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ABSTRACT

The report deals with a representative fraction of the theoretical
and experimental work of approximately the last decade on molecular
relaxation (taken to wean dissipation of the energy of a small external
field by molecular fluctuations in a fluid) in the following areas of
study.

(i) Dielectric complex susceptibility in the range of frequencies up

to 1013 gz (i.e. into the far infra-red) related to the motion of a unit
vecunrgbin the dipolar axis, or the temporary induced dipole in the case
of far infra-red absorptions in liquids and gases of non-dipolar molecules.
(ii) Spin-rotation and spin-spin relaxation times of nuclear magnetic
resonance, related to the molecular angular velocity J and u respectively,
(iii)Depolarised Rayleigh bands of scattered light, related to the second
harmonic orientational correlation funetion of 4 (permanent or induced).

The fundamental fluctuation-dissipation theorem (and its derivation
from the classical Liouvilile equation of a canonical ensemble) is described
fully. The important equation linking the complex susceptibility to the
dipole orientational correlation function follows from this treatment.
Recent advances in dealing with the "dynamic internal field" are then
reviewed in relation to the absorption/dispersion of permanent dipoles in
the liquid phage.

The properties of the correlation function <u (o).» () »as first
delineated by Gorden about 10 years ago, are described. This leads on to
a major theme of the review - the model representations of the correlation

functions related to phenomena (i), (ii) and (iii) above. The limitations
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of the Langevin equation are revealed and the recent work of Kubo, Mori,
Gordon, Brot, Wyllie and others in extending the simple representation

to take account of, among other factors, a finite external torque
correlation time is discussed in detail. The use of this theory to give

a unified molecular dynamical view of the microwave/far infra-red absorp-
tions of dipolar and non-dipolar molecules is then described, followed by a
brief survey of the history of far infra-red observations in fluids,
confined significantly to the last decade. 2

The rotational correlation function CR(t) = 1/2 < BQg(o)zgjt)]—l>
is observed as the Fourier transform of depolarised Rayleigh bands, the work
in this field having benefited recently from the development of the
unified description of molecular dynamics in fluids, which embodies and
typifies the correlation function formalism. The work of approximately
the last ten years in this area is reviewed in relation to similar advances
made in the far infra-red/microwave region, and possible applications of
the extended Langevin equation of Kubo and Mori are discussed,

Nuclear magnetic resonance spin-rotation relaxation gives an insight
into the angular velocity in relation to <J(0).J(t) >, and spin-spin
relaxation times ro CR(t). The vast recent literature of NMR relaxation
studies jg sampled with the intent of showing how these relaxation times
yield important information on the anisotropy of molecular rotation, e.p.
that about the long axis of a lath-like molecule can be many times faster
than about the perpendicular axis. These representative results are
presented in comparison with those of (i) and (ii) and also compared with
computer simulations of the molecular angular velocity. Finally
translational motions are considered in relation to generalised Langevin
theory. An appendix explains the statistical terms used such as

correlation, Markov's hypothesis, the central-limit theorem etec.

INTRODUCTION

Dynamic properties of molecules in gases and solids have been
studied since the turn of the century, and, a very few years after that,
the firstattempts were made at understanding their behaviour in liquids.
These early attempts, though elegant in concept and mathematical technique,
were often based on some phenomenological, or macroscopic ideas (such as
the coefficient of friction) on the microscopic scale. The factors sought

were then calculated by returning to the macroscopie level.
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Over the last score or more years, some concepts and vocabulary
have been borrowed from the field of mathewatical statistics and new modes
of approach to the different aspects of transport phenomena and spectro-
scopic properties of fluid matter have been developed. These techniques
of equilibrium and non-equilibrium statistical mechanics form a mwould
within which is cast a general forralisr connecting various macroscopic
observables te the space-and-time microscopic behaviour of the molecules
of the fluid.

Basic among these concepts are the binomial distribution, the variate
(or randor variable), the stochastic process, correlation, the autocor-
relation function, the spectral function, and Markov's hypothesis, which
are defined in Appendix 1. Some theorews involving these features are

outlined in Appendix 2.

Some exarples of observable macroscopic phenomena and their molecular

relatives are as follows.

(1) TLielectric complex susceptibility in the frequency range 10~4 -
13 . . . . .
107 Hz, related to the motion of a unit vector u in the direction of the

resultant dipole mwoment.

(2) Bandshapes of near infra-red and Raman absorptions related to a unit
vector along the reolecular transition dipole.

(3) Depolarised Payleigh bands of scattered light, related to u.

{4) Spin-rotation, relaxation times of nuclear magnetic resonance, related
to the molecular angular velocity J.

(5) Bandshape of nuclear magnetic resonance absorptions related to Mx’
the x~component of the magnetization.

(6) Bandshape of polarised and depolarised Brillouin scattering, related

to the trace of the molecular polarisability tensor and the xy'th element
respectively,

(7) VNWeutron scattering, related to L., the position of the i'th nucleus

in a fluid.

(8) 1Isotope mass diffusion, related to the linear velocityfz_of the
molecules centre-of-mass,

(9) M8ssbauer bandshape, related to r., the position of the i'th nucleus

in a fluid.

(10) Complex dynamic shear compliance, a mechanical analogue to the electric
responses involved in (1).

(11) Those macroscopic dynamwic variables (such as viscosity) dependent upon
the microscopic parareters of Lennard-Jones (or other) intermolecular

potentials vital for computer experiments on molecular dynamics.
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This report deals mainly with a small, representative, fraction of
theoretical and experimental work in the fields (1), (3) and (4) in the
last decade or so. Lt begins with a derivation of the fundamental

fluctuation-dissipation theorem in classical mechanics.
THE FLUCTUATION-DISSIPATTION THEOREM

The nature of molecular dynamics in the liquid phase can be represented
in terms of a degree of statistical ordering [1] in the mean positions of
the molecules, which in turn may be attributed to a mean local structure.
This ordering has a statistical character, both in space, about centres
separated by distances of molecular dimensions, and in time over intervals
dictated by molecular velocities and molecular separations. The existence
of steric constraints iwposed by the geometry of the molecules explains
the collective character of the translational and rotational movements, as
distinct from the individual character of those in the dilute gaseous state.
At the same time, the fluctuations in the local structure allow occasional
movements of large amplitude (translations of the order of a molecular
diareter, rotations of a radian or so) to occur under favourable
circumstances.

In an isolated system, the existence of any fluctuation in a particular
macroscopic property of the syster implies that there are other degrees of
freedor available to that system which can interact with the degree(s) of
freedom which determine the magnitude of the property. In the case of
the kinetic energy (T), any fluctuations must be caused by transfer of
energy to or fror the other degrees of freedom available (e.g. rotation or
vibration). There is thus a relationship between the "frictionless"
spontanecus fluctuations of a property and the '"friction" characterising |
energy dissipation from the appropriate degrees of freedow. This provides
the connection between irreversible processes where energy dissipation from
a particular degree of freedom occurs, and the statistical fluctuations
in the equilibrium state, provided that the non-equilibrium state is only
slightly displaced from the original. This argument is expressed in the
fluctuation-dissipation theorem of irreversible statistical mechanies{1-11].

The configuration of a dynamical system at each time t may be
represented by coordinates . Wo matter how the g values are chosen, the

kinetic energy of an inertial system always turns out to be a quadratic

function of the velocities q:
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where the a values may be functions of the q values. A function of the
coordinates (q) and momenta (p) of the particles ip such a system that
remains constant throughout the motion of a system is the total energy E,
the sum of the kinetic and potential energies. {(The latter is defined
such that when a dynamical system of particles behaves such that it has a
total mechanical enmergy which is constant in time, then the extermal force
on the system can be represented in terms of the gradient of the scalar
potential function V, which depends on time explicitly, but is not a
function of the velocities (q) of the particles in the gystem). When E
is expressed in terms of the coordinates (q) and momenta (p) it is called
the hamiltonian function H. The fluctuation—~dissipation theorem is
applicable only in the domain of linear response, i.e. if the energetic
effect of the perturbation applied to the system is smwall compared with
its equilibrium hamiltonian.

If the system has r degrees of freedom, r can be chosen so that it is
independent of the g values (ql.....,qr) which will completely specify the
configuration, and similarly r independent momenta (pl.....,pr) can also be
chosen by P = BT/aér, where T is the total kinetic energy, as above.
Newton's equations of motion can now be expressed in terms of Hamilton's

canonical equations as:

q_ = 3H; p_ = -3H (L
r 3
Ip qu

Since H is independent of time:

d8 = ®H dg + BE dp = O (2)
dt 0q dt Bb dt

One can now develop a technique of simultaneously transforming from the
conjugate pairs (p,q) to other new pairs (P,Q) by a transformation that
keeps the cancnical egns (1) invariant in form. Such a process is called

a canonical transformation. A whole class of invariants such as the
hamiltonian can be expressed most conveniently in terms of Poisson brackets,
which for two arbitrary functions u and v of the p and g values are

defined as follows:

Il

[u,v] = r-)—zl[ (8u/dp ) (8v/3q,) - (Bu/dq )(sv/3p) ]

and have the following properties:
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(i) [u, K] = 0, where K is a constant;
(ii) [u, v+w] = [u, v]+ |u, wi;
(iii) [u+v, w} = [u, w] + v, w];

Gv) [uv, v} = u[v, w]+v[u, w];

() v, v} = -[v, u].

The dynamical equations set up in terms of Poisson brackets are invariant

under canonical transform. Thus egn. (1) becomes:

q. = [, ¢ 135 p.=[H p].
The behaviour of a function such as C, which depends on time t by
the intermediary of the coordinates q_ and P (e.g. the Euler angles

defining the orientation of molecules) can be written as:

Q_C_= ﬂ . E_c_:_ -+ . E
de " r % qu Py Bpr )

Using eqn.(1):

ac z[an 3C _ oH ac] [
T < e - == == | = [H, C], (3}
dt 3pr '5"{1_ qu Bpr
which is the Liouville equation of motion [1,2,4]:
ac _
it - LC, (4)
The mean observed value of C is given by [1-4, 7-10]:
C(t)> = J c(ps @) '£_(p, g, t) dpdq, (5)
r
where 1fc is the first-order space distribution function of the random

variable C. TFor an isclated system dlfc/dt = 0 by Liouville's theorem,

and therefore:

df _9¢ £[. 9F .. df .
E?—““E-Pr[qr?r*—pr_ﬁr]_o’

i.e. Bf I i. arf . Bf | _

ot rEqu +Pr"ﬁ']— LE. (6)

r T
Suppose that an external perturbing force F(t) results in a change H'
in the Hamiltonian of the system at equilibrium (Ho) . The new
Hamiltonian is given by:
= 1
H=H +H . (N

If A(Pr’ qr) is the property of the system responsible for this

increase in the Hamiltonian, then:
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H' = -A(p_, ¢ JF(t) ,
since H' is the internal reaection to the external time~dependent
perturbation F(t) (action and reaction being equal and opposite).

For example, the force F may be an electric field, and A then will
have the units of the electric dipole [11]. It is assumed that the
system can be observed by a study of a property B (related to A). The
new distribution funection is defined by:

£=f£ +£'(e): (9)

Denoting, respectively, L, and L' the operators associated via eqns.,
(3) and (4) with Ho and H', and using eqn.(6),

L{£, + £1(6))= [B, £, + £'(0)]

= [H, £ ] + [4, £7(0)] ,

so that
afo ar'
527—+ T Lo(f0 + £') - L'(fb + £')
] = - Lofo - Lof' - L'f0 - L'
Now, since —fg + Lf_ = 0, then:
at o]
-%-ig =-L f' - L'f - L'f (10)

If the perturbation is weak, the last term is negligible, since it is
the product of the increment of an operator with the increment of a

function[lo]. Also, starting from eqn.{8) then:

L' £ z ?a_l-l' ._._.a - ..al{.l __a#‘
T fpr CENCE Bp,___
=-F({) D, (11)
L [8A B 3A B |
where D = —— = "
r |3, 3¢, Pa, Pp|

Equation (10) thus becomes:

a_f-l
at

This can be formally integrated [1-4, 10] to give:

= - 1
L £+ F(DE, (12)

t
£ () = I exp(- (£t - t") LO)F(t')Dfodt' (13}

if L'(-©) = 0 (i.e. F zero at t = —-). Taking the mean value of B
as defined by eqn.(5), and using eqn.(13), then:
<B(t)> = - {B(p, @} £(p, g, t) dpdq

T t —-(t"t')LO
—_ ] 1 T 1
= 13Eq + LOF(t Ydt IB(t )e Dfo(t ) dpdg
r
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which can be written as:
t
= 1 1

<B(t)> Beq + LmF(t)wBA(t, t'yde'. (14)
The Liouville equation (4) has no quantity depending explicitly on
time, and can be formally integrated as:

o) = exp [(e - €L, Jecen (15)
so that:

et - 1y = et 704

o C(t") ,
by stationarity. Applying this equation with

wBA(t,t') = JB(t‘)Dfo(Zt'—-t)dpdq
T

It

JB(t—t')Dfo(O) dpdq , (16)
T
The second equality results from the stationary character in time of
be, which is taken at equilibrium, and of B, which depends only on
coordinates and momenta. wBA depends only on the change 8t = t~t'.
Equation (16) shows that g, is the response of B to a unit impulse
of F and is therefore called the response function[l], or the
after—effect function.

To calculate Dfo’ the type of set to which the system belongs
must be chosen., For the canonical set:

f0 « axp (—Hb/kT)

one has
Df_ = E %é Af, gEg _ gﬁ af, d9H, N
Py OH, 3q, q, 98, Ip,
and using eqn. (3):
pe = fof
° Tkt

[1-10, 2]

Rewriting eqgn.(16) using angular brackets to denote means

over p,q and t:

by, (8) = g <AIB(D)> = 7 <A(0)B(£)>
S -
= -7 3¢ A(0)B(e)>. (18)
Therefore c
<B(t)> = Beq - % J F(t')cia(t— t")de' | {(19)

where by definition

b, (£) = <A(0)B(£)>
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is a correlation function of A at t = O with B at £ = t. Thus eqn. (19)
allows the calculation of the forced response of the system from the

correlation funection of the spontaneous fluctuations at equilibrium of
the magnitudes A and B.
Very often, and without loss of generalityia]in the domain of

linear response F(t) is represented by a single sinuscidal component,
so that:

F(t) = F_ Real [exp (iwt)] = Real [p(t)] ,
B(t) = Real [Bexp (iwt)] .
Using eqn. (14) with Beq = 0, as is frequently assumed, then:
<B(£)> = F_ Real ftexp (imt')wBA(t ~t')at’
- lu.)
=F, Real [exp (+iwt) fop(—imto)wBA(to)dto]. (20)

If one now defines gemeralised complex susceptibility (1]

* .

[

B{t) Fo Real [exp (iwt)x*BA(m)] )

B(0O) = Fox*BA(m) .

then from equation (20):

X*BA(w) = X'BA(M) - iX"BA(m)

= fmexp (—imt)wBA(t) dt ; (21)
0
50 that:
X*BA(w) = - —Elf f:e_l‘”t ;—t (dJBA(t))dt .
¢BA(O) iw .
or Xrpa ) = - T u¢BA(1:) exp (-iwt) dt . _ (22)

ABSORPTION DISPERSION DUE TO PERMANENT DIPOLES

The fluctuation-dissipation theorem given in its general form in
eqn.(22) can be applied to this case where the "external force" applied

is a periodic eleetric field {6-10, 13]

, the response of the system
being the electric polarisation which it develops under the influence
of this field[lll. The observable quantity is this latter parameter,

the polarisation, which is the moment per unit volume. The behaviour
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of this moment in phase with the field corresponds to the dispersion element,

and its behaviour in quadrature produces the absorption. One has:

. * .
E elmt =(E () + Z]E iwt (23)
o 3 e
iwt int . . .
where % (w), Eoe and Ee are respectively the complex dielectric

constant, the external applied field, and the electric field which figures
in the Maxwell equations in the system[14]. This is related to the
dielectric comstant and to the polarisation <§Z>/V, where.<ﬁz> is the
moment in the direction of the field due to the field E et and v the

o :
volume of the system. The susceptibility is now defined[13’ 14, 15]:

ex(w) - 1 _ Mp(r)>

4w VE iwt
e

(24)

Using eqn.(21) one has:

<& o0
- ﬂz(t)> = -1t
Xe(w) = e e b, () dt
Eoe 0

where P (£) = = g <H_(0).H_(£)>

The correlation function <ﬂz(0).MZ(t)> is that of spontaneous fluctuations,

and because of the mean isotropy in liquids, it becomes:

%<g(o> M(E)>
Using eqns.(22) - (24), then
% -1 . . .
St - gt 0 b0

where ¢{t) = <M(0).M(t)> .

GAS PHASE

Equation (25) is of gemeral validity, whatever the origin of the
dipole moment of the system (atomic polarisation, ionic, orientational,
ete.), but it cannot always be easily applied because it refers to the
[8, 14, 15]

fluctuating moment of a macroscopic sphere in vacuo For a

fluid of dipolar molecules whose spontaneous fluctuations are unrelated
[
monomolecular orientation); and where the molecules are only slightly

polarisable (so that e#*(w) differs only slightly from unity), the

3 12](s;:) that ¢{(t) can be writtem as the correlation function for

deformation polarisation being negligible, one has:
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it

<M(0).M(t)> L <y (0).p, (£)>
~ -~ ij ~1 ~1]

with <ui(0).uj(t)> 0 for j # i.

Thus ¢ (t) N <y, (0) .Hi(t)>

2
Nu Fv(t)

where Fv(t) = <u(0).u(t)>, where u is a unit vector along the permament

dipole moment. Thus

LNp? m .
qry' (W) = e'(w) -1 = —3le§7 1-uw JDFv(t) sinwtdt] (26)
el = enw) = N0 (Tp o odwear (27)
3kTV . Vv '

4mp?
TFT - CoT 1T ATy

with
where € is the dielectric constant (electric permittivity) at zero
frequency, and %o the corresponding susceptibility. Equations (26) and
(27) apply when the fluid is relatively dilute, but sufficiently dense

to produce a continuous spectrum to broaden and overlap the rotational
quantum transitions[lzl gince classical mechanics has been used throughout.

The quantised version of eqn.(27) is given by Gordon[3’12] as:

ca(w) _ £ () = 4N

w Shv .
fv(w) being the Fourier transform of <B0p(0)'Hop(t)> the non-symmetrical

_ e—hw/kT

JWPF ()
quantum correlation funectiomu.

DIPOLAR MOLECULES IN THE PURE LIQUID PHASE

Fach molecular dipole polarises its meighbours which in turn react
[14,15]

[8,14,15]

upon it The corresponding static problem has been treated by

Onsager , assuming that there are no forces at short distances
to correlate with the orientation of the molecules. (A parameter g was
later introduced by Kirkwood[14], and then by Frohlich to represent
such correlations).

The equivalent dynamic formalism has been recently reviewed by
Brot[s], here it is exemplified with a relation derived by Cole [3]

which is linear in e(w) : .

3 3€ . ) -1
Ew) - o 2 2 |1 4 —— re l“'”:[-—1~"V(1:)]clt , (28)
1] .

£ —-n 26 +n?
[#] ]
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where 2 2
+ 2
e -n2=2 : - u’ (29)
o V |2e + n? 3 3kT
0
n being the refractive index at, say, 150 em™}. If € % 1, egns.(28)

[
and (29) reduce to their precursors. One can therefore say that eqn.(28)

contains a correction for the internal field, i.e. it takes account of
inter—-correlation terms due to dipolar forces. In eqn.(28) inter-
correlations of the orientation of molecules due to forces at shert
distances are not accounted for, From the static point of view,
Kirkwood's parameter g is the answer; the analogous dynamic treatment
has been pursued by Brotia] who treated the problem of the internal field
in a group of inter-correlated molecules constrained in a cavity just
large enough for the correlations to be negligible outside. Using the

114,151

Lorentz fiel , he obtains:

Fv(t) _ _27kT J a(v)n(v) cos (2muct)dv

LariNp? szc[s'(v) + 2]% + e"(WD
and with the Onsager field:
27kT (2e_+ €)% [ a@In®) cos (2mver)dy

Fv(t) = - — — H

GNL? (g + ] VEL(ETOD) +26 )% " (V) 7]
where w = 2mve, and o is the absorption coefficient. Above 10cm !, i.e.
in the far infra4red[14’16], e'(™) % ¢, and e"(V) is small (although

(V) is large). Using these approximations, both these eqns. reduce to:
g

F(t) = 3kT [ 9n :H o) s (2mVet)dV
( 3

4miNu® | (n? + 2) v?
0

where the square brackets enclose the often—used[isj Polo-Wilson non=

dispersive correction.

PROPERTIES OF THE CORRELATION FUNCTION Fv(t)

Using eqns.(22) and (27), it is seen that F_{(t) is a real, even

v

function of time, so that it can be expanded as f0110w5{3’4]:
2 t? .3 " s
<E(O).E(t)> = <B {0)> - ET—<E (O)> +<ZT <E (0> - ......

with <u?(0)> = 1 by definition. TFor a linear molecule
-i‘v(o) = 42(0) = 2xT/I,

where I is the moment of inertia, since for rotational kinetic energy,

(1/2)1w?® becomes on average kT. The mean square acceleration <u2(0)>
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is the sum of & radial part {(centripetal acceleration owing to the fact
that the vector u is of a fixed length), independent of interactions and
having the value of 8%%T?/1%; and a tangential part <0 (V) 2>/1? produced
by the mean square torque <0(V}?> that the environment produces on the
molecule.

Grouping together these results, one has, for a linear molecule

2 2.2« 23
o <1 I

I 312 2472
[

quantum origin, as well as some quantum contributions to the even moments.

1 . .
Gordon 7] has calculated the first two odd moments, which are of a

The second moment above can be used to provide a "sum rule" for pure

dipolar absorption. In the classical limit, Ch + 0}:

Bo(e) = 2XTVae rexp (iwt)a (W) dw ,

4
s}
so, at t = 0,
2kT _ 3kTVne r’
F_(Q) = = . 2 d
v (@ I T o (w)dw ,

o
from which, for the integrated absorption intensity per molecule for all

rotational type (microwave and far infra-red) absorptions, one has:
0
J v _ 4mip?

—ﬁa(m)dw ~ FTno (30)

]

which is Gordon's sum rule in the absence of an internal field correction

8]

MODELS FOR THE CORRELATION FUNCTION-ROTATIONAL BROWNIAN MOTION

f18,11,7]

The equation proposed by Langevin to account for tramns-

lational Brownian motion can be extended to describe the rotational

[%]

counterpart. Thus, in the fixed frame

&

¥ Tp.J = T(6) (3)

¥

t

where J is the kinetic moment of the particle, ER ig the rotational

"friction" tensor and I'(t) is a random torque having the following

[,

properties
(1) T(t) is stationary and Gaussian;
(ii) It has an infinitely short correlation time[al, so that

<£(0).F(t)>==2DJG(t),where §(t) is the delta-function in time;

(iii) ©No correlation exists between the kinetic moment of the particle
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and the random couple, so that:
<JCO).£(t)> = 0,

Tt is often advantageous to write the Langevin equation in a molecular
frame of coordinates such as that along the principal axes of inertia:

=d(’.‘;‘ 3 = =
T vy (fow) + . @) = IO

This is a non—linear differential equation which ecan be simplified if it

is assumed that the angular velocity of the particle is sufficiently

small that the non—-linear term be negligible. Therefrom:

dw

= + By = I*(0) (32)

where ['*(t) has the properties of angular acceleration, or torque per unit

I. The autocorrelation which this equation yields, upon integration[7] is:

@©@elt)> = exp (-Blt])wOu{0)> (33)

from which a complex spectral density:
B+ iw|2§ (w) = 2D% 33
|8 + iw] Sg(w) i (33a)

can be calculated by Fourier inversiom, D$ being defined as in condition
(ii) above. i
Doob's theoreml4] states that a random, stationary, Gaussian process
is Markovian[lg] if, and only if, its autocorrelation function is exponen-
tial. Thus the above velocity w(t) is rigorously Markovian, Gaussian,
and statiomary in time, given the restrictions upom T#(t). If a second
order conditional distribution function of w is defined such that
lim zf-EQEi
w

Lo

= lfm(m) (ef. eqn.{(5))

then 27 £98¢ satisfies the general Fokker—Planck equation[l’g’zo—zzl

established[23] for all Markovian processes, uni- or multi-dimensional.
In the case of a uni-dimensional, Markovian process of free rotation

disturbed by collisions:

9 ra. condy _ _9 2 . cond 1 3% 2 . cond
5t L Ly ] 5 AW F ]+ an—z[B(m) fww]

The transition moments A(w} and B{w) of first and second order respectively,
can be easily deduced from the Langevin equation as:
I‘t+At

lim <hw> lim 1

1
A(W) = Ar+0 Rt At+0 At T

- BuwAt +%_1,2 T I'%{e")de!

t

il

-va,
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lim <A%w> _ lim 1

. t+AL
Wy = <A 1 lim 1
B(") = pc>0 "At | At~0 Br ”

82m2At2-+t+m-€5 T*(t")T*(t")dt'dt"
t

il

2D*
tw

The classical diffusion equation is then deduced as:

_E_(Zf cond cond)

.8 3,2
) = ‘BE[BN'*D"&)'B—EJ( fm

The only solution which yields a 6(m-mo) as t+0 is:

2pcond 1 = oY 172
£ 2TTqZEXP( (w-p)“/2q%)
with p = woexp(—BltI) and
D*
q = _éi(l - exp(—ZB[tl)) .

The non-zero, statiomary solution is:

. d B Buw? 1
11im 2f .9.254._. B p—e— @Xp [—_._..] = *F (w)
x Y .
: w 21TDUJ 2D ® w
The identification of 1f¢ with the Maxwell-Boltzmann distribution is a

fundamental hypothesis leading to:

kT

* o=
Dm IB

where D*w is the diffusion coefficient in veloecity space. Berne[a]has

ghown that this identification is equivalent to:
<w{0)T*(t)> = 0.

It is possible to deduce the following relations, starting from the

expression for 1fm

<p(t)> = <w> =0 ,

<w(Q)w(0)> = <w?> = Uw2 = kT/1,

the latter being well-known from kinetic theory.

MEMORY FUNCTIONS L2425

To solve the simple Langevin equation, some classical hypotheses
concerning I'*(t) have been used above which can, unfortunately, lead to
. ~22
physically unacceptable results. The theory of random.functlons[zo ]

shows that a necessary and sufficient condition for a statiomary process
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g(t) to be well—behaved is that the second derivative of its auto—
correlation function be defined at t = 0. If Em(t) = exp(—§|t|)ﬁw(0),
it is clear that the quantity Iéw(t)|t=0 is not defined, and that the
random process w(t) is not differentiable.

This means that a random process T*(t), of 1nf1n1te1y small
correlation time, has no physical reality. In general[ , it is
required that:

(i) I'#(t) be not Gaussian;

(ii) E*(t) have a2 finite correlation time;

(iii) the friction temsor be not independent of time, t.

A more general form of Langevin's equation has been proposed by

Kubo[1 24 ] and others{25 2 4]:
a t
I W) +Jﬂa§t—TUgh“)&ﬂ = Ix(t), (34)

where ﬁm(t) is a time—dependent friction temsor. It can be verified

that thé following hypotheses are implied:

<T#(£)>

[E}
o
-

I
N

.

<w(0)I*(t)>

Starting from this modified Langevin equation, it is possible to
show that:

e ——————— t_, e S ——
;i w(w(t)> = —J fm(t-T')<m(05w(T)>dT'
g 2

+<w(0)T*(t)> , (35)
with <w(O)T*(t)> = O

This equation has been called a "memory equation" with K (t) as a

[ ] S 1o (261,

"memory" tensor - It can be solved via a Laplace transformation

[p + (p)]S (p) = <w(0)w(0)>

-4
...

whexre g&jﬂ and § (p) are the Laplace transforms of C (t) = <w(0)w{t)> and
of ﬁm(ts. It is possible to deduce the following property of the memory

tensor: —
<m(o)m(0)>K (£) = <T*(0)I*(t)> (36)
which is the Kubo[ 24] second fluctuation-dissipation theorem[A].

However, the "equilibrium" properties of the system remain unchanged,
For a unidimensional process of free rotation disturbed by collision, the
Maxwell-Boltzmann equilibrium distribution is regained:
2
1 I _Iw
y = TmkT ©XP [ EETJ

with, as above, <w> =0 ,
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“w(@w(0)> g * = kT/I.
Thus the second fluctuation~dissipation theorem can be written as

Ry(t) = 25 <T#(0)T#(£)> = i <T(O)T (£)>.

If the autocorrelation function of the random torque I'*(t) is a

Dirac delta~function, then so is K (t), and classical Langevin theory

results: -
D% = r‘fl“*(())f'*(t))‘dt = D,/1%= —I—J <T'(0)T (1) >d¢
w T2
u 0
R = ml.:r*(o)r*(tpdt = L px
w kT kT ™ w’

0

APPLICATION TO MICROWAVE AND FAR INFRA-RED ROTATIONAL ABSORPTIONS

In general, as has been shown previously, rotational type18’16]

far infra-red and microwave bands of dipolar molecules have their
associated time autocorrelation functions definedllz], in the absence

of cross—correlations, by:

oo

Cm(t) = <E(O)‘h‘(t)> = J‘exp (iwt)
O

Jhc T (w)dw

4r? w( - exp(-hw/kT)) ’ (37)

where u is the dipole unit vector, and o(w) is the absorption cross
sectioﬁ.
Using Cm(t) in eqn.(34) gives
) t
Cm(t) ='{0K0(t-T') Cm(T')dT' s

with Ko(t—'r') as the associated response function whose Fourier

(7]

transform would be the frequency-dependent friction coefficient
It can be shm.\m[:wJ that the set of memory functions Ko(t),...Kn(t)

obey the set of coupled Volterra equations such that:
t

3 - - ot 'y g !
EE'Kn~1(L) = L Kn(t T )Kn—l(T Yat' , (38)
withn=1, ..., N. Taking Laplace transforms:
- C_(0)
} C (0 —=—=
C (p) = ———— p+KO(O) = i e (39)
™ p+E_(p)
o p+K, (p)

(4,25]

This is Mori's continued fraction theorem The asspciated spectrum

of frequencies,Em(iw),which is the Fourier—Laplace'transform ofcmﬁp),can
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now be obtained by truncating the series of eqns.(39) using a convenient
form for ﬁN(p).

If this truncation is such that ﬁo(p) =+, a constant, then:

Cm(t) = Cm(O)exp(—Yt)

which is the simple, classical, Langevin behaviour of eqn.(33). Cole[13]
has given a careful exposition of how the Debye equations for &' and g’
result from this exponential dipolar correlation function. It has been
shown above that this Cm(t) is badlyige?gfed at t =0, thus by implication,

the Debye relations are unacceptable
1

at higher frequencies {above

ca. 2 cm = into the far infra-red). The spectral function defined by

eqn. (33a) leads to an asymptotiec constant absorption in terms of the

1 [14]

absorption coefficient o (¥) from about 10 cm™® onwards (often called
the Debye plateau). The experimental behaviour of o(¥) is such as to
exceed this plateau in every dipolar liquid thus far observed. This

127]

As an illustration of the physical significance of the series of

excess is known as the Poley absorption, first clearly foreseen in 1955,

eqns. (38) or (39), and in order to show how the above behaviour of a(¥) can

be simulated theoretically, it is instructive to consider the truncation:

Ky (£) = K, (0) exp (=¥ £), (40)
so that:

R, = K (/0 +7),

. P+,
and Cm(p) = (41

P* + pY, + K _(0)
From eqn. (41) one can proceed in two ways. Firstly, the Fourier-Laplace
transform yields the real part of Cm(im) as an absorption bandshape, and
the imaginary part as proportional to a spectral dispersion. Secondly, the

Laplace inverse transform yields an expression for th). Therefore one has:

= .. B Y %, (0)
Real [C_(iw)] = : (42)
m . KO(O)—uﬁ) +w2Y02

Ca(®) = exp (Y, ) cos [k, (0) -y, /41 Ee]
. __glK Q) - o ~3 , YO é
5 K (@) - —=—1 sin[(R (0) - —=)%c]
for K_(0) >y */4 ;
exp(-Yot)(l-PYGt/Z) for K _(0) = Y02/4 H

[

exp (-, t) cosh[(y,2/4 - KO(O))%t]
2 _

N o YQ ' 2 : 3
7 = X,(0] sinh[(y_?/4 - K_(0))%c]
for X (0) <y */4 .
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The short—time expansion of Cm(t) has no term in t but one in t3, so this
form is an improvement over the pure exponential, since Cm(t) should be an
equilibrium, even functiom.

A physical meaning of eqns. (40 - 43) becomes clear if it is noticed
that the Cm(t) of eqn. (43) is that corresponding tc the rotational
Langevin equation of a vibrator of proper frequency W perturbed by a
process of random collisions [7,8] separated by an interval Tt

é‘ + é/TC +m§§’= A(t) (44)
so that <x(o).x(t)> /<§jo).§ﬁo)> is given by eqn. (43) withn% replaced by
1/1c and Ko(o) by mg. Here i_has the units of angular velocity, and A(t)
is a stochastic torque per unit mass. The situation is identical with that
where hard-core collisions between molecules are emvisaged to take place
at random times (28 - 30). These collisions randomise the direction of the
molecular angular veloeity vector, so that the macroscopic value is the
root mean square o _. This is usually known as the M-diffusion model of
Gordon [28}, which is therefore equivalent to a single-~exponential memory
function.

Bliot et al[31l]have shown that if the collisions were to randomilse
the angular velocity in both direction and magnitude (J-diffusion), then

K (£) = KFR(t)exP(—YJI t])

would be the equivalent memory function representation where KFR(t) would
be that corresponding to a Guassian distribution of freely rotating
molecules. This gives a clue as to the meaning of Ko(o) in egn. {40),
i.e. a mean square angular velocity of a Guassian ensemble of molecules.

As analytical equation for Cm(t) of the M-diffusion limit was
evaluated by Brot [29], who extended the application to the autocorrelation
function of a librator in a multi-well potential formed by neighbouring
molecules [8]. Libration, or torsicnal oscillation, of a permanent dipole
within a potential well is assumed to be perturbed by 'weak' thermal
collisions of a given mean frequency, while 'strong' collisions (of fre=-
quency weighted by a Boltzmann distribution) induce relaxational jumps
from one well to another [30], The theoretical absorption curves have
been compared with far infra-red and microwave results in the plastic
crystalline (rotator) and dense liquid phases of a wide range of molecules
of different shapes by Larkin et al [32]. The behaviour of the correspond-
ing Cm(t) has been investigated by Evans [33] for ca.thirty molecules
(Figs 1 - 7)
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Fig. 1. ¢ ) Experimental [32,33] ¢(t) = - C,(t) (eqn. (37) ). (= - = =)

(1) Brot-Larkin model [32,33,8] ; (2) The itinerant oscillator model [7,3ﬂ H
(3) Free rotation (<:dﬂ2> = o). (&) 2-methyl—-2-nitropropane {(rotator phase
Iy at 294 K; (b) 2-methyl-2-nitropropane (rotator phase I) at 273 X and 219
K; (e) 2,2-dichloropropane (liquid)} at 295 X; {(d) 2,2-dichloropropane
(liquid) at 241 K; (e) 2,2-dichloropropane (rotator phase) at 235 K; (£)
2,2-dichloropropane (rotator phase)} at 192 K. Abscissa time (t) (ps),
ordinate (t). Reproduced by permission from ref.33.
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Fig. 2. As for Fig.l. (a) 2-chloro-2-nitropropane (liquid) at 293 K ; (b)
2-chloro-2-nitropropane (liquid) at 253 K; (c) 2-chloro-2-nitropropane
(rotator) at 233 K; (d) 2-chloro-2-nitropropane (rotator) at 209 X; (e)
t~butyl chloride (rotator) at 238 K (see also Fig.7); (£f) t-butyl chloride
(liquid) at 274 K. Abscissa and ordinate as for Fig.1l.
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Fig. 3. As for Fig.l. (a) 1,1,l-trichloroethane (rotator) at 233 K; (b)
1,1,1-trichloroethane (liquid) at 293 K; (c) dichloromethane at 188 K
(liquid); (d) dichloromethane at 249 X {(1iquid); (e) dichloromethane at

298 K (liquid); (£f) chlorocbenzene (ligquid) at 293 K. Abscissa and ordinate
as for Fig.l1, '
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Fig. 4. As for Fig.l. (a) o-dichlorobenzene (liquid) at 293 K; (b) _
m-dichlorobenzene (liquid) at 293 K: (c) o~dibromobenzene (liquid) at 293
K; (d4) m—dibromobenzene {liquid) at 293 K; (e) o-difluorobenzene (liquid)
at 293 K; (f) m-difluorobenzene (liquid) at 293 K. Abscissa and ordinate
as for Fig.l.
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Fig. 5. As for Fig.l. (a) 1,2-dibromo—1,i-dichloroethane (£) at 295 X; (b)
1,2~dibromo—2-methylpropane (£) at 295 K; (c) 1~1odo-2-methy1propane £)

at 295 K; (4) 1- 1odo—3—methy1butane (L) at 295 K; (e) [ H ] dimethyl
sulphoxide (£) at 293 K; (f) [ D ] dimethyl sulphoxide (2? at 293 K.
Abscissa and ordinate as for Flg I.
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Fig. 6. (a) = (c¢) as for Fig.l., (a) HCl (rotator phase) at 100 Kj (b)
Propyne (liquid) at 293 K; (c) p-methoxybenzylidene-p-N-butylaniline
(nematic phase) at 296 K; (d) Curve 1 - Frequency domain curve of a(v)
predicted by the itinerant oscillator model [7,32,33] at 238 K for the
rotator phase of t~butyl chloride. Integration of this curve up to 400
cmfl, only produces the spurious oscillations of curve 2, which is the
correlation funetion. It is necessary (because of the asymptotic w
behaviour at high frequencies) to integrate up to 3000 cm ! before these
disappear. Abscissae upper—time (t)(ps); lower -7 (em~1). Ordinate f(t)
or o (7). For Fig.6(a) - (c), the ordinate and abscissae are those of
Fig.1.
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Fig. 7. Short—time behaviour of the Brot-Larkin [32,33] and the itinerant
oscillator [7,32,33] models for t-butyl chloride (rotator phase) at 238 K.
¢ } as for Fig.1; (——- ) as for Fig.l.  Abscissa 104t(ps); ordinate
(t). Figs. 1-7 are reproduced by permission of the Chemical Society from
J. Chem. Faraday II, 71 (1975) 2051.
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As would be expected from a model involving instantaneous reorient-

ations of angular velocity, the correlation function is badly behaved at

[33]

frequencies is such that transparency is regained too slowlylgz] (the

w™? asymptotic behaviour of a(w) in eqn.(42), a(w) being preportional to

short times , and the spectral intensity distribution at high

w? * Real [Cm(im)]). The intermolecular mean square torque, <0(V)*:
becomes instantaneously infinite in all such models of elastic, instan-—
taneous, molecular collisions, whereas a finite torque term <O(Vv)%>
exists in the a, term of the classical, even-time expansion of Cm(t):

t?ﬂ
n{2n)! ° (45)

L4
_ v
Cm(t) = , a
n=0
as was demonstrated above in the particular case using Fv(t). In eqn. (45)

41

a is unity, and successive a  are alternatively negative and positive

From eqns.(39) and (40):

§ j tzn
K. (t) = kK ot , (46)
3 ne0 n(2n)!
so that: ) N .
kn = —aN+1 - Z kN—-nan
n=1
and: .
ko= Ko(O) =-a, , (47a)
Ik = K 0) = a, — -2 (47b)
o 1 = ay a;
2k0 = K, (0) = (a) - a,a;)/({e, - a)a,), (47¢)

so that for any permanent dipolar absorptiomn, a truncation of the series
of egns.(39) which precludes the term K, (0) cannot take account of the
finite mean square torque <0(V)2>.

Quentrec and Bezot[341 have recently invelved both KD(O) and K {0)

in an evaluation of Cm(i ) with the truncation at first order:
Kl(t) =K1(O) exp (‘Y1‘tl) ’
K, (0) - w* - iwy,
PR 4.3 ;
iw® - m‘yl - iw(K, (0) + KO(O)) + v,K_(0)

so that Cm(lm) =

is extracted by Fourier-Laplace transformation. The optical abserption
coefficient is them given byls]:
2
Aw“K,(0)X, (0}, (48)

(W) = — 5 0
o Y2 (0) - w?)? + o’ {w?® - (R (0) + K (0)) )

the correlation function being now of the form:
Cp(t) = (Fgeos Bt + T sinBt) exp (—o,t) + T, exp (—a, t)
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where Fo’ Fl, Fz’ G,s @, and B are functions of KO(O), Kl(O) and v such
that C(t) is even up to t" in its Maclaurin expansion. The proportionalicy
constant A is given by ."\(F:O - £ /m(w)e, where n{w) is the refractive index.

The problem of the internal field correction (A) has been discussed by many
[35] 136]

that such an involved correction might be often overestimated in importance,
[37]

authors in the past » but a recent study leads to the conclusion

Certainly » at far infra-red frequencies it is of a Polo-Wilson kind and
therefore almost independent of bandshape. Thus A = 9n/(n? + 2)2 is a fair
approximation, where n is the refractlve 1ndex at the high frequenecy limit
of the relaxation (ca. 200 em )

The overall response function (eqn.(35)) corresponding to the
Eruncation of Quentrec and Bezot is given by:

Km(t) = K(0YF(t) (49)

where £{t) is defined by the right-hand side of eqn. {(43) with K (0)
replaced by K,(0), and Y by v,. Therefore Km(t) of eqn.(49) is even up
to t?, and thus the corresponding Cm(t) is even in time up to t*. To
extract the physical meaning of this truncation, it is useful to note that
Km(t} is exactly the same in form as the Cm(t) of the M-diffusion model
{eqn.(43)). Using Kubo's second fluctuation-dissipation theorem (eqn. (36))
it is seen that the time-autocorrelation of the random force associated
with Km(t) is M-diffuse in character. This implies that the derivative

of this force is randomised in direction by events separated by a
correlation time Tlﬂl, in a way exactly analagous to that where the
derivative of position (the angular velocity) is randomised in direction
by events separated by the critical time Ta of the M-diffusion model.

The force correlation function corresponding to Km(t) is no longer
exponential, so the statistical behaviour of the force is ne longer

f19]

. . o P . . . 1
Markovian s 1.e. the conditional probability dlstrlbutz_on[2 | of such

a force at any future instant may be dependent on past events.
Equation (48) reduces to the Debye-type[a’ll’lq’ls]:
2
Aw Ko(O)KI(O)Y1
3, 2 2 2 P p)
Y, KO0 4 (K, (0 +K*(0) + 2K, (0) K (0) - v ))uw

a(w) -

so that the familiar Debye-type absorption curve (plotted[16] in terms

of e"(w) = aw)/nlw)w) is regained at microwavell&l frequencies,
Wyllie{38] has pointed out that the Mori expansion affords in

principle the correct assignment of successive moments of the spectrum

C (1m), and so of successive terms in the expansion of C (t) in powers of

tz. However, this description does not give a natural picture of the very
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long-time hydrodynamic tajl of the autocorrelation function of angular
momentum, decaying as a fractional power of time (i.e. t"3/2). Similar
behaviour is expected in Cm(t), at least for spherical tops (e.g. FBCCDB)’
but this would distort the spectrum only on the low frequency side of the

Debye absorption, For linear and symmetric top molecules with a permanent

dipole [6,7,12,28];:

KOCD) =-a; = 2;&/1B

and for linear dipolar molecules [12]:

1 2 2
a =5 (kT + <0{V)">14!
: 5 (@) e gw®]

as was shown above. Here IB is the component of the moment of jnertia
about an axis perpendicular to that of the permanent dipole, so that, in
principle, <O(V)2> and yjare the two phenomenological equivalent
variables in egn. (48). The latter is related [38] to the Debye

relaxation time T by:

2
o= (K (o) +K(e)? - 2K (o) v
YT K “ (o)

Quentrec and Bezot [34] found that a{w) of eqn. (48) is sensitive to
small change in Ky(o) and vj. They found good agreement between theory
and experimental results in the whole of the microwave and far infra-
red range of frequencies (up to 4 decades) for liguid-furan at 219 K
and 272 ¥, and for 1liquid chloroform at 213 K and 293 K. By the second

fluctuation-dissipation theorem [244)

Ky(ey =1 <Fy (0)Fy (£)>
<FZ(0)>

where Fy(t) is Markovian. If F;(t) were not so, then eqn (48) would be
invalidated. A possible example of a non-Markovian F, (t) would be that
associated with a vortex phenomenon of linear momentum [39] existing in
the nejghbourhood of a given molecule.

Evans and Evans [38] have used eqn. (48) to fit the far infra-red and
microwave absorption of the liquids CHF 4, CCEF3, CB_Fq, CHSC = CH, and the
nematogenic molecule N-(p-methoxybenzylidene)-p-n-butyl—aniline (MBBA), a
series chosen to cover the extremes of geometrical isotropy and anisotropy.
Ki(o) and Wiwere estimated from the experimental data using Newton—Gauss
minimisation. The mean square torgue <0(V)%>increases with molecular anisc—
tropy until very sharp far infra-red librational bands appear at Z 100 cm_l.

Work is currently in progress exploring the limitations of eqn. (48) by
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comparing the predicted o) with the observed absorptions [32] in
plastic crystalline phases of spherical molecules, and in the mesophases
of lath-like molecules such as MBBA,

Some progress has been made by van Kampen [40] in treating thermal
fluctuations in non-linear systems with the Chapman-Kolmogorov equation
for the probability distribution functijon of a Markovian fluctuating
quantity q. This approach may be fruitful if e&n (34) can-be generalised

to give & non linear response theory of motions in condensed phases,
FAR INFRA-RED ABSORPTION IN NON-DIPOLAR LIQUIDS

Early evidence of an absorption at high microwave frequencies in
highly purified non-dipolar liquids was presented by Whiffen [41]. The
absorption intentisty in these liquids is an order of magni tude lower
than the corresponding absorption [14,16] in dipolar liquids, and the bands
are even broader. Despite early suggestions by these and other authors
[16], the maxima do not correspond to any known fundamentazl or difference
modes.,

The first indication that the absorptions are of a rotational rather
than a purely translational origin came from the results of Savoje and
Fournier [44]who obtajned the far infra—red spectra of CHy and CDy as the
liquid and solid (rotator I} down to 12 K. The liquid exhibits a broad
maximum at ca. 200 cm * for CHy and ca. 150 em ? for CD4, which the
authers interpreted as being an indication of Il/2 (rotational) rather
than Mliz (translational) dependence., Peterman et al. [45] studied the
far infra~red absorptions of benzene, CCf, and CS, as a function of
temperature, and found that as this increased, the peak shifted to higher
frequencies and became broader. Pardoe [46] obtajined similar results for
CS5 and cyclopentane. Davies et.al. [47] made the first attempt at an
interpretation of these bands in terms of the torsfonal oscjillation of a
molecule within the cage formed by its neighbours. They carried out
refractive-index measurements on non-dipelar liquids, and discovered
that these indices had shallow minima in the far infra-red region.

In two recent papers, Davies et. al. [48] have obtained the far
infra—red spectra of a number of non-dipolar liquids, and have carried out
dilution studies on trans 1,2-dichloroethylene, p—difluorobenzenes, and
benzene in solution with cyclohexane, carbon tetrachloride, and carbon

disulphide. The characteristic integrated absorpion intensity of non-
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dipolar liquids in the far infra-red was evaluated in terms of an
"affective' quadrupole moment of the molecules involed. The absorptions
of the non—-dipolar mixtures were subsequently analysed in terms of a
"eollisional" process, whereupon a number of mixtures [49] showed
distinct evidence of a new "complex" or "sticky" collisjon interaction.

Evidence of a substantial intermolecular mean square torque which
hinders the molecular rotational type motjons in liquid CO2 was put forward
by Birnbaum and co-workers [50]. The absorption of the liquid at 273 K
has an integrated intensity an order of magnitude less than that in the gas
phase, where rotational type J+J + 2 collisicnally-broadened, overlapping
lines predominate, Significant intermolecular forces shift the peak
by ca. 25 cm 1 to hjgher frequencies in the liquid. The authors argue
that the large quadrupole moment of COp, which has a dominant effect
on the gas phase absorption, is apparently much reduced in value in the
liquid. This is the result of the "local order" and the symmetry arising,
e.g. in three-body collisions, the net (effective) induced dipole being
smaller. Collisijon-induced absorption would disappear if each molecule
occupjed a site of inversion symmetry. Such behaviour was verified by
Evans [511in the more strongly quadrupolar cyanogen (N=C - C=1N). No
feature specific to the eritical point was implied in these gas—liquid
systems which was also the condusion of Gershel et al [37] and Darmon et
al. [52), who have made careful analagous studies on the dipolar molecules
0CS, chloroform, chlorobenzene, and fluorobenzene for the whole range of
the liguid-state along the orthobaric curve and into the co—existing
dense gas. In the lower demsity phases (including the liquid a few tens
of degrees below the critical point) the rotational motion was evaluated
as a collision-perturbed free rotation. In the dense (cold) liquids, the
rotational motion at short times is better described as damped ljbracjionmal
(torsional oscillatory).

Thus the evidence is in favour of a torsional and rotatiomal difusion
type of motion as the principal source of the far infra-red absorptions
in these non-djipolar liquids, closely analagous to that in their dipolar
liquids, closely analagous to that in their dipolar counterparts, so that
the modified Langevin equation can be used to predict the spectral function
C (iw). However, there is the jmportant difference that KD(D) and K; (o)
of eqn. (48) cannot yet be easily related to simple molecular constants
such ag the multipole moments [53] of the electrostatic £ield or to

components of the moment of jnertia [17]. Assuming that the cross—correl-
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ation functions associated with these bands can be expanded in powers of
time for the simplest case of bimolecular interaction [54], then expressions
for a; and a,s analagous to those of Gordon [17] for dipolar linear
molecules and Desplanques [55] for symmetric top molecules will linK the
non~dipolar Ko(o) and K1(0) to the intermolecular mean square torque. In
the absence of a resultant, induced dipole moment due to interaction between
molecules {e.g. the dilute gaseous phase), there wculd be no absorption in
the far infra-red at all, and therefore nejther Ko(o} nor Ki(o) can be a
single molecule property.

The (Eo - £.) factor of eqn. {(48) is given for non-dipolar species by
the Kramers-Kronig relation [14,15] n(w) being effectively constant. Using
Ko(o), K1(a) and vy a8 varijables, eqn (48) has been fitted by Davies and
Evans[56ko a range of far infra-red bands of non-dipolar melecules, from
that of liquid-nitrogen at 76.4 K to trans—decalin at 296 K. The results
are illustrated in Figs. 8 -~ 10, the fit in every case being satisfactory.
Therefore, it seems as if the analytical dependence of o upon w in non-
dipolar liquids can be provided by eqn.{48) but the physical significance
of Ko(o) and Kj (o) will have to be explored further by an investigation of
the terms in the expansion of the time cross-correlation functian
associated with such bands. A substantial amount of further insight is
needed before the magnitude of (EO - gm) can be predjcted with any certainty.
This quantity has been usefully expressed in the past as an induced
molecular [16] "effective dipole moment", or to an "effective molecular
quadrupole moment" or higher multipole{48], given some simplifying
assumption about the molecular dynamical and electrostatic origin of the

absorptien.
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red at 296 K for non-dipolar liquids.
for component (overlapping) absorptions.

Experimental absorptions [56] in the high microwave and far infra-

Absorptions deduced as estimations
(~~--~-) Egn. 48.

(a) Carbon
tetrachloride; (b) benzene; (c) carbon disulphide; (d) cyclohexane; (e)

trans—-decaliny (f) 1,4-dioxane.

Ordinates and abscissae as for Fig.8,
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ROTATIONAL CORRELATION FUNCTIONS FROM DEFPCLARISED RAYLEIGH SCATTERING OF
LIGHT

In the last decade or so, the use of lasers has made possible the
accurate quantitative study of the detailed structure of the spectrum of
light scattered by molecules. Considerable attentien was paid in most
measurements [56 ~ 60 lto the so-called "Rayleigh wings", i.e. the
depolarised light scattered owing to anisotropy fluctuations in the liquids
[61 - 65]. 1In molecules such as benzene, these wings are composed of a
relatively narrow diffuse line superimposed on a much broader background.
High resolution, high power measurement [61], have disclosed some
additional features — notably a very narrow central doublet. Stegemann
and Stoicheff [61], having analysed the shape of the spectrum, have been
able to say that in jits general contours and its dependence on the
scattering angle and polarisations, the diffuse line with the central
doublet fits the theory of Rytov [66] which phenomenclogically associates
the diffuse line with scattering by transverse shear waves,

However, Ben Reuven and Gershon [63] point to two features of this
gpectrum which can be interpreted differently. First, the absolute
integrated intensities (which can be obtained by comparison with intensities
of the polarised Rayleigh and Brillouin spectrum) are very close to those
predicted from theoretical expressions[3]obtained for the reorijentations
of single (uncorrelated) molecules. Second, the inverse half-width of the
diffuse line (the relaxation time) fits reasonably well in magnitude,
temperature dependence and activation energy into a broader scheme [1-10]
in which other phenomena such as the above dielectric susceptibility theory,
and nuclear spin-rotation relaxation (below) are well described by reorient-
ational relaxation of single molecules (with, at most,near neijghbour
correlations).

Thus these authors conclude that what is seen in the diffuse line is
a result of the reorientation of single molecules in the liquid, This seems
to be in contradiction with the phenomenological jnterpretation above
[66,67] which is in terms of collective (shear wave) modes. There still
remains the possibility, however, that the background (together with the
doublet) should be associated with shear waves. The presence of the doublet

is revealed only for certain liquids[61],and it is not possible to link jts
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existence or absence to a definite property such as viscosity. Moreover,
its variation with temperature does not correspond to shear wave theory,

and remains unexplained by it[631.

The present review stresses the microscopic[l_io’lz} or correlation
function treatment of depolarised Rayleigh scattering, which is fruitful
in comparison with a similar treatment of dielectric relaxation and far
infra-red absorption in both dipolar and non-dipclar molecules. First,

some of the main points of the microscopic theory[59’63]

will be reviewed.
If incoming light is incident upon a sample in the x-direction, and
polarised in the z direction, and the scattered light polarised in the x
direction is observed along the y axis, then one is observing the radiation
spectrum IVH(w) from a dipole induced along the x axis by an electric field
along the z axis. Such a dipole is proportional to the xz element of the
elecktric polarisability of the scattering volume. TFor systems with scalar
polarisabilities, this element is zerc (e.g. CCEH).

Gordon[B’lz] demonstrated in 1965 that this depolarised component of

a "pure rotational Raman"

bandshape is the Fourier transform of the average
motion of the polarisability tensor of a molecule, and thus of the

correlation function:
Cp(t) = Tr<B (0)B (£)> + B (Tr<p, (0)8, (£)>),

where Bi is the tensor of electric polarisability anisotropies for the i'th

5

molecule, and the trace (Tr) is over the x7, ys, z—components of 8. Inm

the specific case of self-correlation in a linear molecule, CR(t} is given

by: i )
Cp(t) = 5<3{u(0).u(t)]” - 1>
- 3KT kT|? 1 y L
= ] - th + [ﬁ[—i—] + gl'-z-‘fO(V)z}}t cery {50)

where u is a unit vector along the molecular axis, T is the moment of
inerti;, and <0(V)?> the mean square torque. The depolarised light
scattering from liquids with molecules having an anisotropic polarisability
is mainly due to local fluctuations in the orientation of these from the
random isotropic average. If it is assumed that the movement of mneighbour-
ing molecules is uncorrelated, i.e.

(5, (T,<B, (0)8,(£)>) = 0,
then the depolarised scattered spectral intensity as a function of w, the
angular frequency shift of the scattered light from the central line, is

given by:
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IVH*(m) « (au--o'.‘l)2 J exp Fiwt) CR(t)dt (51)

00

for a linear or symmetric top molecule., This can be compared directly

[12,17}

with the quantum equation for the spectral intensity distribution

of the rotational microwave and far infra-red band:

o a (w) o ® s
A% (w) ESERE Y ETY ) u2 J_mexp (-iwt) Cm(t)dt. (52)

Experimentally, I_. (w) and A%(w) exhibit the same qualitative features.

VH 68]

The low frequency Lorentzian of light scattering corresponds to the
low frequency Debye relaxation in dipolar absorptiomn. This Lorentzian
is superimposed on a broader background that extends up to ca. 100-150 em™?
(the far infra-red Poley absorption[lﬁl). Beyond this, the spectrum
falls exponentially with frequency.

As a consequence of this Lorentzian behaviour at low frequencies,
the long—time behaviour of both Cm(t) and CR(t) is expomential, with time

constants for each axponential decay given respectively by T, and 1,, the

’
inverse half-width of each Lorentzian, Details of molecular motion§ are
reflected in the deviation from the exponential at short times and give
rise to an added background (or shoulder) in the depolarised scattered
lineshape, and to the far infra-red Poley absorption of dipolar liquids.

A straight compariscn of To and TR yields information on the detailed
reorientational mechanism (e.g. large rotational jumps or otherwise) of
Molecules in the system under study. Thus, if it has been verified that
the movement about an axis can be described by a model of rotational
diffusion (essentially exponential long time behaviour of Cm(t) and
CR(t)}, the Hubbard relation[69J gives the theoretical link:

I I

T = R, ~ W (53)
R m

In considering the mechanism of reaorientation in the low frequency
(Lorentzian) region Bartoli and Litovitz[70] have considered simple
idealised models of the molecular dynamics. In some liquids, which they
denote as "structure-limited", a molecule will remain in a fixed position
for a "regidence time" Teg? and then reorient in a time of flight 7., <<

f1

Treg® In other liquids termed "“collisional limited", a molecule reorients

continuously, the individual steps being limited by collisions with

its neighbours. The average duration of these individual steps is the
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t of eqn. [53].

By considering the ratio'tR/rm and by comparing'rR with other
characteristic times in the liquid (i.e. structural relaxation times), they
suggested that liquids composed of hydrogen-bonded or strongly sterically
hindered molecules are in gemeral "structure-limited"., Liquids which are
spherical or small symmetric tops are categorised as "collision-limited".
Among these are CC2y, CHy, CSp,CH3CN, CgHgand CgHy. The relaxation times
e and T, are in the rough proportions 1 : 2 or 1 : 1 3f it is the
"structure~limited" model which predominates, the reorientations proceding
with jumps of amplictude 300—900; while the ratio is closer to 1 : 3 if the
individual jumps remain [71] at less than ca, 20° or so,

An analysis by Ben Reuven and Gershon [63] was carried out in terms
of almost uncorrelated rotational movements of individual molecules, such
as the process of rotational diffusion, with which they describe the central
(Lorentzian) part of the band. The wings of IVH(m) are treated in terms
of elastic ecollisions, or librations, (the process giving rise to far
infra-red Poley absorption). These authors assume that the central (low
frequency) part of the line represents the contribution of these mono=
molecular rotations, while the weak multi-molecular effect at higher
frequencies is treated via a tensor which generalises the well=known
Rirkwood g factor (see above) [14,15].

An important aspect of studies of Rayleigh scattering (which is
always meant to embody processes in which only a broadening of the spectral
line about its centre is observed, in contrast to Raman processes, where
frequency shifted lines are broadened) is its variation with temperature.
In principle, therefrom, different contributions to the broadening
process can be analysed in terms of different energies of activation,
which can be compared with those obtained from viscesity and dielactrie
measureménts.

To this end, Dardy et al, [72] have made observations of the depolarised
Rayleigh line for the substituted benzenes over the range 286 - 349 K,
Litovitz and co-workers [59] had previously obtained excellent experimental
agreement by attributing the shape of the ohserved scattering spectrum of
linearly anisotropic molecular systems to a single reorientational mechanism.
However, it was later suggested [60] that the spectra are more accurately
represented as the sum of two orjentational processes due to motion of
molecules about their parallel and perpendicular axes. In addition, the

far wing of the Rayleigh line contains informatijon about intermolecular
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effects, since an exponential far wing can be observed[73] in a number of
spherical molecules {such as CCyp,) with scalar polarisabilities. MeTague
and Birnbaum [74] successfully predicted an exponential spectral profile
of light scattering from noble gases by assuming a mechanism of molecular
collision. Subsequently Bucaro and Litovitz [75] were able to account
for the spectral shape of the depolarised Rayleigh wing in spherically
polarisable molecular liquids in terms of a simple binary-collision
approach. The experimental spectra of moderate and highly anisotropic
liquids exhibit not only the same quasi-exponential tail as spherically
polarisable molecules, but also a shoulder in the wing region (50 - 9C cm_B
which cannot be accounted for with the distortjonal mechanism of Bucaro
and Litovitz {75].

Dardy et al [72]used their temperature variation studies to show
that a simple Lorentzian plus a background cannot account for the observed
data even after a collision~induced component has been substracted, Use
of the correlation function CR(t) reveals that considerable free-rotor
(short~times) behaviour is present, a molecule such as benzene rotating
about 15% on average between "collisions". The long time behaviour of
the orientational correlation function CR(t) is exponential, reflecting
ultimate diffusional molecular behaviour. The time constant associated
with this exponential is significantly greater than the average relaxation
time, indicating that care must be taken in the employment of half-widths
as a measure of the orientational time. Study of the short-time behaviour
of the reorientational steps involved in molecular motjion is greatly
facilitated by analysis of the second drivative of the function Cr (e)
(analagously with far infra-red band~shape analysis) which at short time
is proportional to the angular velocity correlation function but which is
in general [76] related to the correlation of angular momenta and angular
orientation. Analysis of —ék(t) allows the determination of the time
between collisions, Tpes which the authors find to follow a simple cell
model of liquid structure, This correlation function shows that incomplete
loss of memory occurs during a collision in benzene and thus the simple
diffusion model on which the Hubbard relatjon is based js invalidated.
(Keyes and Kivelson [77] have discussed this last point more generally),
There is no need to separate the spectrum into librational and djiffusional
motions, but rather, it js more correct to associate the "shoulder" in
the depolarised spectrum with the incomplete loss of memory after a
collision. Cross~terms in orientations are neglected, but the authors feel

that Tpe is not affected by their neglect.
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Recently Dill et al. [78] have made a study of the effects of pressure
on liquid acetome, benzene and methyl jodide, the former two being plate-
like and the latter rod—like symmetric tops. From the orientational part of
the R?yleigh wings they were able to extract the density dependence of CR(t)
and —CR(t). They found that the mechanism of reorientation appears to be one
involving molecular rotation which is randomly affected by molecular
collisions, The J-diffusion model does not appear to be an accurate
description »f this process, The function —ég(t) has a negative region
and oscillates (as is well-known in the far infra-red,Figs. 1. - 7),
indicating that complete randomisation of the angular velocity at each
collision, an assumption of the J~diffusion model, does mot occur. Also,
in acetone where this effect is small, the calculation of the mean time
between random collisions, Ty of the J diffusf?n model shows this to be
short compared with the actual decay time of ~CR(t), possibly indicating
non-ﬁree rotor behaviour between collisions., The fact that the ocillations
in :bR(t) are strongest in benzene and essentially absent in acetone
indicates that angular forces resulting from mechanical anisotropy lead to a
tendency towards molecular librations. The effect of mechanjcal anisotropy
is enhanced at increasing density as can be seen from the increase in
oscillations in methyl jodide at the higher pressures.

The time taken for :dR(t) to become negative appears to be a good

measure of the time between ccllisions (1,.). Its density dependence

BC
follows that of a simple cell model, It is emphasised that in general,

TRC
and Ty are mnot to be jdentified with each other, as has often been assumed.
In acetone, they are related by a density independent factor, In benzene
and methyl icdide they exhibit quite different density—dependences. This
results from the fact that in these liquids the efficiency of a collision
for randomising the angular velocity is density dependent,

The same techniques were used by van Konynenberg and Steele [79] to studyy
the rotational dynamics in simple fluids such as liquid nitrogen, ethane,
ethylene and carbon dioxide for a number of temperatures and densities along
the saturated vapour lines. These authors realised the full theoretical
significance of ;bR(t) as an angular momentum/orientation correlation
function, They found that the collision-induced part may be toc large
relative to the scattering from permanent polarisability anisotropy to allow
the extraction of reliable rotational correlation functions for ethane and
ethylene. Data for nitrogen and carbon dioxide were compared with curves

of the J-diffusion model which was found to describe the regults



244

qualitatively. The authors indicate that the assumption of complete
randomisation of the molecular angular momentum after collision ought to
be re~examined in the light of molecular dynamics calculations of the
correlation function of the angular-momentum vector which shows negative
regions at intermediate times. This means that the colliding molecules
are rebounding in a way that results in preferential reversals of the
orientation of the angular-momentum vector. Therefore, a reversal of
angular velocity is indicated which will rebuild orientational

correlation as the molecule starts to return to its original orientatiom.

MODELS FOR CR(t), THE MORI APPROXIMATION

In the case of Rayleigh depolarised light scattered from a liquid

one has 3,4

Cp(t) = Tp<B, ()8, (£)> = 5<31u(0).u()]? - 15,

if the following assumptions are made:

(i) Collision induced scattering can be treated Separately[ﬁal

(ii) Correlations between different molecules can be ignored.

Using eqn. (34) one has:
[
éR(t) = - JOKR(t—T)CR(T)dT . - (54)

Tt is clear from egn.(50) that the form:
Kp(e) = ¥8(t); Cp(t) = exp (~vt) (55)

ig too simple, since the expansion of CR has odd powers of time.

Nevertheless, CR at long times is well approximated by an exponentia1[2_4’

6-8] so that at low frequencies IVH*(m) 18 given as followsng]:
IVH*(N) « (a11-ul)2 J exp (~iwt) exp (=yt) dt

So that Real [T, #( I (04y )"

= o ——————

o tha ea VH w)] v @) 2 . (56)

which is the Lorentzian bandshape used by Litovitz and co—workers[59’68’
70,72,75,78]

(The imaginary part of IVH*(m) describes a refringence
[53]

phenomen of fluctuating refractive index). However, at higher
frequencies, the experimental spectra of moderately and highly anisotropic

liquids exhibit{72]

a shoulder in the wing region (50- 100 cm !} which no
single Lorentzian can describe, although attempts have been made[so] with
two Lorentzian components. The distortional mechanism of Bucaro and

Litovil:z”sj is incapable of accounting for the shoulder. Clearly omne
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needs to choose KR 50 that CR’ and subsequently IVH(m), are hetter
behaved at short times (or high frequencies).

The truncation:
KD,R(t) = KD,R(O) exp (~y_t) , (57)

of the analogous series of eqns.(39) yields the M—diffusion[za’jl]

scattering function as:
- 2
(0t q = ay) YoKb,R(O)

I W) = ) (38)
VH (KOSR(O) - wZ)Z + MZYOZ

which reduces to the Lorentzian:

(a,, ‘“1)2YOK°,R(°)

Ty = ;
TR g+t (2 = K L (0))

at low frequencies (such that w' << mz). Here, Ko R(0) is given by the
3

negative of the t? term in eqn. (50) and the finite torque <O(V)?> is

again ignored. So:

_ 3kT
K, 20 =5, (59)

for a linear molecule, i.e, it is a single molecule property.

Although Dill et al.[78] found that the mechanism of molecular
reorientation appears to be one involving rotation randomly affected by
molecylar interactions, the J-diffusion (and the M—diffusion) model does
not appear to represent the process accurately. Figures 1 - 7 show that
essentially the same is true in the far infra-red. This is because
complete randomisation of the angular velocity at each collision is
too drastic an assumption, consequential upon that of an instantaneous
collision, with its association of the mean square torgue <0(V)?Z>

£8’29]. Further evidence of this comes

becoming instantaneously infinite
from a recent study[81] of the Rayleigh and depolarised Raman (a EE band
situated near 1386 em™!) band profiles of C0, (%) obtained at 100, 1500
and 3000 bar. The J-diffusion model is adequate for the Rayleigh band
at 100 bar, but fails for those at the higher pressures, where the
frequency-dependence (W '} of the Rayleigh line changes noticeably to a
higher n at intermediate and high frequencies, The profile of the Raman
band remains unaffected by pressure, so that the authors conclude that
it originates from a unimolecular orientational process, whereas the
depolarised Rayleigh scattering shows up both mono- and multimolecular
motions. They find that cooperative behaviour inereases with pressure

and is appreciable at 3000 bar.

¥
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Since this type of behaviour is clearly shown by this study to be
associated with a faster fall-off with frequency of the Rayleigh wing, it
is going to be profitable to consider the truncation:

KI,R(t) = KI’R(O) exp (- th),

so that:

Ty (@ = (o = %) p(@)K1 p(0)va

Y2k, (@) = w2 + w2( W= (R p(0) + Ky p(03) )2

which falls off as §° at high frequencies instead of the mt of the
M-diffusion model, and has the finite torque term <0(V)2> jmplicit in
K]_ ,R(O) H
¥ R(o) = aj - az/a;
H]
with aj = - 3kT/L; ‘
4!32 L{kT/I)2 + <0(V)2>/812 ,

Equation 60 jis a Lorentzian when wte<w

)

2

Berne and Harp [82] plotted this kind of function and found that it
peaked at w ¥ § x 1012 rag s ! {(ca. 50 cm—l) which is near the shoulder
observed by Dardy et al [72] in anisotropic molecular liquids. Thus far
the analogue of egn. (60) in the far infra-red [34,38]has been successful

in describing absorptions over three decades of frequency.
COLLISION-INDUCED RAYLEIGH SCATTERING

Dardy et al {72] have demonstrated that the spectrum of depolarised

light can be expressed as the sum of three separate terms:

IDP(M} = IVH(m) o Ilggp (@) IVH—COL(N) (61}

where ICOL(M) represents the collisional part of the intensity observable
[83] in molecules such as CCg, with no anisotropy of polarisability. At
present, the theoretical expressions from which the sign and magnitude

of the cross-term can be calculated are approximate. Although this need
not be small, Dardy et al. [72] found that its neglect did not affect the
consistency of their subsequent results.

In anjisotropic molecules, the central term IVH(m) (the low frequency

Lorentzian) accounts for almost all of the total intensity; T } being

_ cor,
measurable in the wings, which Bucaro and Litovitz [75] have treated in
terms of deformations of molecular polarisability during a collision,

predicting:
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Toop @) = w2 /7 exp (~w/w ) (62)

for G)>t00. They calculate W from ‘available intermolecular potential
data employing the expression

I ETRE:! 2 Ze|4
w =l = —2l 1 - —tan~!|—

6 (kT ] kT
where I' and € are the Lennard-Jones parameters and W the reduced mass
of the colliding molecules.

In isotropic molecules (e.g. CCL,), ICOL(M) consists of a central
Lorentzian accounting for almost half the total observed intensity,
together with the wing function of eqn.(62), i.e.:

ICOL(N) -+ a Lorentzian at low frequencies }

. . 63

+ eqn, (62) at high frequencies. (63)

The equivalent expressiontﬁa] to eqn.(62) in the far infra-red is:
afw) o« m25/7exp(—m/m0). (64)

Compared with the models [96] sumarized in Figs. 8 and 9, eqn.(64)
is much less successful (Fig.10) in fitting the experimental curves shown
in these Figures but has the advantage of having fewer variables.

Bucaro and Litovitz[83J have emphasized the close similarity between
ICOL(w) and €" (w)/(1-exp(~hw/kT)), the population—corrected dielectric
loss factor of non-dipolar molecules, and have shown that both are fairly

well described by empirical equatioms of the form:

A
= B 6
ICOL(UJ) —1_+_Lu_f"f_22_ + f(m) (65)
£"w A wit 2

= 2 B'E(w 66
(1 - exp(~hw/kT)) 1 +m2112 1+w2Tc2 (w} (66)

where A, B, A", B', T,, T, and T, are independent of ®w, and where f£{w),
defined for all w, reduces to:

flw) ~ w12/7exp(-m/m0)
for & > _. Both these equations have separate high frequency and low
frequencyosemi-empirical portions whereas generalised Langevin theory[a’j]
predicts that a peak in the far infra-red or a shoulder in the Rayleigh
wing should not be treated separatEIy[84] and independently of orienta-
tional processes causing the microwave absorption or low-frequency
Rayleigh scattering in both dipeclar {anisotropic) or mnon-dipolar
(isotropic, e.g. CCl)) liquids. Therefore it seems better to treat
these collisional aspects of Rayleigh scattering on the same terms as

those of Davies and Evans[SG’Ss] for the collisional-induced microwave
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(far infra-red band of non-dipolar liquids), i.e. by invoking an equation
such as eqn. (60) with Ko,R(O)’ KI,R(O), and Y, as variables.

Taking note of the gimilarity of eqns.(65) and (66) it seems that
eqn. (60) should be nearly as successful in describing Rayleigh depolarised
scattering due to molecular collisions as its equivalent in the far infra-

red in describing the same fundamental dynamical process.

NUCLEAR MAGNETIC RESONANCE SPIN-ROTATION RELAXATION

The relaxation of nuclear spins is determined by the coupling of
these spins with the rotational and translational motions of the molecules
in the system. For nuclei with spin 1/2, the spin~rotation interaction of
a linear molecule leads to an interaction Hamiltonian of the form (—cz.f),
where I is the spin angular momentum of the nucleus, J is the angular
momentum of the molecule, and c is the spin rotation coupling constant[A].
When this is the only part of the Hamiltonian leading to nuclear spin
relaxation, the spin relaxation time T, is:

%1= -~3(§-2- E:axp (—iwot) <£(0) ._{(t:)> dt , (67)
where W, is the Larmor precession frequency. In liquids, the angular
momentum correlation function decays on a time scale of the order [1-10]
of 107'%g, which is many orders of magnitude shorter than typical
precessional periods (1/mO = 107%s). Thus:

1 _ c?
:fl— g‘h_z <£"(D) J(e)>de (68)

0

to an excellent approximation.
For a diatomic molecule, J is given by:
="}

2= ol ~RI % [4;-V] +my(x, -R] % [v,-V], (692)
where m, Ip and'xi are the mass, position, and velocity of the i'th

atom, respectively, and R andlz are the position and velocity of a
molecule's centre of mass; and the short time expansion of the

correlation function is, for a linear molecule :
<J(0). J(t)y> 1_t2 <0(V)2> . t* <0(v)2>

< ;f> 4TKT 41 2IKT
where <0(V)2> and <0(V)2> are the mean square torque and its derivative

C () = (69b)

respectively. It is seen that C (t) bears some resemblance to the
normalised second derivative of Cmﬁt) (of the far infra-red) or of C (t)
(of Rayleigh bandshapes). Gerschel et al, [37] showed that —C (t) has

a negative region, and that it oscillates at short tlmes[78]

Figs. 1~ 7 being illustrations. Dill et al.[78], and van Konynenberg
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and Steeie [79] demonstrated the same properties in - ER(t). There has
been very little, if anything, reported from NMR studies on the full-time
dependence of CJ(t), but Berne and Harp [4] have made some computer calcu-
lations which show that there is a negative interval [86], if the intermolec-
ular pair potential is anisotropic (non-central), When the latter is a
Lennard=Jones type, {(pseudo-spherical), then CJ(t) remains positive and
changes very little over the observed time interval of 1 ps.

From egqn. (69b) it is seen that in the absence of molecular inter-

action CJ(t) is unity, and the cvorresponding memory function:

2 L]
Kp(e) = 0?2} | <omi oW |, (70)
2IKT 2 2TKkT 2IKT

is zero. Therefore, KJ(t) can be looked upon as representing the
molecular memory of the interactions it has undergone. (This is different
from the cases of Cm(t) and CR(t), (and their corresponding memory
functions), which decay in the absence of intermolecular torque forces
owing to the fact that there is a distribution of rotational frequencies
for each molecule in the gas phase). If CJ(t) goes negative, then KJ(t)
must be finite, i.e. a molecule must retain some memory of its interactions
for a finite time. Berne and Harp {4 ]find the typical memcry functiom
behaviour to be that of quick decay almost to zero in the time interval

0 <t £0.3 ps, and then a much slower decay (exhibiting a pasitive tail)
for t > 0.3 ps. They stress that this is approximately the average time
that it would take for a molecule to travel from the centre of irs cage of
nearest neighbours to the "cage wall", Up to now, no attempt has been
mgﬁg to calculate the memory functions- corresponding to - b;(t) and

- CR(t) from far infra-red and Rayleigh scattering data respectively.

It will be interesting to see how these "true" experimental functions
compare with those from computer experiments on KJ(t).

As an example of the work carried out on NMR spin-rotation relaxatiom,
Rigny and Virlet [87] have studied the relaxation of the fluorine nuclei
in the three hexafluorides of uranium, tﬁngsten, and molybdenum, which
are room temperature.liguids. In contrast to what occurs in most liquids
[88], the spin-rotation interaction is the dominant relaxation mechanism,
even well below the critical temperature of 503 K, for UFg, 488 K for
MoFg, and 445 K for WFg. This means that the correlation time for the
angular momentum (the mean time during which a molecule seems to retain
its angular momentum) is long, probably because of the pseudo—spherical

geometry of these molecules. However, the authors show that the molecules
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can rotate only ca. one radian at 343K before their angular momentum
changes: this shows that the rotations do not occur freely, but rather
in a hindered, or "cog-wheel' fashion.

These conclusions are revealed by using the generalised rotational
Langevin equation: t
i=- J I(t-T)I(T)dT + B(t) , (71)

o
with R(t) as the stochastic torque and [ the "retarded effect of friction',

or memory function, giving the Fourier-Laplace transform of CJ(t) as:

EJ(imo) = JD<§(0).g(t)>exp (—iwot)dt
€. (0)
-3 ., (72)
1wo-bf(wo)

where wo ig the Larmor frequeney of the nuclear spin. This is small
enough for its neglect in the denominator of eqn.(72) to be justifiable
and the exponential becomes unity. In effect, this means that R(t) will

fluctuate so rapidly that its correlation funetion, related to,E(w) by:

T(w) =

£

(o)
5 ﬁE(O).Eﬁt)>av. exp C—ﬂuot)dt (73)
<J > ay.

becomes a delta function in time, and [ becomes frequency-independent.
Therefore in eqn.(72) when W, is so low that only low frequency components

of the correlation function are considered one has

CJ(O)
f@qm).g(t»at = = c (o1, , (74)
o T

where Ty is the angular momentum correlatien time. Thus T; is related
directly to T,, the spin rotation relaxation time.

If the temperature is raised, the torque acting on a molecule
fluctuates more rapidly and eqn.(73) indicates that the friction will
be reduced. Thus T, should, and is observed to, decrease as the
temperature 1s raised, following an Arrhenius lawllaj.

For spherical top molecules such as CH,, CF,, SF. and the above,
the contribution to NMR lineshape, due to spin-rotatiom interaction is
comparable (and greater at higher temperatures) with that of spin-spin
magnetic dipolar relaxation. This is the contribution to spin-resonance
relaxation due to the interaction of two nuclear spins (of quantum
number s}, which are identical and situated on the same molecule,
separated by a distance b (a separation defined by the vector u(t)).

The spin-spin relaxation time is given by:



-1 _ty*nls(s+ ) |7 —iw_t © ~2iw t
[T1 (mLﬂss < ————E€~——- _wFt(t)e L dt + h_wft(t)e L-dt
_y'piss v ) [T
o5 J Ft(t)dt s (7

o

since the Larmor frequency is small in practice. Here
F(8) = 7<3[u(0).u(0)]2 - 1>, (7

and ¥ 1s the gyro—magnetic ratio. If the relaxation is due to coupling
of a nuclear magnetic quadrupole moment (Q} with the gradient of a
molecular electric field whose directiom is that of the vector u{t),

one has, for a spin s=1

=

[ 2 2
-1 _ 3| ef 2%V

® IR -2iw. t
" J Ft(t}e uy +&L:Ft(t) L dt

O

i
[F%]
w| o

, 2 5 0
g.ga_z} J F,(£)dt (7
L'h aZ o

Using a cgmbination of these different technigues, it is possible
to describe[89J the movement of these molecules whereby the angular
amplitude of a rotation before collision can seemingly reach one radian
or so. If this were the case, the dynamics would no longer be those
of rotational diffusion[li], the correlation functions would not be
exponential. Unfortunately, it is always difficult in NMR relaxations
to extract any time~dependence of CJ(t) or Ft(t) since the W or W,
Larmor frequencies are so low compared with the rate of molecular
reorientations. However, NMR results can be compared usefully with

[14]

temperatures approaching the triple point (diffusional rotation).

those of corresponding dielectric measurements , in particular for
For temperatures approaching the boiling point, or even higher, the
mechanism of reorientation is generally interpreted with the help of
the spin-rotation component of T,, taking advantage of long periods
of free molecular rotation. The principal interest in these types

of studies is to investigate more closely the anisotropy of molecular
rotational movement. The observed rotation is often almost free

sbout one axis of symmetry and diffusional about the perpendicular one.

The molecule CH, ~C=N has been studied in the’ liquid phase as a
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3)

6)

7)
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function of temperature from the melting point to the boiling point
[90,91] . The rotation is anisotropic; at 298 K it is ten times as rapid
abaut the symmetry axis as ashout the perpendicular axes, and shows some
characteristic properties of a damped rotational motion, with a dominant
contribution to the NMR line from spin-rotation. A rotational diffusion
constent is extracted which is in agreement with some calculations [92]

based on "

microviscosity" theory. The ratio of dielectric and NMR
relaxation times is 3.7 at 298 K, compared with the rotational diffusion
prediction of 3.

The same type of behaviour has been observed [93] for the meclecule
CH3-CZCH, studied as a function of temperature to the boiling point.
Between 179 K and 304 K, the rotation about the axis of symmetry is from
30 to 8 times as fast as that about the other axes., The contribution
of spin—rotation correlation time Ty changes from 0.1 to 1.0 times that
of the spin-spin dipolar (magnetic¢) correlation time (TT)SS. However,
free rotation about the symmetry «hg axis is pot implied, szince the
description of this motion by a model of rotational diffusion is more
satisfactory in reproducing the observed diffusion constants. The short
time behaviour of -b;(t) has been obtained from the far infra-red[33,94].

The molecules VOCR3, CC23CN, and BCY3are of smaller geometric
anisotropy than the preceding molecules, and the anisotropy of rotational
movement is very much less [95). The agreement between the diffusion
constants D” and Di_is ca,0.5 - 2.0, As a measure of the character of the
rotation, the ratio X = TJ/Tf (where T; corresponds to free rotation) is
always less than 2 for BC%3, and also for rotation perpendicular to the
symmetry axis in CCR3CN, an indication of large angles of rotation between
collisions. In contrast, for VOCZ4, and the movement parallel to the C3,

axis in CCRyCN, Ty is large in comparison with t_ which suggests

£
rotational diffusion.

Chloroform has been studied up to its boiling point [96,97].The
rotation about the symmetry axis is found to be twice as rapid as the
perpendicular motion at 293 K, The ratio X suggests that this latter
component of the rotational motion is diffusional in character., This
is supported by the ratio of NMR to dielectric relaxation times, which is
3.5, compared with the ideal of 3.

A study of Cf03F (perchloryl fluoride) up to the critical point [98]
(368 K) has shown that a rotational diffusion mechanism is valid only

below 200 K, while spin rotational relaxation becomes predominant above
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this temperature. The observed mean angle between collisions increases up
to 360 K, the mean angular amplitude being estimated at just less than a
radian.

Asymmetric top molecules have been carefully studied with NMR
relaxation techniques, the results confirming the diffusional character
of their molecular rotation in liquids. The benzene derivatives:
CeHeF, CgHsCA, CgHgBr, CGH.SCHg, p-xylene, mesitylene, C.Fg, parafluomtoluene
and trifluoronitrotoluene have been studied [99] up to their critiecal
temperatures. For all these compounds, the spin-rotation interaction
becomes appreciable only at high temperatures, the ratio between dielectric
and NMR relaxation times being 3 3 at ambient temperatures.
' Similar behaviour has been observed for certain fluoro—derivatives of
methane [100] such as CH,FCg, CHF,C%, CHF 35 and in particular, a detailed
study of the behaviour of T, has been carried out [101] for CHFCL;. In
the latter study, the effect of spin-rotation was simulated by a model
of diffusion by isolated jumps of large amplitude: the cobserved effect
being the result of a series of discrete collisions. However, Powles [ 88]
has observed that the increase in Ty with temperature predicted by this
model is the same as that calculated for Brownian diffusion by small
jumps. Thus no conclusion can easily be reached about the detail of
molecular movement from measurements of spin rotation relaxation at one
Larmor frequency alone.

The main interest in these measurements stems from the unique
experimental information which they give on the conservation of rotational
velocity (i.e. 5) about different axes in a given molecule, e.g. they
can be used to characterise a slightly perturbed rotation about the
symmetry axis of stick-like molecules.

Boden et al. [102,103], give a continuing and comprehensive series of
reports of the recent developments in this field, Bodens review [ 102]
being especially useful as a guideto the developments of stochastic theories
of liquids in relation to spin-rotation relaxation. For instance, the

tensorial correlation time Ty, defined by:

<3 21 (78)
Tg = 7 B(O) .B(t) - -5) dt
0
is related to T by Hubbard's equation 69:
ToT; = I/6KT (79)

in the limit of rotational diffusion, and by [104]
T = TJIS ‘ (80)
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in the dilute gas, or perturbed free rotor limit for spherical top moleculss .
In the intermediate region, MeClung [28,105] has discussed the inter-
relation of 1, and g for spherical tops in terms of the M and J-diffusion
models [3]. These models approach the above two in the limits of small
and large e Numerical calculations for the intermediate range show Tp
that 1, goes through a minimum when:
T2 = TJ = (kT/I)é

Maryott et al. [98] have shown how values of 1, and Ty calculated from
35C¢ and 19F relaxation times in liquid CLO04F are linked by the J-
diffusion model. The v, values are compared with those calculated from the
Debye-Stokes-Einstein relation as modified by Gierer and Wirtz [92]:

Ty = 4wadyf/3KT, (81)
Here f is the microviscosity factor. As is often found, T i not a
linear function of 3/T, and the "apparent" f varied from 1/4 at the highest
temperature to 1/120 at the lowest. For pure liquids, it is theoretically
0.163.

For non-spherical tops, a number of investigators [106] have described
how, in the case of anisotropie rotation [107], Ty ¢an, in the small-step
diffusion limit, be expressed in terms of the three rotational diffusion
constants for the molecule, and how these can be determined [90,91,93]
by measurements of the relaxation times of three quadrupolar nuclei in
geometrically non-equivalent positions in the molecule.

Sillescu [108] has extended the Debye model of Brownian motion {11]
(delta-function memory) and the random~jump model for rotation to take
account of time fluctuations in their rate. 1In principle, this is
applicable to NMR line shapes. Different shapes are given by the Debye
and jump models.

Jonas et al.[109] invoke J-diffusion in explaining 1, and T; inter-
relations in several NMR relaxation studies in highly pressurised liquids
[78, 81]. They deal with the reorientational and angular momentum
correlation times in fluorcbenzene - ds, liquid-chloroform, and internal
motions in liquid benzylcyanide. Eckert et al. [110] have used spin

rotation relaxation studies to measure association and anisotropic molecular
orientation in liquids.

APPLICATION OF THE MORI APPROXIMATION

Various forms of the response function K can be used to calculate
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spin-rotation and spin-spin relaxation times using eqns. (681 and [75]
to give the corresponding correlations times Ty and T2. Using equipartition

of kinetic energy (two degrees of freedom) one has:

= = < 2 >

kT <Ekin> T {o) /21

so that Ty = mﬁ{(o).gﬁt)> dt/2IkT,
o}

When KJ and KR are both delta functions one has:

C;e) = <I(0).J(t)> [<I?(0)> =ty (82)

Ft(t) =1 < S[Eﬁo).gﬁtnz -1 = e_t/Tz (83)

2

with Ty and 1 linked by the Hubbard relation of eqn. {791.

In many liquids, the mean field of force due to the neighbours of a
given molecule tends to hold it in a fixed orientation for longer or shorter
times, while superposed on this time-smoothed force field is the rapid
fluctuation due to the actual molecular movements [7] (approximated in
Brownian theory by a random torque of simple character superposed on the
steady orienting field). If the constraining field is strong, the
molecule will move, in general, as a damped gyrostatic pendulum. If the
constraint is highly anisotropic the motion may approach rotation freely
around a fixed axis. If the molecule is a spherical top, its component
rotations behave independently [7].

These molecular angular movements are described by eqn. [44] in the
case of one angular coordinate x, describing the M~diffusion process,

which corresponds to:

= —_ 1
KJ(t) KJ(o)exp( t/T J)s
R (e) = K (o)exp(- t/w ). (84)
Using eqns. [84] and those corresponding to eqn. [43] it is found
that to' TJ‘ does not vary in the Hubbard fashion, but goes through a

minimum dependent on <0(V)2>(éxperimentaﬂ, since T; depends on KO,JCO).

With the truncations:
K]’J(t) = KI’J(o)exp(“ tft"J), (85)
Kl,t(t) = Kl’t(o)exp(-tlr "t),

1 -
one has (§ )ss and (T, 1)sr both dependent on <0(V)2>; and <0(V)?> and

<0(y)2> respectively, so thatT" T"J behaves in a more realistic manner.
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TRANSLATIONAL MOTIONS OF MOLECULES

The above sections have all dealt with orientational, angular or
rotational molecular movements, and Figs. 8 and 9 show that an extended
rotational—-type Langevin equation accounts for far infra-red absorptions
in non-dipolar liquids very satisfactory. Furthermore, the similarity
between absorptions in the far infra-red of molecules in the plastic
crystalline (rotator) phases [32,33,111] and the liquid phase shows
that either:

(i) the far infra-red is totally insemnsitive to translatiomal
absorption} or

(i1} the translational absorption in liquids of "typical" molecules
such as t-butyl chloride or chlorcbenzene is not a major contributor to
the whole.

That (i) is not true was shown by Kiss et al,[112] who studied
the collision~induced rotational spectrum of compressed gaseous hydrogen
in the far infra-red. The absorption of a photon changes the relative
kinetic energy of the colliding molecules without changing their state
of internal motion. The existence of translational absorption was

demonstrated conclusively by Kiss and Welsh {113], who found an
1

absorption in mixtures of compressed rare gases in the region 350-700 cm
Bosomworth and Gush [114] made observations down to 20 cm-1 on compressed
He/Ar, Ne/Ar, Hy, Ny and Op, and found that the far infra-red spectrum in
each case consists of overlapping tramnslational and rotational branches,
except, of course, for the rare gases, where the latter is non-existent.
The translational mode is easily distinguishable for H,, but not at all
so in other cases. However, Figs. 8(z) and 8(c) show that it is negligible
in liquid N2and CH4. This is also true in liquid CO; (Fig. 8(b)) and
even in the gas [50] it is confined to <10 cm_l in a total absorption
stretching up to ca. 250 cm_l. The treatment of this absorption is
theoretically complex even for H2: Poll and van Kranendonk [115] have
calculated the binary absorption coefficient of the translational band
of hydrogen.

Bonamy and Galatry [116] have evolved a statistical theory of
translational movement of atoms in a simple liquid. The latter paper

contains a study of the time—evolution of the velocity correlation function
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(4] of an atom (or a spherical top molecule) in a liquid, using the
concept of cage potential as well as of fluctuation of the forece acting
on the atom. Their model, with the centre of the cage fixed, can only
partially account for the average evolution of the velocity, which
suggests that the position of the centre and the shape of the cage at a
given time depends upon the previous behaviour of the whole system.

Their fundamental equation is:

. t
p(t) =~ f Kq)(t-'t)d:(T)dT (86)
o]

where ¢ (t) = <y(0).Y(t)>/<y2(O)> is the velocity correlation fumction,
and K¢ the corresponding memory function, which is given the form:

Ry(t) = wgtu +exa(t)] (87)

where W/ is the natural frequency of "rattling" in potential wells
defined by cages of neighbouring molecules, and A(t) is the correlation
function of the force fluctuation upon a given atom by its surroundings.

The dimensionless £* is defined by:

ek = SR> L <> . B gmy2s (88)
<(Ec—ﬁé) 25 m"w;gz 3n:m02 -

where the random force F is defined for atom (a) by mY(t) = F(t), so
that F describes the interaction of (a) with the (N~-1) other atoms of
the system. Therefore only a fluctuation 8F of this force is capable
of dissipating the translational emergy of (a) inte the thermal bath,
a fluctuation defined by:

o _o,

SF(x.%s t]5%.7% 0 = E(® - F G £z 0).

v 3 0

. . . . 0 _0
This describes motions going from [x .Y

; 0] to [x,v; t] for (a),
terminating in [X,V; t] for the thermal bath B. E is thus the
fluctuating force of the cage. Thus g% is the ratio of the mean square
of the fluctuations OF to the mean square(<§E-—§i92>) of the
fluctuations of the cage force‘_]?_;c as displacements of (a) occur within its
harmonic potential wells.

(1) If <8F(0).8F(t)> is zero, then the atoms in the liquid would be
fixed in energy minima (the crystal lattice), so that $(t) = cos 0 t,
which is the equation of motion for an atom translating in a rigorously

periodic fashion at the bottom of a harmonic energy well Uc(x) = immﬁx?.

(ii) If the force fluctuations have a correlation time T, which is
very short compared with the period of oscillation within a cage,

then:
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[

<8 (F)*>T,8(t)
cé(t) (89)
so that §(p), the Laplace transform of ¢(t), is given by

<8F (0) .6F ()

I = p/G% + 02+ Koy, (30)

with B defined by eqn.(88). WNow, if w, =0, (no cage potential), egqn.(90)
[4,7]

reduces to that describing the translational Brownian motion of a
particle in a liquid. In this limit, the interaction of the particle
with the rest of the medium is random, and not correlated except for
infinitely short times of interaction. Thus:

¢(t) = exp (i%%F (91)
when W # 0, then:

${t) = (cosuwt ——2—(% sinwt) exp (-b;t/2)

for C < 6me/B H

- (1—w t)exp {~w_t)
0 o (92)
for C = ﬁmmO/B s

b
T4 1 = 1 -
{(coshu't Ty sinhw't) exp (1 -byt/2)

for € > 6mm0/B H
where:

b; = BC/3m; w

[

1
w (1-B%c?/36mw?)?; ' = w X(B%c?/36m%w % - 1)%;
] o o 0
an expression obtained previously by Gluck[117].

The authors compare their results (eqn.(92)) with those of

[

velocity autocorrelation function of eqn. (92) becomes negative at

Rahman 118] (computer experiment) for different values of C. The
times t which became shorter as C inereases. This corresponds to

a reversal of the velocity vector of an atom at the instant of
interaction. Because C is proportional to <8F?>, which increases
with thermal energy (i.e. with temperature), and thus with the
frequency of collisions, it is natural to expect that the reversal
takes place at shorter mean times as C increases. The zbscissa (t)
of the minimum in ¢(t) first decreases, then increases as C increases.
This is so because for the less energetic collisions (which are the
most frequent when C is small), it is the form of the cage potential
Uc(x) which determines the abscissa. When C is large, the cage
potential no longer plays a preponderant part and v after the first

collision increases with C.
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Equation (92) implies that

é(o) = - gk mO/ 3
so that a correlation is predicted between the acceleration and velocity
of a molecule at a given time. This is due to the approximation of A(t)
in eqn. (87) by the Dirac delta function, §{t), which makes the fluctuating
force instantaneously infinite, and thereby produces a discentinuity in
the corresponding velocity. The same is true [8,29,33] of the auto-
correlation function of an oscillator undergoing random and instantaneous
collisions with other molecules. Equations (43) and (92) are the rotational
[33,119] and translational counterparts in M~diffusion.

The translatiomal counterpart of eqn (48) is produced if:

At = exp(-uwyt) 93)
with wy= 1/t;. Here, the fluctuations in A(t) constitute a Markovian-—

Gaussian process characterised by a finite correlation time,7;, so that:

pp) = _p? + pu
%7 + w2 ) (P + w)) + e*wp (94)

corresponding to an exponential memory.

The derivative $(t) at t = O is now rigorously zero, which is a
consequence of the fact that &F(t) is now always finite, and the time
evolution of the velocity of a particle is not interrupted by discontin-
uities.,

The above three models correspond to the three first approximations
of Levi [120 } developed in the context of a generalised theory of Brownian
motion. Systematic use is made of the property of a random variable which
allows it to be represented as the projection of a Markov process,
defined in a vector space [E] containing this variable. If ome considers
[E] as being represented successively by the ensembles: [veloeity],
[velocity + acceleration], [velocity + acceleration + the derivative of

acceleration] (the latter being implied in eqn. (49)), more satisfactory
approximations of the statistical behaviour of the velocity itself are
regained. These three spaces [E] correspond to the models described
above for the velocity autocorrelation function. Similarly, there are
three spaces [R] of the angular velocity and its derivatives which
correspond to the Deﬁye, M-diffusion, and Quentrec-Bezot models of
rotational Brownian motion as described earlier in terms of successive
Mori approximations.

The curves of eqns (90) and (94) transform into correlation functions
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which resemble that of Rahman [118] only for mot z 1. Bonamy and Galatry
explain the discrepancies at longer times in terms of the failure of their
model to keep track of atomic diffusion outside the cage boundary. Thus
the eqns. (90) and (94) are valid to times less than those needed to’
traverse the cage. Outside this range, the calculated curves cscillate
very slowly (with damping) compared with the computer simulation. This is
because the models used imply that the velocity returns to its original
value every time x = mot changes by w., The damping, introduced via A(t),
is not enough to be realistic. This implies that the existence of a simul-
taneocus transfer of energy and matter from one poiné in a liquid to another,
situated at a distance greater than the cage diameter is desirable to
explain Rahman's results properly [121]. (Cooperative, rotational
molecular motion is suggested by the results of Perrot et al, [81] on
compressed liquid 002).

Berne and Harp [4] have evaluated a velocity correlation function
@(t) for CO by computer simulation (with a non—central intermolecular
potential) which they feel is significant below C.4ps. They used the
criteria of conservation of total energy and linear momentum as an
indication that Hamilton's egns. (1) were being integrated properly.
The function $(t) becomes negative at t = 0,25ps and exhibits a long
negative tail up to 1.0 ps and more, corresponding to transfer of energy
outside the cage of immediate neighbours. The corresponding memory
function decays quickly (in a Gaussian fashion), and exhibits a long
positive tail. Since $(t) depends on changes in both direction and
magnitude of the linear momentum, it is important to determine which
contributes the more to the overall time dependence of $#(t). For CO it
is the former, the correlation function of linear speed changes only by
13 7 over the whole time axis, a result which can be construed as an
argument for a constant linear (and, for that mattex, angular) speed
approximation in calculating linear (and angular) momentum correlation
functions (M-diffusion in the limit of hard collisions). Several
approximations to the velocity memory functiom are considered, and the
results plotted [82] as normalised power spectra of @(t).

Some factors governing the translational (rattling) mode, showing
up in the far infra-red, of the guest molecule in a A-guinol clathate
have been investigated by Davies [122], who provided data for N», C0,, CO,
HC%, HBr, S0, and HCN in the frequency range 10 - 100 cmfl and from
4=300 K. It was found that the guest molecule "rattles" in a U-—-shaped
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potential well the sides of which are vertical only for infinitely hard
rigid atoms, which the author simulated with a égéchl Teller equation [123].
Davies's data did not provide a uniform picture of the guest molecule
behaviour in quinol clathrates which is not surprising as the degree of
freedom available to the guest is widely ranging variable as reflected

in the range of the total linear freedom (do). In many of the cases

studied (HC%, S0,, HCN) there were signs of a Debye-type absorption in
the CHz region [124], which is interesting since both relaxational and
quantised rotational modes would not be expected for linear dipolar
molecules where total dipole is involved in the quantised rotational
transitions. The possible occurrence of both rotational processes in

HCL and HON quinol clathrates needs further assessment
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Appendix 1 — A Short List of Statistical Definitions [125]
The Binomial Theorem

If an event has probability p of appearing at any one trial, the
probability of r appearances in n independent trials is:

n! qn—rpr, where ¢ =1 — p,

n—=1)! «!

.. . . r . . . . n .
This is the term involwing p~ in the binomial expansion of (q + p) , which,
since it arrays the various probabilities for r = o, 1,..... 0, 18 known as
the binomial distribution.

A limiting form of the binomial distribution is the continuous

frequency distribution of infinite range represented by:

X —m

df =1 exp [—-}

al2n

dx,

—w < x < =, yhere m is the mean and ¢ the standard deviation. This is

the Gaussian distribution.

The Variate

This is a quantity which may take any of the values of a specified set
with a specified relative frequency, or probability. The variate is often
called a random variable. It is regarded as defined not only by a set of
permissible values like an ordinary mathematical variable, but by an
asgociated frequency (probability) function expressing how often these

values appear in the situation under discussion.

Stochastic Process

A stochastic variation is one in which at least one of the elements in

a variate, and a stochastic process is one wherein the system incorporates
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an element of randomness as opposed to a determinate system. [oToxoo -

a target].

Correlation

In general, the interdependence between quantitative or qualitative

data. In a narrower sense, the relationship between measurable variates.

Autocorrelation function

The internal correlation between a number of series of observations
(p) in time or space. The autocorrelation of a stationary, stochastic

process is defined by:

1 bt 1 b

p(t) = ————— | u(tdu(t +p)dt jf—— u?(t)de

(b-t-a) a (a-b) |

for a series with zero mean and range a < £ < b, defined at each point
in time. The numerator above is called the auntocovariance of the
process, and the denominator its variance. The limits a and b may be

infinite, subject to the existence of the integrals or sums involved,

The Spectral Function

A necessary and sufficient condition for p(ty, 7=0, 1, 2, ....
to be an autocorrelation function of a discrete stationary, stochastic

process is that it is expressible in the form:

o0

p(T) = JcosuﬂdF(m)
0

with F(0) = 0, F(») = 1, F(w) is a spectral function which is therefore

a probability distribution function.

Markov's Hypothesis

Only the last state occupied by a process iz relevant in
determining its future behaviour.
1f the probability that each state will be occupied after the {n +1)th

transition, given the entire trajectory of history of state occupancies
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through time n is:
Pls(n+ 1) =3 | s =1i,stm-1) =k, ...., s(0) =m]

where s(n) ig the state at time n, then the Markov assumption reduces this
to:

Pls(n + 1) = j | s =1l

i.e. the probability of making a transition to each state of the process
depends only on its present state. If a process is not Markovian, the
history of the system before the last state occupied does influence

future behaviour.
Appendix 2
The Central Limit Theorem

Tn its simplest form, the theorem states that if n independent
variates have finite variances then their sum will, when expressed in
standard measure, tend to be normally distributed as n +o0, It is a
necessary and sufficient condition for the validity of the theorem that
the vanances obey a condition which may be roughly expressed by saying
that no single one is so large as to be comparasble with their total.

A normal distribution is a binomial, or Gaussian distribution in the
limit of n + =, If % is a variate with mean u and standard deviation o,
the transformed variate vy = (x - n)/o is said to be in standard measure

(with zero mean and unit standard deviation).
Stationary Procegses

The necessary and sufficient conditions for a random, Gaussian process

x(t) to be stationary are:

lfx(t]) = ]fx(tZ) = constant = 1fX
2 2
f(x],tl; Xy, t2) = fxfr)
with T = t2 - tl.

n . s . . . M .
Here, fX is the joint distribution function of order n of the



variate . So that:

r

< X(t) »

It

Jx@.0) £_(,q,t)dndq
<X (e +t") >

<X >,

|

Defining the autocovariance of X by:
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€, (£) = < [X(t) = < X(e) > 1IX(E + £') = < X(£ + 1) > 1>,

then c_ (&' ; t")

+t'yt+ tf
o Cxx(t £ty t+ t*)

x ?

where o is the standard deviation, and

T, 1 =
(s e+t ) Cxx(t)

i.e. the point in time at which one starts the exercise of correlating X

at t = t and X at t = t' is of no consequence.

Ergodicity and Khinchin's Theorem

A stochastic, stationary process X{t) is ergodic if:

[

£
v(t) = — f X(£)dt + <a> ag t + =,

t
Q

Using probability theory, this can be stated as:

. t
Lim |-1-f[x(t‘)-<x>]dt' | 25

E = t
Q

ig <& for e+o where & is arbitrarily small. Therefore:

1im 1 &
| ~ ‘f (t - 1) ¢ (rdr |
t t [o;

is <e for ¢> o, € + o, This is a form of Khinchin's theorem, which states
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that a sufficient condition for a system of n stationary, stochastic
processes to be ergodic is that all correlation functions CPQ(t) -+ 0 as t

-+ o,
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