAGNETIC FIELDS IN THE EINSTEIN-
DE BROGLIE THEORY OF LIGHT

1 I. INTRODUCTION

It is usually concluded in electrodynamical literature!=' that the photon is
massless and that the range of the electromagnetic field is infinite. This
conclusion is not, however, supported by experimental data. To the
contrary, Vigier'” has recently reviewed a substantial amount of evidence
that leads to the conclusion of finite photon rest mass. These data include,
to take two of many examples, the direction-dependent anisotropy of the

f;f?uency of light in cosmology and frequently observed anomalous red
shifts.
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In papers and correspondence circa 1916 to 1919, Einstein'® proposed
a photon rest mass'® that can be estimated from the Hubble constant to be
about 10~ kg. An immediate consequence is that the d’Alembert equa-
tion is replaced by the Einstein-de Broglie-Proca (EBP) equation, which
can be expressed?® 2! in the form

oA, = —§2A“ (D

where

Here m, is the photon rest mass, ¢ the speed of light, the universal
constant of special relativity, and # the reduced Planck constant. The
potential four vector A, of the de Broglie-Proca field is manifes.tly
covariant, and has four, physically meaningful, components, one timelike
((0)) and three spacelike, of which two are transverse ((1) and (2)) and
one is longitudinal ((3)). From Eq. (2), the range £~ 1 of the field becomes
1026 m, cosmic in dimensions, but finite. Equation (1) is an expression of
the Einstein-de Broglie theory of light'” and implies that gauge transfor-
mations of the first and second kind®* %! can no longer be interpreted as
implying zero photon rest mass. It is well known that the EBP equation
implies mathematically” ! the Lorentz condition

dA
E=0 (2)
dx

w

for the massive boson. If the photon has rest mass, it is always described
by the Lorentz condition. Experimental evidence!” for finite photon rest
mass implies that gauge invariance must be reinterpreted fundamental‘ly,
and this is part of the purpose of this paper, in which it is shown .that.ﬁmte
m is consistent with gauge invariance of the first and second kind if and

only if
A =0
Aﬂ- 123 (33)

my # 0

a condition that implies

¢ = clAl (3b)
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where
A, = (A, 1¢) (30)
C

and ¢ is the scalar potential and A the vector potential of the
de Broglie-Proca field. Condition (3a) is consistent with the Lorentz
condition (2} out is inconsistent with a massless gauge such as the
traditional Coklomb gauge.!~!

Furthermore, the notion of zero photon rest mass leads to considerable
physical obscurity, for example, in the quantization of the Maxwellian
electromagnetic field.?” 2! The traditional theory abandons the longitudi-
nal and timelike field polarizations as being “unphysical,” and in so doing
inevitably loses manifest covariance. Another traditional difficulty ®° is that
the little group of the Poincaré group?® for the massless photon becomes
the Euclidean E(2), which is physically obscure. The Lie algebra for the
Maxwellian electromagnetic field on the other hand is that of the Lorentz
group. These difficulties are accepted because it is traditionally thought
that special relativity implies zero photon mass, and that gauge invariance
of the first and second kind can be interpreted only in terms of zero
photon rest mass. In this paper it is shown that both of these traditional
viewpoints are flawed, and that in consequence, the Einstein-de Broglie
theory of light is consistent with both special relativity and gauge transfor-
mation. We recall for reference that the massless electromagnetic field is
summarized in the d’Alembert equation:

04, =0 (4)

Quantization® of Eq. (1) is straightforward, but that of Eq. (4) is beset
with considerable difficulty. From quantization of Eq. (1), for the massive
boson, the conclusion is reached that the massive boson is a particle (the
photon) with finite mass and three physically meaningful spacelike polar-
izatioy's, (1), (2), and (3). Quantization®® of Eq. (4) traditionally proceeds
in thd Coulomb or Lorentz gauge. To quote from Ryder,?’ “Quantisation
of the electromagnetic field suffers from difficulties posed by gauge invari-
ance. The quantisation procedure is outlined in both the radiation
(Coulomb) gauge, in which there appear only the two physical (transverse)
polarisation states, and in the Lorentz gauge, in which all four polarisation
States appear, the formalism being Lorentz covariant. The resulting diffi-
Culties are resolved by the method of Gupta and Bleuler.” The reader is
referred to Ryder® for an excellent account of these difficultics. The
Coulomb gauge is inconsistent, furthermore, with a nonzero photon rest
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mass, so that, conversely, finite m, implies immediately that the notion of
there being only two physically meaningful photon polarization states must
be abandoned. One is led ineluctably to the conclusion that there are four
physically meaningful photon polarizations ((0) to (3)).

Lorentz gauge quantization? in the limit m, — 0 is possible only with
the Gupta-Bleuler condition,?* which leads to the conclusion that admix-
tures of timelike and longitudinal spacelike photon polarizations are
physical states.?’ In a diametrically self-contradictory procedure, the tradi-
tional theory abandons these physical states as unphysical.

This procedure is logically untenable, and recently>~* this has become
clear through the discovery of a simple relation between longitudinal and
transverse solutions of Maxwell’s equations in vacuo:

B ED x E® B® x B® Bk S
" Eyci By ¢ (%)

Equation (5) comes directly from the original Maxwell equations, without
the introduction of scalar and vector potentials, and is an entirely novel
relation between physically meaningful electric and magnetic components
of the electromagnetic field in vacuo. It can be derived without reference
to gauge theory, but is consistent with gauge invariance. Here EV and E®
are the oscillating transverse components of the electric field, taken to be
a plane wave in vacuo. The vector product in Eq. (5) is defined by the
Stokes parameter S;:

E® X E? = —-§;k (6)

In a light beam in which there is some degree of circular polarization,
therefore, S, is always nonzero, implying that the longitudinal magnetic
field B® is nonzero in vacuo. The transverse components in Eq. (5) are
the usual vacuum plane wave solutions of Maxwell’s equations:

E A E
EO = T;(i —)e®  E@ - T;(i +ij)e
B (7)
0 ,.. PN 2) _
—(ii +j)e B =

V2

where the phase is

B® —ii + j)e ™

By
ﬁ(

d=wlt—Kk-r

Here  is the angular frequency at an instant ¢, and x is the wave vector
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at a point r. It can also be shown? that the concommitant longitudinal
electric field E® exists in vacuo, and is related to B® by

E® x B® = B® x E? (8)

so that E® is nonzero if B® is nonzero. The imaginary iE® is expressible
as:

\ iE® o iE.k (9)

It is worth demonstrating explicitly that B®® and E® are solutions in vacuo
of the Maxwell equations, because

dB>
VXE®=0 - =0
ot
1 JE® 10
VXB® =0 POl =0 (10)
c t

V-E?=0 V-B®=0

These relations follow from Egs. (5) and (9); ie., B® and E® are
solenoidal and phase independent.

In this paper we show that B® and E® are natural consequences of the
FEinstein-de Broglie theory of light, and are physically meaningful magnetic
and electric fields. Experiments to detect them would support the theory
of Einstein and de Broglie. Equations (5) and (9) are therefore relations
between longitudinal and transverse field components in the massless limit
of the Einstein-de Broglie theory. This conclusion is consistent with the
recent development?® by the present author of manifestly covariant elec-
trodynamics, using electric and magnetic four vectors. This development is
equivalent to the Einstein-de Broglie theory in the massless limit (m, — 0),
and is a direct consequence of the existence of B and E® defined by
Eqs (5) and (9), respectively. It is impossible to reconcile the existence of
qu (5) and (9) with traditional thinking, in which B and E® are
abandoned as unphysical. Clearly, B and E® are formed from physical
quantities such as the Stokes parameter S;. In the Einstein-de Broglie
theory, on the other hand, B® and E® are physical fields, components of
the four vectors E, and B, in vacuo. A longitudinal solution of Eq. (1) for
B® is given in Section II, where it is shown that B® is an exponentially
decaying function of ¢ in the propagation axis Z of the light beam. The
divergence of B® is nonzero for finite m,, and is given by —£¢B®, a
magnetic monopole in vacuo. The numerical value of ¢ (102 m~!) is so



small that for all practical purposes, and for laboratory dimensions, B® is
a constant magnetic field, independent of distance and time. Section III
derives general solutions of Eq. (1) for the transverse and longitudinal
fields of the electromagnetic plane wave in vacuo. A discussion follows of
the role of B® and E® in various experimental tests of the Einstein-
de Broglie theory of light, taking into account experimental evidence!” for
finite photon mass.

II. LONGITUDINAL SOLUTIONS OF THE EBP EQUATION
IN VACUO

In quantum optics interpreted by Einstein and de Broglie'” light is
constituted by real Maxwellian waves which coexist in spacetime with
moving particles—photons. In the Copenhagen interpretation of Bohr,
Schrédinger, Pauli, Glauber, and others, on the other hand, light is made
up of waves of probability, which cannot coexist in spacetime with pho-
tons. In the interpretation of the Einstein-de Broglie school, the photon is
massive; in that of the Copenhagen school, it is not necessarily so. The
basic electrodynamical equations are therefore (1) and (4), respectively.
Although it is frequently asserted!~!% 2% 2! that the photon is massless in
its rest frame, there is no supporting experimental evidence. Indeed, it
appears to be impossible to test the hypothesis of zero m, because it is
impossible to test the implication that the range of electromagnetic radia-
tion is infinite. On the other hand, finite m, leads'’ to such observable
implications as anomalous red shifts, reported on numerous occasions, and
tired light phenomena. Einstein,'® some years after his theory of special
relativity (1905), and during his development of general relativity, pro-
posed that the photon’s rest mass is finite, i.e., that the mass of the photon
is finite in a frame of reference moving at the speed of light. This
leads'”"*° to Eq. (1). It is clear therefore that Einstein saw no contradic-
tion with special relativity in his proposal; i.e., Eq. (1) is Lorentz covariant,
even though the photon rest mass, m,, is nonzero. Several conclusions
flow immediately from this proposal.

Firstly, the notion that the photon is massless in the frame of the
observer (laboratory frame) because it travels at the speed of light is
incorrect if the photon rest mass m, is nonzero. In the contemporary
description? of special relativity, the reason for this is that the quantity

C=PP, (11)

is the first (or “mass”) Casimir invariant of the Poincaré (inhomogeneous
Lorentz) group. Here P, is the generator of spacetime translations, first

introduced by Wigner in 1939.%° A spacetime translation is defined by the
operation

x;=xu+a“ (12)

where x, is the distance/time four vector of Minkowski spacetime. P,
dd s not appear in the homogencous Lorentz group, i.c., in a group
maue up only of boost transformations and Lorentz rotations. The quan-
tity mj (the square of the rest mass) is therefore invariant to Lorentz
transformations, i.c., is the same in the rest frame of the photon (which
travels at the speed of light) and in the observer frame. The invariant m}
appears in Eq. (1), which is Lorentz covariant, i.e., fully consistent with
special relativity. The latter theory does not imply, therefore, that the
photon rest mass is zero. It is clear that Einstein himself!” '8 saw no
inconsistency with special relativity in his proposal of finite m,, and
contemporary theory also shows that m(z) is an invariant of the Poincaré
group. The Einstein-de Broglie theory of light is therefore consistent with
special relativity. This means that the rest frame momentum of the photon
(a massive boson) is timelike, not lightlike, and that the photon has rest
energy mocz, i.e., that the energy of the photon in its own frame of
reference, which moves at the speed of light, is m,c?, about 10 7 J. The
spacelike momentum of the photon in its own rest frame is zero, because
it does not move relative to this rest frame. In its rest frame, the photon is
thus described by a four vector:

qy, = (07 0’ 07 im()c)

En (13
= (0,0,0,1—0) )
C

in Minkowski spacetime. In the laboratory frame of the observer, however,
the photon’s momentum is finite, and the vector (13) is transformed into

py. = Ly.qu (14)

where L, denotes a Lorentz transformation®” which transforms g, into
p,.- Clearly, the latter is observed in the laboratory. Wigner? showed that
this transformation can be described from a knowledge of the rotation
group, and that the little group for g, is a rotation group.

As discussed by Vigier!” the consequences are that photons slow down
in the laboratory frame of an observer, although the rest frame must move
at the speed of light, which is a universal constant of special relativity.
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Photons in the frame of the observer behave like relativistic nonzero mass
particles, with rest mass m, = 10~% kg. The energy momentum four
vector in the observer frame is p,, with components'’

_( .En)
p, = |pi—
~1,2
En=hv = m0c2(1 - —5) (15)
c
Chy hy
Ipl = — = —
v c

The velocity of the photon in the observer frame is therefore not ¢, but v,
defined from the Guiding Theorem of de Broglie, the basis of wave
mechanics:

Eny = hvy = myc? (16)
In other words, the energy of the photon in the rest frame is
Eny = myc?* = hy, (17)

and its energy in the observer frame is

-1/2
v
En = m0c2(1 - C_Z) (18)

= hy

so that there is a change in the frequency of light from one frame to the
other. This is the origin of observed distance proportional shifts,!” the
“tired light” of Hubble and Tolman. There are photons, therefore, that
move at low velocities and contribute to the mass of the universe. Clearly,
this is a consequence of the fact that the field has a finite range, of about
10%® m, as discussed in the introduction. This conclusion does not contra-
dict the principle of conservation of energy, because in special relativity,
the quantity PP, is invariant to Lorentz transformation. Therefore,
special relativity does not imply that the rest mass of the photon is zero, as
in the traditional interpretations.!~16: 2 21

Secondly, if m, is not zero, the traditional interpretation of gauge
transformations must be revised fundamentally, because it leads to the
conclusion that the photon rest mass m, is zero and therefore contradicts

20, 21
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the Einstein-de Broglie theory and experimental evidence!’ for finite
photon mass. Traditional considerations of gauge transformations also
lead to the principle of gauge invariance (eicheninvarianz prinzip), which
holds if and only if the photon mass is identically zero. For these reasons,
we consider carefully the basic Lagrangian formalism of gauge theory, and
mo’{ .y its interpretation to make it consistent with finite m,. The result of
our‘considerations is Eq. (3a) of the introduction.

Geometrically, a gauge transformation of the first kin
in the (1, 2) plane of the “vector” field

d?® 2! is a rotation

b=¢i+td,j (19)

through an angle A. Under such a rotation, Noether’s theorem leads to
conserved charge Q in a volume V'

Q- f(¢*——¢—a£) (20)

and a conserved current

(.06 g

The existence of Q and J, is based on the invariance of action. When the

action is real, the Lagrangian is%®

b \ [ ad*
Z = (—(b)(i) - m*dp*e (22)

dx “ dx,,
whe\ e m is a mass associated with the complex field ¢, defined by

¢1 i,
2

* _ 4’1 _id’z
YT

(23)

Since A is a constant (an angle in (1, 2)) the gauge transformation of the
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first kind, which can be expressed? as
¢ —ce iy ¢*F el (24)

is the same at all points in spacetime, so that at an instant ¢ the same
rotation occurs for all points in space. This contradicts special relativity
whose universal constant is the speed of light, and which implies that
action at a distance is impossible. Electrodynamics cannot, therefore, be
invariant to a gauge transformation of the first kind. To comply with
special relativity, A is made an arbitrary function of spacetime:

A= A(x,) (25)

so defining a gauge transformation of the second kind. For A < 1,
electrodynamics is invariant to the gauge transformation of the second
kind:

¢ > ¢ —iA(x,)d (26)
Condition (25) implies,?® however, that d¢ /dx, does not transform in

the same way as ¢, i.e., does not transform covariantly, so that the action
is no longer invariant®® %!

A
6L =1, #0 (27)

I

with % defined by Eq. (22). To preserve the invariance of action under
(26), the potential four vector A, is introduced through

This implies the need for two more conditions®:

A A L oA (29)
W AT o,
and
Y, = ezA#Auqb*(b (30)
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Equations (28) to (30) imply %
8L+ 0%, +65,=0 (31)

In fu} damental gauge theory, therefore, A . of the conventional
d’Alemvert equation is introduced to produce Eq. (31) in association with
the extra term (30). So far, nothing has been said about the need for zero
mass. We note that if A,A, =0, &, is automatically zero.

The field A, itself makes a contribution to the Lagrangian, implying
the need for an additional #; to maintain a zero overall action?:

"?3 = _%FLLVF[LV (32)
where
A, GA#
F, = - (33)
dx, dx,

the four curl of 4 - 18 the electromagnetic field four tensor,?’ an invariant
under (29). The complete Lagrangian is therefore

L =L +L + %+, (34)

If the mass, m,, associated with the electromagnetic field is not zero,
then the form of the Lagrangian is changed from (32) to

= ~AELE, + imiA, A, (35)

v o
and this is invariant to Eq. (29) if and only if

miA,A, =0 (36)
If m, # 0, then

AA, =0 A, #0 (37)

is the only alternative possible, as described in the introduction. Conven-
tionally, it is asserted®” 2! that the invariance of .%, under (29) means that
m, = 0. However, in the Einstein-de Broglie theory, Eq. (37) is consistent
with Eq. (29), and m,, is quantized as the photon rest mass. Equation (37)
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is also consistent with Eq. (31) of fundamental gauge theory, because”

&, =0if A, A, = 0. This implies that

aA
8, = 2eA#(a——)d)*d) =0 (38)

Xy

so that
0F+ 8% = -6,

1l

dA
—2eA#(—)d)*¢ (39)
6x#

=0

i.e., the action is conserved as in Eq. (31). The condition (37) for finite m,
is one in which the EBP equation is invariant to the gauge transformation
(29), which is implied by the need to conserve action under the gauge
transformation of the second kind, Eq. (26). We therefore conclude that
gauge theory does not imply that photon rest mass is zero.

If my # 0, the quantity A, 4, vanishes, implying that ¢ = c|A| where
A, = (A,i¢ /c). This condition is furthermore consistent with Egs. (1) and
(2), which is

1 d¢
. ——=0 40
A% A+C2 Py (40)
that is,
104
A= ——— 41
VoA c dt ( )

Additionally, using the Lorentz condition, Eq. (40),

1 é°

(Vz—?at—z)A=O (423)
1 9%

(Vz—?aT)dJ=O (42b)

whose solutions are the Liénard-Wiechert potentials.!”'® 2° Clearly,
Fac (472) and (49h) hecome the same if & = ¢lAl in S.I. units.
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Fundamental gauge theory does not imply that the photon rest mass
must be zero, contrary to much of the current literature.'~'® 20 2! Sec-
ondly, special relativity, as pointed out by Einstein!” '® also does not imply
zero photon rest mass. Thirdly, there is experimental evidence,'” for
nonzq "> mg, and none for zero photon rest mass. Fourthly, the transverse,
radiav on, or Coulomb gauge'~'% 2 is inconsistent with ¢ = c|A|, because
in that gauge ¢ = 0, A # 0. The Lorentz gauge and Dirac gauge!” are, on
the other hand, consistent with m # 0.

Having argued in some detail in this way, it becomes easy to see that
much of the obscurity in the current thought on electromagnetism is due
to the notion that the photon is massless and travels at the speed of light.
Both statements contradict experimental evidence.!” These notions result
in “too much gauge freedom,” in that Eqs. (26) and (29) can be satisfied
with my = 0 by the Coulomb, Lorentz, and other gauges. For m # 0, as
in the Einstein-de Broglie theory, the Coulomb gauge is invalidated, but
the Lorentz gauge is a direct mathematical consequence of the EBP
equation (1). The excess gauge freedom for m, = 0 results in severe?® 2!
difficulties of quantization of the electromagnetic field, whereas quantiza-
tion of the EBP equation (a wave equation) is straightforward,? leading to
longitudinal, physically meaningful, spacelike photon polarization, as well
as the two transverse spacelike polarizations. It is natural to expect that a
particle, the photon, should have three spacelike polarizations in three
physical dimensions, X, Y, and Z.

The m; = 0 assertion is conventionally associated with the notion that
the electromagnetic field is a massless gauge field with two independent
components, customarily identified with left and right circular polariza-
tion. However, even in the limit m, = 0, the same Maxwellian field is
covariantly described by the four components of A .- The Bohm-Aharonov
effect®® shows that A, is physically meaningful. Recent work, % leading
to Eq. (5), shows conclusively that there is a well-defined relation between
the transverse ((1) and (2)) and longitudinal ((3)) components of solutions
of Maxwell’s field equations in vacuo. It is straightforward to show that the
thre : magnetic field components form a classical cyclic permutation in the
cir(j lar basis, (1), (2), and (3): with B® = B,

B(l) X B(Z) — iB(O)B(3)* B(3)* — B(3) (433)
B® X B(3) = iB(O)B(l)* B(l)* - B(Z) (43b)
B® x B = {BOB@®*  B@* — B (43c)



Furthermore, there exist classical permutations involving E®. If we assert
E® = EOK, these are, algebraically,

ED x E® = iEQcBM* (44)
E® x E<3) = —EO¢B*
E® x E(l) — E(O)CB(Z)*
E(l) X B(Z) — B(O)E(3)* (45)
E® x B® = iBOED*
E(3) X B(l) — _B(O)E(Z)*

ED x BV =0

E(Z) XB®=0 (46)

E® x B = 0

and are reminiscent of the Lie algebra of the Lorentz group,? a classical
commutator algebra that is built up with boost and rotation generators
defined in Minkowski spacetime. However, all the eqns. (45) violate T
symmetry, which is a consequence of the fact that E® is imaginary and
cannot be derived from transverse solutions of Maxwell’s equations. Eqns.
(45) are not valid equations of electrodynamics while eqn. (44) is valid and
identical with egn. (43a). This does not mean that E® itself violates T
symmetry.

Before proceeding to the derivation of B®® for nonzero m,, the purpose
of this section, it is demonstrated that Lie algebra also applies to the
electric and magnetic components of electromagnetic radiation in vacuo
(the Maxwellian field) provided that these components are defined as
classical field operators directly proportional respectively to the boost and
rotation generators of the Lorentz transformation. This is a mathematical
demonstration of the fact that if the longitudinal spacelike components of
these fields are unphysical (i.e., zero), then the Lie algebraic structure of
the Lorentz group is contradicted. This means that the Lorentz transfor-
mation itself is incorrectly defined, in that the longitudinal (Z) boost and
rotation generator components are incorrectly asserted to be zero. This is
equivalent to destroying the geometrical structure of Minkowski space-
time. Even in the Maxwellian limit m, — 0, therefore, the assertion that
B® and E® are zero results in a mathematical reductio ad absurdum.

That the Maxwell equations in vacuo are the Lorentz covariant equa-

tions?% 21;
oF oF
P (47)
dx, dx,,

where F,, is the dual of F,,, the electromagnetic field four tensor. The
latter is antisymmetric under Lorentz transformation and its structure can

be displ% «d as

O _El _E2 —E3
E, 0 —cB cB
F = 3 2
wy E, B, 0 —cB, (48)
E3 _CBZ CB] 0

We note that this structure is identical with that of the Lie algebra of the
Lorentz group, defined® by the dimensionless, boost generator K, an
operator, and the rotation generator J;, also a dimensionless operator. The
Lie algebra of the Lorentz group can be displayed as

—_
>
(5]

K,
Iy =i 9)

K
0

1.e., as

Fomv=0,..,3)" . (50)

(i,j,k=1,2,3)

Equations (49) and (50) are condensed representations of the classical
commutator (Lie) algebra of the Lorentz group?:

[fx, AY] = ifz and cyclic permutations (51a)

I [kx, Iey] = —iJ, and cyclic permutations (51b)
[kx, fy] = iK, and cyclic permutations (51c)
[Ky,dy| = 0ete. (51d)

The geometrical equivalence of (48) and (49) means that

>

I

A

B, = B,J

i

E, E\K; (52)
odi



where Ei and éi are classical electric and magnetic field operators, a
result that is implied by the proportionality of the classical operator
matrices F’w and J,,. In the Cartesian basis (X, Y, Z),

[ By, éy] = iB, B, and cyclic permutations (53a)
[E Y lfy] = —icB,B, and cyclic permutations (53b)
[ﬁx, éY] = iB,E, and cyclic permutations (53¢)

[Ex. By] = 0etc. (53d)

Equations (53) represent a classical operator equivalent of thp vector
products in Egs. (36), where the Maxwellian fields are vectors in space,
and not operators defined in spacetime.

The ansatz (52) is based on the fundamental Lie algebraic structure of
Minkowski spacetime, and implies the following:

1. The classical electric field operator [fi is proportiona} to a boost
generator, and the classical magnetic field operator B; is propor-
tional to a rotation generator in Minkowski spacetiAme.

2. If the longitudinal component operators éz and E, are asserted to
be zero, or unphysical, the structure of the Lle algebra is destroyed
in Egs. (53). For example, if B,=E,=0,[By, Byl =0 and from
the structure of ] in Eq. (52), this is mathematically incorrect.

Explicitly,
|By. By| = B3| 7y Jy| = B3, # 0 (54)
because®
00 0 0
. _ Joo o o0 552
=g o 0 1 (332)
00 -1 0
000 0
. Jo o o0 -1 ssh
v==llg 0 0 o0 (55b)
010 O
0 0 0 0
- _ o o0 1 0 s
Z="10 -1 0 o0 (55¢)
0 0 0 0

S L S

s

3. T(, e Maxwell equations (47) are seen to be relations between boost
and rotation generators defined in spacetime:

al,, ar,,
2 =0 =0 (56)
8xu dx,

and are thus given a precise geometrical interpretation. In this light,
it is seen that the d’Alembert equation (4) is also geometrical in
nature:

oL, =0 (57)

where fw is the four curl of f,u:

Fo= - (58)

4. It may be seen precjsely that the conventional notion that the
Maxwellian B, (and E,) is unphysical is equivalent to the geometri-
cally incorrect assertion

I, = (59)

o oo
oo oo
oSO oo
oo oo

which by implication habitually!~162%-2! replaces the correct rotation
generator (55¢).

There is of course no experimental evidence for Eq. (59), even in the
massless limit /m, — 0 conventionally associated with the Maxwellian field.

(itr geometrical interpretation of the Maxwell field equations is a
direc: logical consequence of the geometry of Minkowski spacetime itself
and of the theory of special relativity. This is consistent with the fact that
Einstein’s considerations of the Maxwell equations led to his formulation
of special relativity. If it is asserted that longitudinal solutions of Maxwell’s
equations be unphysical, special relativity is contradicted and the structure
of the Lorentz group and its associated Lie algebra is destroyed. There is
no experimental evidence whatsoever that the longitudinal solutions of

Maxwell’s equations in vacuo are unphysical, and there is no evidence for
=0
0 .



The commutator relations (51a) and (53a) lead to a method of quantiza-
tion of the Maxwellian field simply by noting the ordinary angular momen-
tum commutator relations of quantum mechanics. In Cartesian terms,

[Fv. Iy ] = it (60)

are structurally identical with Eq. (51a) except for # (which has the units

of angular momentum). In quantum mechanics, the J operators in Eq. (60)
are angular momentum operators. Quantized angular momentum is there-
fore a consequence of the classical rotation generator,? as is well known.
The quantized equivalent of Eq. (53a) must therefore be

(B ] = (22|, (61)

to balance units, symmetries, and dimensions on the left and right sides.
This implies

A

" J
B = B(O)Z (62)

which is identical with the result obtained recently by the present author®
using an independent method of derivation. Therefore,

A

A J
B, = B“”;Z (63)

is the elementary longitudinal component of the quantized Maxwellian
magnetic field in vacuo. In the same way that # is the archetypical
elementary quantum of angular momentum, B is the elementary guan-
tum of magnetic flux density of the Maxwellian field in vacuo.

The eigenvalues of fz in Eq. (63) may be identified with those of a
massless boson (the “conventional” photon), i.e., AM,, where M, = +1,
so that the classical limit of Eq. (63) is

B, = BPk (64)

which is Eq. (5) in Cartesian terms instead of a circular basis. Equation (5)
is therefore geometrically consistent with the Lie algebra of the Lorentz
group. The generalization of our development to m, # 0 is now straight-
forward.

L(;Iavmg considered in some detail the geometrical structure of the
rentz group, we revert to a simpler development of the EBP equation
(1), solving it as a classical eigenvalue equation with the differential
operator:

= 2 —_—
b=-v +c 2 9t? (63)

The order of magnitude of ¢ is such that

0A, =104, (66)
which closely approximates the d’Alembert equation (4). It is clear, there-
fore, that the classical interpretation of the EBP field closely approximates
the Maxwellian field. However, in the EBP field, the Coulomb gauge is

Kmonmstent with Eq. (66), which must be written in terms of the spacelike
as

VZ 1 82 2
- ? 2 A=E&A (67)
with ¢ = ¢|A[. In the Galilean limit this equation becomes
VA = £2A (68)
Using the relation
B=VxA (69)

it can be seen that the equation

‘B =¢’B (70)

is the| ame as Eq. (68), because
VI(VXA)=¢2VxA (71a)
VXVA=VxX¢£A (71b)

.In consideri.ng the Galilean limit, we have removed the time dependence
in the solution for B of Eq. (70). Furthermore, since

V2B = 10752B ~ 0 (72)
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describes the magnetic component in vacuo of an electron?agnt.atic field
closely resembling the Maxwellian field, we know that the tlme-lndepep-
dent solution to Eq. (70) must be the longitudinal componenF, defined in
the propagation axis Z. The solution to Eq. (70) in Cartesian terms is

therefore

B = BDexp(—£¢Z)k
IBI =BZ

(73)

and since ¢ ~ 1072 m™!, this is for all practical purposes identical with
Eq. (64) of the Maxwellian field. Several physical consequences follow
from Eqgs. (64) and (73):

1. The longitudinal solution for B of the EBP field, Eq. (73), ?s for all
practical purposes identical with the corresponding Maxwelhan.solu-
tion, Eq. (64). By the caveat “for all practical purposes” we 1mply
laboratory dimensions and time scales. On a cosmic scale, in ‘v‘vl.nch
Z ~ 1/¢, Eq. (73) is different from Eq. (64) in general. In Fhe .tlre‘d
light” terminology of Hubble,!” B becomes a “tired field” if Z is big
enough (ca. 102 m).

2. Physically meaningful, practically identical, and longitudinal solu-
tions exist for B from the EBP and Maxwell equations, the formf:r
being considered as a classical wave equation. Tq assert B = 0 in
Eq. (64) is mathematically incorrect in the Maxwellian field, beca}lse
it corresponds to the assertion (59) in spacetime. For all practical
purposes, therefore, this assertion is incorrect in the EBP.ﬁeld.
Quantization of the EBP field? confirms this conclusion, leading to
a physically meaningful longitudinal photon polarization.

3. Since the EBP and Maxweilian fields are practically (i.e., in the
laboratory) identical, the EBP field obeys the various commutator
relations of this paper for all practical purposes, and the transverse
EBP solutions are practically those of Egs. (7). In the cosmology of
light from distant sources, however, this simple classical interpreta-
tion is no longer tenable.

Quantization of the EBP field is straightforward,?® whereas that of th’e
Maxwellian field is obscure. Although the rest mass m, of thg ph0t01_1 is
very small, it is essential that it be rigorously nonzero to maintain a loglcal
and self-consistent, physically meaningful, structure.for‘ the quant}zed
electromagnetic field in vacuo. If this is done, quantlzat‘lon results in a
consistent particle interpretation® in terms of a massive boson, with
eigenvalues M,;h, M, = —1,0, +1. The three polarization vectors of the
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qui.&ized EBP field are orthonormal and spacelike; i.e., there are phy-
sically meaningful longitudinal and transverse components. The little
group of Wigner? is a physically meaningful rotation group, utilizing the
three dimensions of space. If mq = 0, on the other hand, the constraint
A, A, = 0is conventionally lost, resulting in “too much gauge freedom.”
The two Casimir invariants®® of the Poincaré group vanish for m, = 0,
meaning that physical quantities that are invariant under the most general
type of Lorentz transformation must vanish identically for the massless
gauge field. This implies A“A# =0, if A, A, is to be an invariant of the
Poincaré group, diametrically contradicting the conventional use of gauge
freedom for a massless particle, i.e., contradicting the conventional asser-
tion that 4, A, # 0 for m, = 0. Thus, the conventional assertion A4, A,
# 0 for m = 0 is geometrically unsound, i.e., contradicts the geometry of
Minkowski spacetime, a geometry that requires A4 xA, to be an invariant
of the Poincaré (inhomogeneous Lorentz) group. We are forced to con-
clude that the widespread use of the Coulomb gauge, in which A,A4, =0,
is relativistically incorrect. The conventional assertion that m; must be
zero because A x4, 18 nonzero is also basically incorrect, because A4 LA,
is always zero in vacuo.

It is the habitual use of the Coulomb (or “transverse”) gauge that more
than any other factor leads to the conventional assertion that the electro-
magnetic field can have no longitudinal solution that is physically meaning-
ful. The Coulomb gauge is relativistically incorrect, and is inconsistent
with finite photon rest mass, for which there is experimental evidence.!?
The widespread use of the Coulomb gauge'~'6 20 2! ghou)d therefore be
viewed with caution. It is obvious that quantization in the Coulomb gauge
cannot be consistent with special relativity, because its use is equivalent to
the incorrect assertion (59). These difficulties are frequently compounded
in the literature by a series of misstatements, traceable to the relativisti-
cally incorrect assertion A x4, # 0. For example, it is frequently asserted
that the Lorentz gauge does not define A, uniquely. This is true if and
only if A#A“ # 0. If A#A,L = 0, then the Lorentz condition defines Aﬂ
uniqueli Quantization in the Coulomb gauge is therefore a mathemati-
cally incorrect procedure, and we discard its results as meaningless. In
other words it is meaningless to assert that the Maxwellian field has only
two transverse polarizations.

Quantization of the Maxwellian field in the Lorentz gauge® retains
manifest covariance, but is physically obscure. It also relies on the notion
that the gauge field is massless, so that quantization of the field must lead
to a massless photon. In consequence, the internally inconsistent notion
A, A, # 0 is habitually retained in the Lorentz gauge. This immediately
leads to the difficulty that the Lagrangian has to be modified with a gauge
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fixing term, a procedure that leads to a non-Maxwellian equation of
motion.?® Even with this artifice, the conjugate momentum field n’
vanishes,?’ and the traditional method is forced to assert that the Lorentz
condition, within whose framework the method is developed, cannot hold
as an operator identity. This difficulty is habitually resolved by the method
of Gupta and Bleuler,” a method that results in the conclusion that
admixtures of timelike and longitudinal spacelike photon polarizations are
physical states.’ Despite this conclusion, these states are abandoned as
unphysical in order to comply with the results of Coulomb gauge quantiza-
tion, which, as we have just seen, are incorrect. Quantization of the
Maxwellian field, regarded as a massless gauge field, is therefore inconsis-
tent and physically obscure.

In considerations of the Poincaré group, the notion of a massless gauge
field, habitually associated with the Maxwellian field, leads to the little
group?> 2° E(2), the Euclidean group of rotations and translations in a
plane. The physical significance of this little group is obscure.?” Its Lie
algebra does not correspond to that of a rotation group, but it is the group
that is needed to maintain a lightlike vector invariant under the most
general Lorentz transformation. This suggests that the notion of a mass-
less field is physically meaningless. The traditional line of reasoning,
however, considers a massless particle traveling in the propagation axis
(Z) described by a lightlike four vector k. Invariance of k, under the
most general type of Lorentz transformation leads to the Lie algebra:

[L,. L] =0
[/, 4] =i, (74)
[ﬁz,fJ =iL,
where
L=k, -/,
L,=K,+J,
Thus,

N SR (75)
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/
{ n Cartesian terms, X = 1, Y = 2, Z = 3 and if we attempt to apply to Eq.
(75) the Lorentz group algebra of Egs. (51),

[Ri. K.] = [Ry. Ry] = -0, (762)
|7, 7] = =[de. 4y = -id, (76b)
[R. 4] = [Ry. J] = (76¢)
|7, = [dy.k,] = (76d)
we obtain
[L,. L] =2if, #0 (77)

Since in the Lorentz group
J,#0 (78)

in general, Eq. (77) contradicts Eq. (75).

Therefore, the most general Lorentz transformation that leaves the
lightlike momentum vector k, invariant cannot be described by the Lie
algebra of the Lorentz group. This implies that the notion of lightlike
momentum (a massless particle traveling at the speed of light), is not
relativistically self-consistent. This is another way of demonstrating that
the quantization of a massless field into a massless particle is beset with
obscurity; i.e., we are led to the conclusion that the Maxwellian field has
no meaning in quantum theory. Attempts to impose a meaning lead into
physical obscurity as we have described. In the Einstein-de Broglie theory
of light, the quantization of the EBP field leads directly and without
difﬁcu(j y? to a particle interpretation of light in terms of a massive boson.
Quant.m /classical equivalence in the EBP field is therefore clear. The
only physically meaningful and consistent interpretation is to accept the
photon as a massive boson whose classical field is described by the
classical limit of the EBP equation. The mathematical limit of this field for
zero mass is the Maxwellian field. Direct quantization of the Maxwellian
field, regarded as a classical massless gauge field, is physically obscure.
The quantized Maxwellian field must therefore be defined as being for all
practical purposes the quantized EBP field, with which it is practically
identical because photon mass is numerically very small.
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IIl. TRANSVERSE SOLUTIONS IN VACUO FOR FINITE
PHOTON MASS

The EBP equation can be written in terms of the tensor F,, defined in
Eq. (43) as
aF

L= g4, ~ 0 (79)
dax

I

and, as we have seen, the Lie algebra associated with F,, is given by
Egs. (43)-(46). Therefore, transverse solutions of the EBP equation in
its classical limit obey the classical cross products in Egs. (43)-(46). Using
Eq. (43a) with the longitudinal solution of the EBP equation (73), we
obtain

B,
M) = O b o —£2/2
B 7 (ii + j)e'?e (80)

B® = p*

and its complex conjugate. The difference between this solution and the
equivalent Eq. (7¢) for the Maxwell equations can be expressed by replac-
ing the wave vector of the Maxwell equations by
i£ o
Kz 2Kz = = for polarization 1
i o
Ky > Ky + e for polarization 2

At visible frequencies, the order of magnitude of the Maxwellian « in
vacuo is given by

o 109

= — A~

-1
Kz = T~ s T 0m (81)

so that at these frequencies x, is about 33 orders of magnitude greater
than £. For all practical purposes, therefore, the transverse solutions of
the classical limit of the EBP equation are identical with those of the
Maxwell equations.

This is a simple demonstration in the classical limit that the fields
associated with the EBP and Maxwell equations contain physically mean-
ingful longitudinal as well as transverse components in vacuo. In the next
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s tion we discuss several experimental consequences of physically mean-
ingful longitudinal fields when electromagnetic radiation interacts with
matter. Firstly, however, we review the available experimental evidence for
finite photon mass, following a recent account by Vigier.!”

IV. DISCUSSION

There is available an increasing amount of evidence for finite photon rest
mass, upon which is based the theory of Einstein and de Broglie. A recent
experiment by Mizobuchi and Ohtake!” has demonstrated for single
photons the simultaneity of classical wave and particle behavior in light.
This has demonstrated for the first time that the Copenhagen interpreta-
tion cannot be valid, but supports the Einstein-de Broglie interpretation as
reviewed recently by Vigier,'” an interpretation that implies, for example,
that photons are emitted from a source in quanta of energy with well-
defined directionality. The wave associated with a single photon has a
physical reality. Light is constituted by massive bosons (photons) con-
trolled or piloted!” by real surrounding spin one fields. The motion of the
photon is thus controlled by a quantum potential. The photons are the
only directly observable elements of light and behave in Minkowski space-
time as relativistic particles with finite mass. Light is also constituted in the
Einstein-de Broglie theory by physically meaningful fields (waves), which,
as we have seen, obey Maxwell’s equations for all practical purposes,
essentially because the photon rest mass is finite (10™% kg) but small.
These fields are described by complex vector waves, which also describe
photon motion. Thus, if there is a longitudinal photon polarization, there
must be a longitudinal field polarization, as described already. Longitudi-
nal field solutions of the EBP equation were first derived by Schrodinger
and de Broglie and, in general, the EBP equation has longitudinal and
transverse WAVE solutions.!” Since these are also wave solutions of
Maxwell’s equations for all practical purposes, it becomes clear that
Maxwell’s equations must have physically meaningful longitudinal solu-
tions. TH : relation of these to the transverse solutions has only recently
become tiear,” % as described in Sections 11 and III of this paper.

Following Vigier’s recent description'’ there are several consequences
of finite photon mass. The r dependence of the Coulomb potential is
replaced by that of the Yukawa potential:

exp(—£Z)

y & 7 (82)

There exist low velocity photons (i.e., photons traveling at considerably
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less than the speed of light ¢), whose small but finite mass contributes to
that of the universe. There is, thirdly, a red shift proportional to exp(—£2),
which can be applied to explain recent astronomical observations of
anomalous red shifts from several distant sources, such as quasars. These
“tired light” phenomena originate in the EBP equation and may account
for observed anomalies in double-star motions, galaxy clusters, observed
variations of the Hubble “constant,” and other evidence reviewed in the
literature.!” A photon with finite rest mass behaves relativistically in the
frame of observation, leading to the expectation!” of a direction dependent
anisotropy in the frequency of light in the observer frame. Such an
anisotropy has been observed experimentally by Hall et al*® in the
direction of the apex of the 2.7 K background of microwave radiation.
These Boulder experiments are currently being repeated in Copenhagen
by Poulsen and coworkers.'” Experimental evidence for the Einstein-
de Broglie theory of light has also been reviewed by Vigier!? in the

following areas:

1. Super-luminal action at a distance, a facet of Einstein’s interpreta-
tion of light

2. The question of locality or nonlocality of the quantum potential

3. Direct experimental testing of Heisenberg’s uncertainty principle
using single photons

4. Experimental testing for the existence of particle trajectories in light
(einweg /welcherweg)

5. Testing the existence of physically meaningful waves without the
presence of particles, for example, the recent experimental observa-
tion by Bartlett and Corle3! of the Maxwell displacement current in
vacuo

6. Testing directly the existence of the quantum potential with inter-
secting laser beams and laser-induced fringe patterns

There is, therefore, a considerable amount of experimentation in progress
concerning the existence of finite photon mass, and it is no longer tenable
to assert! 162021 that the photon mass is zero.

Similarly, it is not reasonable to assert that B® and E® must be zero,
“jrrelevant,” “unphysical,” or similar, as in much of the contemporary
literature. It is in fact implied, but not specifically stated, in the work of
de Broglie and Schrodinger!” that B® and E® must exist. They exist, as
we have seen, both for finite photon mass and in the Maxwellian limit, but
finite photon rest mass is essential for a natural quantization of the
electromagnetic field. For all intents and purposes, therefore, evidence for
B® and E® is evidence for finite photon mass, and corroboration for
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{other sources of evidence quoted already. The present author has pro-
posed a number of different magneto-optic experiments®~2® that would
test for B® through its interaction with matter, using its characteristic
square root dependence on light intensity I, (W m~2). In free space,
fundamental electrodynamics leads to23-28

|IB®| ~ 10771)72 (83)

and assuming that B® acts as a magnetic field whose time average is
nonzero, it is to be expected?~%® that there exist the following effects
(collected details in Ref. 26) proportional to the square root of laser
intensity, provided that the laser is circularly polarized: (1) inverse
Faraday effect (magnetization due to B®), (2) optical Faraday effect
(azimuth rotation due to B®), (3) effects of B® in NMR (preliminary
observations reported in Ref. 32) and ESR spectroscopy, (4) Cotton-
Mouton effect due to B, (5) forward—backward birefringence due to B®
and (6) reinterpretation of antisymmetric light scattering and similar’
phenomena in terms of B,

Finally, we propose the Bohm-Aharonov effect due to B® of a circu-
larly polarized laser, which replaces the solenoid, or iron whisker? of the
conventional Bohm-Aharonov effect. The Bohm-Aharonov effect?” indi-
f:ates that the vector potential in quantum mechanics is physically mean-
ingful, and that the vacuum has a nontrivial topology. It is therefore one of
the most incisive effects in contemporary electrodynamics. The experiment
has been repeated independently several times and consists of placing a
small solenoid between two slits, which are used to generate interference
fringes due to electron beams. The magnetic flux density B (tesla) is
confined within the solenoid, and is inaccessible to the interfering elec-
trons passing through the two slits. Despite this, the solenoid is observed
experimentally?’ to produce a shift in the interference pattern (or fringes)
set up by the electrons. This shift is due to the curl of the vector potential
1f& Set.'"p outside the solenoid. Essentially, A changes the electron wave
unctig 1

g = Illflexp(ip r) (84)

because p, the electron momentum, is changed to p — €A, where e is the
electronic charge. This does not occur in classical mechanics, but in
quantum theory, the electronic wave function, and thus the electron, is
mﬂugnced by A even though it travels in regions where magnetic flux
density B is zero. This means that there is nonlocality in the integral
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$A - dr (Ref. 20). The Bohm-Aharonov effect is therefore evidence for this

type of nonlocality.
The shift is given in meters by

= ——® 85
Ax h (85)

where A is the wavelength of the electron beam entering the two slits, L is
the distance between the screen containing the two slits and the detector
plane, d is the distance between the two slits, and

q):fB-dS=9SA-dr (86)

is a surface integral.
It is clear that if the solenoid is replaced by a thin, circularly polarized,

laser beam, there should be a Bohm-Aharonov effect due to B in which
this field shifts the interference pattern of the electrons, with B of Eq. (85)
replaced by B®. This shift should be proportional to the square root of the
laser intensity, reverse with the sense of circular polarization of the laser
(because B® changes sign), and disappear if the laser is linearly polarized
or incoherently polarized. This laser-induced fringe displacement would
be a particularly interesting investigation of the nature of B®, and of its
concommitant A®. Presumably B® is confined to the radius of the laser
beam, and A® exists outside this beam, as in a solenoid generating a
conventional, longitudinal, magnetostatic field. The experiment would
prove both the existence and the nonlocality of A®.
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