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Chapter 1
General Gauge Field Theory Applied to

Electrodynamics

In the first part of this fifth volume it is argued that electrodynamics
can be developed self consistently as an example of contemporary general
gauge field theory. The basic assumption in this development is that the left
and right circular polarization discovered by Arago in 1811 can be
supplemented by a longitudinal component, (3), forming a complex
circular basis ((1), (2), 3)) of O(3) symmetry - the symmetry of the rotation
group. The nature of the basis has been elaborated in Vols. 1 to 4 [1—4]
of this series so we take advantage of this groundwork in this volume to try
to establish the complete self consistency of O(3) electrodynamics on the
classical level. This means that the fields are described classically in terms
of physical potentials within general gauge field theory [5]. The latter
borrows concepts from general relativity, the most important of which is the
covariant derivative [1—5], used extensively in the first four volumes. In
O(3) symmetry, the field tensor in classical electrodynamics is made up of
terms both linear and non-linear in the potential, which is a vector in an
internal gauge space ((1), (2), (3)). This space is superimposed on space-
time in such a way that indices are matched self consistently, forming an
extended Lie algebra in which the spaces are not independent.

The rules of general gauge field theory, rules that have led to the
discovery of quarks, for example, are then applied to electrodynamics in this
O(3) group symmetry and several results obtained which are absent from, or
ill defined in, the received U(I) electrodynamics. Under certain well defined
conditions, non linear O(3) electrodynamics are well approximated by the
linear U(l) electrodynamics. For the free field, however, the O(3) gauge
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field symmetry leads to a novel, always non-zero, fundamental field B®
[1—4], and to novel concepts such as classical vacuum polarization and
magnetization which are missing from U(1) electrodynamics entirely. The
vector potential in O(3) symmetry is a classical object, and the rules of gauge
transformation are different from those in the older view. This conclusion
leads to many ramifications and concepts which are also missing from U(7).
These concepts are due to the non Abelian nature of the O(3) theory, for
example inherent non linearities such as the well observed conjugate
product 4 x 4@ of complex vector potentials discussed throughout Vols.
1—4 and elsewhere [5] in the literature.

In the presence of field matter interaction it is shown that the U(7)
theory can be recovered as an excellent approximation to the O(3) theory,
because when there is field matter interaction the non linear terms are very
small, empirically and theoretically. This correct recovery of the linear U(7)
field equations from those of the non-linear O(3) theory means that the latter
can do everything that the former can do plus a lot more. The Coulomb,
Ampere, Faraday and Gauss laws can be recovered from the O(3) theory
when the latter’s non linearities can be neglected.

For the free field, however, the non-linearities of the O(3) theory are
intrinsically important and cannot be approximated or gauged away. For
example, the B® field of the O(3) theory does not exist in the U(7) theory.
The inverse Faraday effect can be accounted for from first principles in the
O(3) theory, but it leads to a paradox in the U(7) theory. In the latter, the
potentials can be regarded as mathematical subsidiary variables [7—9], but
in the O(3) theory they are physically meaningful, for example, there is a
light like (c4©@, 4® ), a polar four-vector that quantizes directly to photon
momentum and which is missing entirely from the U(I) theory. Gauge
transformation in the O(3) theory is a geometrical process with physical
meaning, whereas in the U() theory it is essentially a mathematical process
using the gradient of an arbitrary variable. One consequence is that in the
O(3) theory the Lorentz transformation has a different meaning; if it applies
at all it is a special restriction on the physical vector potential. In the U(7)
theory it is a key choice of gauge that is ultimately a mathematical
sonvenience, leading as it does to the d'Alembert wave equation and to the
zauge fixing term used in U(I) quantization.

5

The empirical evidence for the need for an O(3) or SU(2) symmetry
for classical electrodynamics has been reviewed recently by Barrett [8,9],
who argues that the classical Maxwellian view of electrodynamics is a linear
theory in which the scalar and vector potentials are arbitrary, and defined
only through applied boundary conditions and a subjective choice of gauge
such as the Lorentz condition. Barrett [8,9] then exposes several flaws in the
received view by arguing that there exist several phenomena of nature that
require a physical potential four-vector on the classical as well as the
quantum levels. One of these is the Aharonov-Bohm effect, but there are
several others. The examples thus far identified include the following:
1) Aharonov-Bohm; 2) Altshuler-Aronov-Spivak; 3) topological phase;
4) Josephson; 5) quantized Hall; 6) Sagnac; 7) de Haas van Alphen;
8) Ehrenberg-Siday; 9) non-linear magneto optical. It is also significant that
quantum electrodynamics leads to vacuum polarization, or photon self
energy, which is missing from classical U(l) theory but is present in
classical O(3) theory as shown in this chapter. The O(3) theory also gives
classical vacuum magnetization, also missing from U(/) theory.

So to accept the suggestion of O(3) electrodynamics it is necessary
to consider the empirical data given by Barrett, and to accept the hypothesis
that gauge field theory can be developed with O(3) covariant derivatives
which can be classified with group theory and which can be applied to
classical electrodynamics [1—4]. Once this hypothesis is accepted and
tested for self-consistency, several advantages follow which are described
in the first part of this volume. Resistance to the hypothesis based on the
standard model is counter-argued in Refs.1 through 4 and on the key
empirical observations listed above, for example those by Barrett [8,9] and
the empirical observation [l—4] of the conjugate product A ¥ x 4@ . This
is rigorously zero in U(I) electrodynamics by definition [1—6], but is
non-zero in O(3) electrodynamics. There is no difficulty in principle in
extending quantum electrodynamics to a non-Abelian theory, which
becomes akin to quantum chromodynamics. The latter is well known to be
renormalizable at all orders. The mathematical structure of non Abelian ged
is that of gcd, but with an internal gauge space ((1), (2), (3)). As shown in
Chap. 2, the gauge space and space-time form an extended Lie algebra in
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electrodynamics, even in the U(I) theory. The two spaces are not
independent of each other, even in the standard model.

Therefore the first part of this volume develops the ideas of O(3)
electrodynamics, giving an unusual amount of technical detail because the
hypothesis and concomitant ideas may be new to the classical
electrodynamicist versed in the standard model, which allows only U(/)
theory for the electromagnetic sector. The contemporary gauge field theorist
will be unfamiliar with the fact that the internal gauge space and the space-
time of both the U(1) and the O(3) theory are not independent (Chap. 2), in
the sense that they form an extended Lie algebra as discussed elegantly by
Aldrovandi [10]. The concept of O(3) electrodynamics must not be
confused as an abstract analogy of the U(!) electrodynamics. The former
produces physical equations of classical electrodynamics which reduce to the
form of the Maxwell equations for polarizations (1) and (2), so in this sense
the O(3) (non-linear) theory, reduces to the U(1) theory when non linearities
are small. This occurs in field matter interaction. For example, the
non-linear inverse Faraday effect is in magnitude a very small effect of
magneto optics which was finally observed with considerable difficulty in
1965 [1—4]. The linear Maxwell equations describe the much more
accessible and more easily observable optical effects of nature that go back
to the discovery of circular polarization by Arago in 1811, and to the work
of Coulomb in the late eighteenth century. The Maxwell equations work
well because the optical non linearities in nature are so small in field matter
interaction.

At the risk of boring the initiated therefore, we provide throughout
the opening chapters of this volume copious details of the new theory, to try
to minimize confusion and obscurity, and to help the student. The first
section of this chapter deals with the fundamental vector algebra of the
complex circular basis ((1), (2), (3)), showing that it is, indeed, a basis that
can be used as a representation of O(3) space. As intimated, the use of this
basis is suggested by the empirical existence of right and left circular
polarization, which must be described in a complex representation by at least
two basis vectors,i and j in the Cartesian representation, ¢ and e® in
the complex circular representation. As argued elegantly by Barrett [8,9]
this basic fact about light leads to the need for an SU(2) electrodynamics.
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In our view, the B® field emerges once we accept an SU(2) or O(3)
electrodynamics for the vacuum as well as for field matter interaction. It
turns out that the hypothesis of O(3) electrodynamics is self consistent and
is as valid in this sense as U(!) electrodynamics. It is recognized however
that all Maxwellian type theories have serious flaws inherent in them, and
the extension from U(I) to O(3) does not cure all of these. The standard
model is rigidly cemented in U(1) theory and carries with it all these serious
flaws listed, for example by Bearden [11], and recently discussed by Fritzius'
translation [12] of Ritz [13]. These have each argued elegantly against the
U(1) electrodynamics for a number of years.

1.1 Elements of Vector Analysis in the Circular Basis ((1), (2), (3))

The ((1), (2), (3)) basis is hereinafter referred to as the complex
circular basis because it is formed from a complex combination of Cartesian
unit vectors as they appear in the description of circular polarization. The
basis vectors are therefore,

e®W=_(i-jj), i-—(eW+e®),

-
-

e® - (e(l)_e(Z))’ (1.1.1)

(i), J=

Wi

-

e =k,

Ifthe phase factor e ¢ of electromagnetic radiationis kept constant, then e ¥ = ¢ @*
is the vectorial part of the circular description of right and left circularly
polarized radiation. Note carefully however that in forming the complex

conjugate of a plane wave suchas B " the phase factor also changes from e ¢
to e’ . These matters are described at length in Ref. 14.
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The vectors e M, e @ and e ® form the O(3) type cyclic permutation
relations [1—4],

e(l)Xe(l):ieG)*, ixj=k,
ePxe® = jeM* = jxf=i, (1.1.2)
ePxeW =je@*  gxj=j.
A closely similar complex circular basis has been described for example by
Silver [15], and is well known in tensor analysis.
1.1.1 The Unit Vector Dot Product

In the complex circular basis,

eM.e® =@ .o - p3). 0

(1.1.3)
eM.oM - p@.,0 -
In the Cartesian basis,
ii=jj=k-k=1, i-j=i-k=j-k=0. (1.1.4)

1.1.2 Vectors

In the complex circular basis the vectors A and B can be defined as

A=AD + 4O L 4O = gD 4 4@p@ 4 4D @)
(1.1.5)

B:=BW .+ B® ,BO _ B , pDe® L Be®
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In these definitions, 4V, 4@ and 4 ® are scalars, linked to their Cartesian
counterparts as follows,

1 . *
AD = —(4,-id,) =AD", 4O =4, (1.1.6)

2

1.1.2.1 Unit Vector Premultipliers

In the logic of the complex circular basis scalar unity is expressed
as the product of two complex conjugates, referred to here as complex unity,

12:= 101® (1.1.7)

where,

- Ly, @=L (144, (1.1.8)

v V2

so the dot product of e® with e® or of vectors A® and 4@ is

eW.e® = 1M (@@ - 1] =121 (1.1.9)
A(l)'A(2) :A(l)e(l)-A(z)e(z) :A(I)A(Z) :A(O)Z ' .

Since the product 11® is always unity, it makes no difference to the dot
product of unit vectors or of conjugate vectors such as 4" and 4 @, but
the dot product of a vector 4 and a unit vector e @ is
D.,@ - 40)1@,0). @ _ 1 : -
AWD.o@ - 4( )1()8()'8()—5(AX—1AY)(1 +,>
(1.1.10)

A,.-id +id ,+4,) .
e y T Ay

2| —
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Similarly, as described in Appendix B of Vol. 3, the dot product of a

complex circular Pauli matrix 0" and a unit vector e is

0(1).e(2):%(ox—ioy+i0X+0},), (1.1.11)

as in that Appendix. This procedure leads to the result of that appendix,

((,(1) . e(z)) (o(z).e(z) ) —eW.p@1ig®. oMW x @ (1.1.12)

which is the equivalent of the Dirac result of the Cartesian basis.
The complex circular basis is a natural description of the observable

conjugate product A P x 4@ and thus of B®.

1.1.3 Dot Product of Two Vectors

The dot product of two vectors when neither is a unit vector is
defined as

AB=AVB@eM.o@  4OBWe@ .M, 4RG3 .03

(1.1.13)
- AWBD  4@BW) L 4BIBB)
and is the same as the Cartesian dot product,
AB=4,B,+4,B,+4,4,. (1.1.14)

1.1.4 The Del Operator

The del operator in the complex circular basis is a vector operator
which can be defined as
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9

1 1
VX: :—(V(l)+v(2)> R V(l):— -iv 5
X f /2 (V= 1%y)
d i
Vs = (VOv®) oo Ly iy 1.1.15
vz=i:v(3> v -v,.
oz ’ z
1.1.5 Divergence
The divergence in the complex circular basis is defined as
A=VVgD 1 y@ 40, gd)40) (1.1.16)
1.1.6 Gradient

The gradient of a scalar @ in the complex circular basis is,

VO = VDDe @ + VOB M + 7O P | (1.1.17)

1.1.7 Curl
The curl operator in the complex circular basis is defined as,

i j k e @ L0

VxAd=|V% Vy V | - Lily) v vO| . (1.1.18)
Ay, A, 4, AV 4@ 4O
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For example the & component is
(Vdy=Vy Ay )k = i (V4@ -4 D) e® (1.1.19)
The i and j components are

i(VYAZ—VzAY) —j(VXAZ_VZAX) = ’1—(9(1)+e(z))

7

[\

x( L(va)_v(z))A(3)_Lv(3)(A(1)_A(2))}
3 s (1.1.20)

__i_(e(l)_e(z))( _1_(v(l)+v(2))A(3)_z(i(A(l)JrA(Z)) )

K K 7z

- i (V@4 -vOy @ )e® 4 (V4O -V4 ®))e@)
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1.1.8 The Vector Cross Product

The vector cross product in the complex circular basis is by
definition,

AxB:= (ADe® i g0e@, 4Bp®)
x (B@e® +pe@ g3 @)

S AOBMeM x @, LG @M,
(1.1.21)

e @+ LB
—il4® 40 406
B® B BB

This result can be checked by working out the e¢® component of A4 x B,
ie®* (4®BM - 4OBD)  where,

1 . .
A(2>=—\/§(AX+1AY)=A“) :
(1.1.21a)
1 : .
B(1)=E(BX—1BY) -B®" .
So,
B B rild By Byl )
(1.1.22)

and (4,B,~A,By)k =ie® (4PBND-B@4M) .
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The conjugate product can be checked by direct evaluation to be
i j k

1
ADx 4@ - A/g,l) A}(,) 0

1.1.23)
AP 4P 0 (

(4P4P - APAP k=144

1.1.9 The Cyclic Relations
The cyclic relations in the ((1), (2), (3)) basis are
ADx 4@ =g O4®* et cyclicum (1.1.24)

and so on for any vector.

1.2 The Electromagnetic Field Tensor in O(3) Electrodynamics

The basic concepts of this section were first tried out in Vol. 2 but
here we offer a considerable clarification and simplification based on
intervening experience and discussion. The basic ideas of general field
theory are described for example in Ryder [5] in his Chap. 3, and were first
applied to electrodynamics in Vol. 2 in a didactic manner. In order to
understand these ideas at all, two concepts in particular are needed which do
not existin U(1) electrodynamics: that of the internal space and the covariant
derivative as defined in this space. These new and perhaps unfamiliar ideas
are best illustrated when it comes to gauge transformation in O(3), which is
developed in the next section. This section gives basic ideas and at each
stage is careful to spot the difference between U(1) and O(3). Inthis way the
interested student can gradually absorb the new material and realize its
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advantages. In so doing the need for an O(3) electrodynamics becomes ever
clearer, and several advantages over Ul) start to be defined.

1.2.1 The Internal Space in O(3) Electrodynamics

The internal space is defined through the expansion of the potential
in space-time to an object which has meaning additionally in a space defined
by a particular group structure [1—6]. It becomes necessary to think of the
familiar 4* of the received view as a scalar object in this internal space as
well as a four-vector in space-time. This idea appears to have been first
applied to field theory by Yang and Mills in 1955 [8,9], and has since been
developed in many very fruitful ways within the standard model. It was first
applied by Barrett [8,9] to classical electrodynamics in the late eighties, and
slightly later [1—4] it was shown to lead to the existence of the fundamental
field B®, an object that is missing from the received view. It is not so

much that the latter sets B® to zero, it is a concept that simply does not
appear within its horizon. So it is clear that O(3) or SU(2) electrodynamics
was inferred independently by Barrett [8,9] and by Evans [1—4].

Therefore if 4% is thought of as a scalar object in some internal
space, conceptually and empirically ((1), (2), (3)), it becomes possible to
write a potential that becomes a vector in the internal space, and whose
scalar components in this space are also objects in space-time. This is the
basic hypothesis of O(3) electrodynamics, and we can write in consequence
of this hypothesis,

AP = AR (M), 412)p @) | 41B), ) (1.1.25)

The unit vectors e, e¢®  and ¢® form acomplex basis for internal
space, and the objects A*V, 4@ and 43 are scalar coefficients in the

internal space of the complete vector 4 *. This boldface character therefore
denotes an object that is simultaneously a vector in the internal space (a
symmetry space [8,9] of gauge field theory) and a four-vector in space-time
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(Minkowski space). The indices of the scalar coefficients 4 D 4#® and 444
must therefore match self consistently.

1.2.1.1 Index Matching

If we consider the received view of ordinary plane waves in space-
time [1—4],

L A9
AW =@ =2 " (ji+j)e ™, (1.1.26)

it should be clear that the boldface character 4 @ represents a vector in the
ordinary space part of space-time. The electromagnetic phase is defined as
¢ := wt-xZ where w is the angular frequency at instant ¢ and x the

wave-vector at point Z.

These plane waves are transverse solutions of the received U() field
equations and the d'Alembert wave equation for the free field [1—9]. In
order to expand the horizon of the gauge structure of classical
electrodynamics from U(l) to O(3) an additional space-time index must
appear in the definition of the plane wave and the (1) and (2) indices must
become indices of the internal space. This is achieved by recognizing that:

©
Al(l):A)((l):iA e = 4107

2

AZ(”:A;}):A—(O)e"@:Az@*, (1.1.27)

/3
400 Z 430 = 400 = 43@ =0,
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These equations define two of the scalar coefficients of the complete four-
vector A* |

AP0 = (0,4M) }
(1.1.28)

AMD = (0,49) .
This process follows from the fact that AV = 4 @* are transverse

and so can have X and ¥ components only. The scalar coefficients A4 *1
and 4" are light-like invariants [16,17],

Ap(l)Aél) =AM @D _ 0 (1.1.29)
. , A,

of polar four-vectors in space-time. The third index (3) of the non Abelian
theory must therefore be along the direction of propagation of the radiation
and must also be a light-like invariant,

3)46G)
A7 =0, (1.1.30)

in the vacuum.. It must be light-like because the free field is assumed to
propagate, in this classical view, at ¢ in the vacuum..
One possible solution of Eq. (1.1.30) is

AH3) = (cA(O),A(3)), (1.1.31)
where

cA® = [49] (1.1.32)

Such a solution is proportional directly to the wave four-vector,

KO = (ck,ke® ) = eq " (1.1.33)

and to the photon energy-momentum,
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p“(3):=°ﬁk“(3) =ed"d (1.1.34)

where b is the Dirac constant and -e is the unit of charge, the charge on the
clectron accelerated to ¢. Therefore Eq. (1.1.31) quantizes directly to
Eq. (1.1.34), giving the Planck Law,

En =hw=hck . (1.1.35)

This is the same in O(3) and U(1) electrodynamics. However', the (;omplete
vector 4, in the internal ((1), (2), (3)) space of O(3) is the light-like polar

vector,

Ar= (0,4M)e®4 (0,4D)e@+ (c4©,4D)e®, (1.1.36)
and has time-like, longitudinal and transverse components .wh.ich are each
physical. These concepts do not exist in the U(1) hypotbesw, in yvhwh the
time-like and longitudinal components are combined to give what is asserted
conventionally to be a physical admixture [5]. '

To summarize, the differences between the U(1) and O(3) theories

are as follows:

1) In U(1), the physical object that we started with was a trapsverse
plane wave with no longitudinal or time-like components. The internal

space was a scalar space, and the physical entity was 4* = 4 we o

2) In O(3), the physical object has become transverse, longltudlpal
and time-like, and the internal gauge space has become a vector space with
O(3) rotation group symmetry. This leads dire.ctly. to the Plapck Law
through Eq. (1.31), a concept which does not exist in the cl'ass1cal U
hypothesis. We begin to see advantages in the O(3) hypothesis.
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1.2.2 Field Tensor from Field Potential

With these definitions, the rules of general gauge field theory can be
applied to electrodynamics. The groundwork for this was provided in Vol. 2
of this series, and the fundamental methods are given by Ryder [5]. Itis first
necessary to define the field tensor in O(3) through the field potential. The
field tensor is also a vector in the internal O(3) gauge space,

G"W =GB, 3 w2 @ 4 5 wv3), 3) , (1.1.37)

and the coefficients G"™@ , i = 1,2, 3, are scalar coefficients of the internal
space. They are also antisymmetric tensors in Minkowski space-time.
General gauge field theory for O(3) symmetry [1—9] then gives

G+ — grg v -84 rD* _ igA r2) » 4v0) ,
GM@* _ gryg V) -3%4 M2)+ - igA r@) . 4V , (1.1.38)
GO = grg vO)* _ gV 4 n@) -igA pd) x4 V@) ,

which is a relation between vectors in the internal space ((1), (2), (3)). The
cross product notation is also a vector notation, for example A4 *® x 4 v®

is a cross product of a vector 4*® with the vector 4@ in the internal
space. In forming this cross product, the Greek indices pand v are not
transmuted, and the complex basis ((1), (2), (3)) is used, so that the terms
quadratic in A become natural descriptions of the empirically observable
conjugate product. It will be shown that these terms give rise to vacuum
polarization and vacuum magnetization in O(3) but not in U(l)
electrodynamics. The definition (1.1.38) is for the free field in regions free
of matter and free of charge/current interaction. The scalar coefficient g
is a scalar both in the internal gauge space, a symmetry space, and also in
Minkowski space-time. In the vacuum it is given by [1—4],

K
A©

g=—===, (1.1.39)

> |



20 Chap. 1 General Gauge Field Theory Applied to Electrodynamics

and is the inverse of the quantum of magnetic flux, *h/e. Evidently,
Eq. (1.1.39) is a fundamental quantum relation for one photon. In field
matter interaction g changes in magnitude and is empirically determined
through the Verdet constant in the inverse Faraday effect, and the non linear
terms in Eq. (1.1.39 ) (those quadratic in 4 ) become negligible under most
conditions [18]. The O(3) theory then reduces to the same algebraic form
as the U(1) theory for G**V =G w@* je  reduces to the homogeneous
and inhomogeneous Maxwell equations for the complex conjugate field
tensors G*"( and G*'@ . This is the linear approximation which neglects
all non linear optical phenomena such as the inverse Faraday effect. The
latter is described through equations for G**®), which is always quadratic
in the potential and always non linear. This tensor, G"¥®, contains only
the B® field. Self consistently, therefore, the B @ field is undefined in
the linear approximation, which is Maxwell's theory. Note that g is never
zero in free space, however, and in this condition the O(3) electrodynamics
differs fundamentally from its U(1) counterpart because in free space the
magnitude of the non linear term is the same as those linear in 4.

The main difference between O(3) and U(1) in this section are
therefore as follows:

1) the field tensor in U(1) is well known to be the antisymmetric
four-curl:

Gpv___auAV_aVAu, (1140)

and there is a scalar internal gauge space, i.e., G** isa scalar in this space
and an antisymmetric tensor in Minkowski space-time. The field tensor is
linear in the field potential, and only transverse components are present in
Ua).

2) The field tensor in O(3) is a vector in the internal gauge space ((1),
(2), (3)) and is non linear in the field potential. It contains the longitudinal

and fundamental magnetic flux density component BO .
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1.2.2.1 Details of Equation (1.1.38 )

Equation (1.1.38) is a concise description which contains a

- considerable amount of information about the O(3) theory of

electrqmagnetism in free space. This information is obtainable without
assuming any form of field equation, and so, details are given in this section
of the' correct algebraic methods of reduction. Considering for example the
equatinn,

GMPD* = grg vD* _gv 4 m)* -igA r2) x 40 (1.1.41)

G2+ = gl g20x _ g2 41D+ _; 12) 420
912" - AN ~ige ) d D470 (1.1.42)

This equation consists of components such as, where €12)03) is the Levi
Civita symbol, defined by

] =

c el - _ _
MHE)G) € ~ foea T (1.1.43)

If we now take the vector potential as defined in Section (1.2.1.1), with

10
- il —
oM (cat’ V) . (1.1.44)
then,

G122+ Z gl 2 _ 5241~

—ig(A1(2)A2(3)—A1(3)A2(2)):0_ (1.1.45)

This is a self-consistent result because there is no Z component of G*¥(*

which is defined as transverse. Both the linear and non linear components
are zero.

We next consider the element,
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GBW® =gl 430 - P10 ~jge o A4
_ 91430 _ P40 - jg (410430 - 41043D)) (1.1.46)
= (83 +igd3®)4'® = - (& +ix)4'®D,

where we have used,

_ K 33) - 4O _ 40
- K 404040 ,
o b (1.1.47)
[t can be seen that there are two contributions to the field element G 3@,

a magnetic field component:

1) the linear contribution, -3*°4'® ;
2) the non-linear contribution, -ig43¥4'® .

In vector notation, Eq. (1.1.46 ) is a component of,

2BW:=VxAD-jgq4® x 4D

(T =icd ® )
=(V-igd®) x4 (1.1.48)
_yx4MW_-_L pegm
B©
Furthermore,
PA® = jxq'? (1.1.49)

and so it follows that

B(l)zva(l)z_ﬁB@)xB(”. (1.1.50)
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Similarly,

@ - @_-_ 1 p@yypo
B®=vVx4g B<°>B xB® (1.1.51)

Therefore the definition of the field tensor in O(3) electrodynamics gives the
first two components of the B Cyclic Theorem [1—4],

1.1.52
B@xB® - jgOp M= ( )

together with the definition of B®W and B®@ in terms of the curl of
vector potentials AP and 4@,

B®xBW _ ,-B(O)B(z)*}

BW=VxAq4W
(1.1.53)
B®=Vxq®,
It is convenient to write this important result as
1
H(vac.) =—B-M|(vac.), (1.1.54)

Ko

where  H(vac)is the vacuum magnetic field strength and p, the

permeability in vacuo. The object M (vac)does not exist in U(l)
electrodynamics and is the vacuum magnetization, for example,

1 3 1
——— B xB®D. (1.1.55)

MW (vac) = -
iUOB ©
The objects MM (vac.) and M@ (vac.) depend on the phase-less

vacuum magnetic field B® and so does not exist as a concept in U(l)
electrodynamics. The B® field itself is defined through
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GO = gig VO _ gy nO)* _jo g D) x 4 VD) (1.1.56)

with (3) aligned for convenience in the Z axis. So by definition, the only
non zero components are

G120 - _G120) _ 32(3) _ (1.1.57)
It follows that
Bf) i _ig(A1(1)Az(z)_A1(2)A2(1)), (1.1.58)
or
B®=B®* = _jgqgDx 4@ - —ﬁB‘” xB®, (1.1.59)

giving the third component of the B Cyclic Theorem,
B®Wx B®@ - jpOpB®* and the vacuum magnetization,

7 1
M® =-—_ - _BOxp® (1.1.60)

i B©

These results are all absent from U(1) electrodynamics, but we know from
Section (1.2.1.1) that they are consistent with the plane waves 4 ® =4 ®*,
We shall return to this point later, in the context of the O(3) field equations
and their linearization. Note that B® is always defined through
AD x 4®* and is not the curl of A®. The conjugate product is an

observable of magneto-optics and so B® is non-zero empirically in O(3)
electrodynamics. In U(l) electrodynamics it is rigorously zero, and
AD x 4@ in Uyl) electrodynamics is considered to be an operator with no
Z component. This is in clear conflict with vector algebra, in that
AM x 4@ js aligned in the (3) axis. For this reason we prefer to develop
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O(3) electrodynamics systematically, and reduce it to the Maxwell equations
using linearization approximations where applicable.

To summarize what we have found so far, in O(3) electrodynamics
(hereinafter frequently referred to just as "O(3)") the magnetic part of the
complete free field is defined as a sum of the curl of a vector potential and
a vacuum magnetization. The latter is inherent in the structure of the B

Cyclic Theorem [1—4]. In U(I) electrodynamics there isno B® field by

definition (or more accurately, by hypothesis) and in consequence there is
no vacuum magnetization in classical U(1) electrodynamics. In O(3) the

B® field is always proportional by hypothesis to the conjugate product
AD x 4@ whichin field matter interaction is an optical observable. The B ®
field is not the curl of a vector potential, and this is a clear departure from
the U(1) hypothesis of classical electrodynamics. The phase-less B® is
instead directly proportional in free space to the phase-less 4 ® through the
scalar relation B© =x4©@ [1—4]. These results are obtained self
consistently from the definition of the field from the potentials in the O(3)

gauge theory. We have calculated the field coefficients:
GY® - (a°+z'gA 0(3) )A 10 - G110
G020 = (80 +igd 0(3) )A 20 = G2
GB@ =0,

GBO = (P +igd3D) 410 = -G3O | (1.1.61)
G20 - _ (53 +igd 33) )A 20 - _GRO)
Grad -
Similarly ,
B EGHOR (P 1p " )4 'O, (1.1.62)
and so on, and,
G120)* = _G206)* = —ig(A 1) 420) _ 4 1@y 2(1)) . (1.1.63)
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The three field tensors are

0 - -g2b g

1(1) 2()
Gw) = GrD* - & 0 0 B , (1.1.64)
EXD 0 0 -cB'®

0 -cB* B 0

the transverse tensor; and the longitudinal

[0 0 0 0]
—~R33)

grergwo o [0 0 BT 0L (1.1.65)

0 cB® 0 0

K Blag! <l bagitdigg)

In classical O(3) electrodynamics there also exists a vacuum
polarization, because the complete electric field strength in the vacuum is

given by

2E® .= i igcA©4 @
or

=_( g;w“igcA(o))Am (1.1.66)

=2EW"

Using g =x/4©,

The Electromagnetic

4@
ot

E® - _ = —ickA® = —iwA® (1.1.67)

and it is convenient to express this result as

1 1
—D®(vac.) =EP+—_P®(vac.),
. (vac.) . (vac.) (1.1.68)

where D@ (vac.) is the electric displacement in vacuo and where the
vacuum polarization is P® (vac.) = -ie w4 @, where € is the vacuum
permittivity.

The vacuum polarization is well known to have an analogue in
quantum electrodynamics: the photon self energy [5 ]. This has no classical
analogue in U(l) electrodynamics, but is clearly defined in O(3)
electrodynamics. The classical O(3) vacuum polarization is transverse and
vanishes when o =0, so has no meaning in electrostatics. This is
consistent with the fact that it is the analogue of photon self energy in
quantum electrodynamics. Finally, it is pure transverse, because the
hypothetical E® field is zero in O(3) electrodynamics,

GBO* = 04303)% _ 534 00)*

(1.1.69)
—ig (4430 - g3@400) -0

and so
GOBW = GB® =GB =, (1.1.70)

in the vacuum. In the presence of field matter interaction this result is no
longer true because of the Coulomb field, indicating polarization of matter.
Polarization of the vacuum takes place through transverse components only.
Again this result is missing from U(!) theory.
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1.2.3 Field Matter Interaction

In the presence of field matter interaction the O(3) field tensor
equivalent to that in Eq. (1.1.38) of Section (1.2.2) becomes

Lgwor - puvor 1 yruvar (1.1.71)

€ €

where 7/ =1, 2, 3. Here,

FWO .- grgv0) _gv 4 1@ ,

(1.1.72)
M .- ieog’A w2 x 4 v
in cyclic permutation, with g’ « g empirically [1—4].
1.2.3.1 Example, the Inverse Faraday Effect
In the inverse Faraday effect we have,
Fro* =0, (1.1.75a)
MWE)* - ieog/A rl) x 4V (1.1.75b)

Equation (1.1.75a ) means that the free space B® is zero if we attempt to
define it as a conventional U(I) four-curl. Equation (1.1.75b) in vector
notation is

M®" = jelg /g0 x 4@ (1.1.76)
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which is the empirically observed phase free magnetization of the inverse
Faraday effect [1—4]. Thisisasmall effectandso g’« g empirically. The

factor g’ for field matter interaction is much smaller than g in free space.

In other words the covariant derivative changes its nature when there is field"
matter interaction, and loosely speaking, this is "bending of space-time" in
the presence of charge, akin to bending of space-time in the presence of
mass in general relativity. (Recall that the idea of covariant derivative is

borrowed from general relativity.) In general, g/ is relativistic, and an
example of its development is given in Vol.1 [1]. We see that the inverse

Faraday effect plays a central role in O(3) electrodynamics, which is able to

describe the phenomenon from the basic definition of the field tensor. It

follows that

/
MO = -¢ £ B (1.1.77)
g
for the inverse Faraday effect, which is therefore a direct observation of
B® | Recall that in U(1) electrodynamics,

AV xAD(yay) =0, (1.1.78)

and so U(1) gauge field theory as applied to electrodynamics does not
describe the inverse Faraday effect. The phenomenological invocation of
nonzerod xA " =AM x 4@ [1—4] to describe the inverse Faraday effect
in U(1) theory therefore leads to a paradox, in that the observable does not
exist in U(l) gauge field theory by definition. The lowest symmetry in
which A x 4 ®* exists is O(3) [6,8,9], as argued here. The development
of O3) = SU2) electrodynamics leads to several major advantages as
described by Barrett [8,9] and elsewhere [1—4].
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1.2.3.2 Some Conceptual Similarities to and Differences from Yang
Mills Theory in High Energy Physics

There are obvious points of similarity between the O(3) theory of
electrodynamics and conventional Yang-Mills theory in particle physics.
Both theories are based on an SU(2) = O(3) Lagrangian and the structure of
the field tensor and field equations is fundamentally the same. However,
there are some differences also. One of these is that in O(3) electrodynamics
the presence of the non-linearity preceded by g or g’ in the field tensor
definition does not mean that the particle concomitant with the gauge field
is a charged particle. In O(3) electrodynamics, the field does not act as its
own source because the nonlinearities in the definition of the field tensor are
interpretable as vacuum polarization and magnetization. The g constant in
0(3) electrodynamics is proportional to the charge e, (the charge on the
proton), but it is well known that the electron accelerated to the speed of
light takes on the attributes of a classical electromagnetic field as argued by
Jackson [19]. This does not mean that the field is charged. Itis also well
known that the vector potential is C negative, and is proportional to e in

the vacuum, but again, 4" is not charged.

As argued in Chap. 2, the internal (gauge) space, and space-time in
classical electrodynamics are not independent spaces, they form an extended
Lie algebra as defined by Aldrovandi [20] and discussed in detail in Chap. 2.
In particle theory the internal space is usually ascribed to an isospin which
is independent of space-time. Generally, however, the internal gauge space
is a symmetry space and the basis ((1), (2), (3)) has O(3) symmetry. Finally,
the constant g is defined by Eq. (1.1.47) in free space, but in field-matter
interaction is much smaller in magnitude, as determined empirically and
from phenomenological, or semi-classical, non-linear optical theory [1—4].
In elementary particle theory the parameter g is usually interpreted as a
constant. However, the structure of the gauge field theory is the same for
elementary particle theory and electrodynamics. If the latter is quantized, g
becomes a constant e/+ in free space [1—4], and in field-matter interaction
becomes a coefficient proportional to e/%. Evidently, the elementary charge
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e is the same scalar quantity in both U(7) and O(3), i.e., the charge on the
proton, the negative of the charge on the electron ( -e).

1.3 Gauge Transformation in O(3) Electrodynamics

There is a profound difference between U(l) and O(3)
electrodynamics in respect of gauge transformation, and so it is important to
give considerable calculational detail as in this section. In U(I) the potential
is subsidiary to the field, as argued by Heaviside and contemporaries in the
late nineteenth century. It was Heaviside's avowed intention to murder the
potential, but in O(3) it springs to life again, as we shall find. In U(1), the
gauge transformation process is in the last analysis a mathematical
convenience, because the gradient of an arbitrary variable is added to the
original A. This means that gauge transformation of the second kind
essentially adds a random quantity to the electromagnetic phase. In non-
Abelian gauge field theory applied to classical electrodynamics, the gauge
transformation becomes essentially a geometrical process, and there is a well
defined topological phase effect [8,9], related to the Aharonov-Bohm effect
[8,9]. This isan observed phase effect, and is not random. There are several
other features of O(3) which do not occur in U(I), and in respect of gauge
transformation, the two theories are very different in nature. The main
difference is that the potential in O(3) and higher symmetry electrodynamic
theories is always a physical object, never a mathematical subsidiary
variable. In O(3), gauge transformation is controlled by the rules of general
gauge field theory as described for example by Ryder [5]. Such ideas form
the basis for contemporary gauge field theories such as instanton theory in
high energy physics. They are being applied increasingly to low energy
physics and to electrodynamics [8,9]. The careful work by Barrett [8,9] in
favor of the physical nature of the classical electromagnetic potential, and
in favor of SU(2) = O(3) electrodynamics, appears to be irrefutable to the
state of the art, based as it is on several different effects of nature. Since
ADx 4@ js missing by definition [1—4] from U(l) gauge field theory
applied to classical electrodynamics (" U(1)" for short) the various non-linear
magneto-optical effects [18] may be added to the list given by Barrett. If so,
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it follows that O(3) = SU(2) symmetry is to be preferred over U(l) for a
more consistent view of optics, in a theoretical framework which envelops
both linear and non-linear phenomena. This is a powerful geometrical
argument in favor of O(3) because in U(l), the conjugate product
AW x 4@ must be an operator with no longitudinal component. This
makes no sense in three dimensional space, since by analogy with the
longitudinally directed Poynting vector, a cross product of transverse field
components; 4 ¥ x 4@ mustalso be longitudinally directed for elementary
consistency. Similarly, the angular momentum of a classical
electromagnetic beam is longitudinally directed, as argued by Jackson [19].
So the U(1) appellation in classical electrodynamics can refer at best only to
the Lagrangian. In other contexts it is self contradictory as evidenced in the
vacuum by the Poynting vector, or angular momentum vectors, both of
which are perpendicular to the plane of the O(2) = U(l) symmetry group,
and both of which are empirical observables in respectively the Lebedev and
Beth effects [4]. Similarly for B®, and O(3) is to be preferred to deal with
non linear phenomena within gauge field theory. Such phenomena present
an Achilles heel of the standard model as discussed here and elsewhere
[1—4]. General gauge field theory has been notably successful in
elementary particle theory [5], and may be as successful in classical
electrodynamics, but with conceptual differences as discussed already. An
important difference appears at present to be that the two spaces in O(3) are
not independent. The O(3) hypothesis has the major advantage of being able
to incorporate within one structure non-linear and linear phenomena of
optics, and also to logically accommodate such quantities as the Poynting
vector as just discussed. There is no doubt that this vector is longitudinally
directed and outside the plane of definition of O(2) = U(l). It is not
consistent to apply O(2) to an energy combination (the Lagrangian) and not
to the momentum of the same field, the Poynting vector. In O(3) the
Lagrangian and momentum have the symmetry of three dimensional space,
the internal gauge space.

In order to progress from U(l) to O(3) the concepts of gauge
transformation in general field theory are illustrated in detail in this section
to show that the gauge transform process is essentially geometrical. In U(1),
the gauge transform is essentially a matter of adding to the magnetic vector
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potential the gradient of a function which can have any value whatsoever
without affecting the original magnetic field So this is an arbitrary, or
random, process in the sense that a random mathematical quantity has no
physical meaning unless subjected to thermodynamic averaging. Yet the
incorporation of such a quantity is precisely the basis of U(l) gauge
transformation of the second kind [6,8,9]. In U(1), the electromagnetic
phase is random.

1.3.1 The Fundamental Gauge Transform Equations

In the condensed matrix notation used by Ryder [5], the basic
equations of gauge transformation in general field theory are as follows

l
Guvzg[Du’ Dv]’ (1.1.79a)
I -1
G,, =8G,, S, (1.1.79b)
A4, = (SAu—éauS) st (1.1.79c)

In this notation, S is a rotation matrix, Au is a matrix generated from the
vector potential, and Guv , the field matrix, is defined as the commutator of
covariant derivatives, Du. Gauge transformation as in Eq. (1.1.79¢c) is a

rotation using curvilinear coordinates, one which changes covariantly.
These equations represent physical rotation. If O(3), the rotation group, is
used as the background or internal gauge field symmetry of the field theory,
the rotation takes place in three dimensions. These ideas have been applied
to electromagnetism in previous volumes [1—4], to which the interested
reader is referred for more detail. In this section full details of the gauge
transform process are given for a rotation about the Z axis.
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1.3.2 Background Mathematical Detail

Some background details of the operation of rotation in three
dimensional space are given in this section in order to prepare the way for
the detailed development of Eqgs. (1.1.79a) to (1.1.79¢c). We consider the
Eulerangles o, B,and y and the quaternion coefficients ¢, q,, ¢, and

g;. Define,
B i
@ =gy +igy = COS = exp §(a+y)
(1.1.80)
B —i
b=q1—zq2—smaexp 7(oc—y)
with
q02+qlz+q22+q32 =1. (1.1.81)
Then the spinor rotation in SU(2) is
u' a b||u
- , (1.1.82)
v/ _b* a* v

with determinant +1and ad -bc = 1. This can be re-expressed directly in
terms of quaternions by

WL

In O(@3), whose covering group is SU(2), the rotation matrix, is

(1.1.83)

9*iq; 4, -iq, m
-q,-iq, q,-iq;| |v]
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X/ ix €1y Ciz|| X
Y'i=|ey &y e, Y], (1.1.84)
z! €3x €y €37 z

where e, e,,and e; are unit vectors whose components are defined by

2.2 2 2 . .

e, y=90 *4q; —93 —93 =cosca cosP cosy-sina sinf,

e;y=2(9,9,+9,4;) =sina cos cosy +cosa siny,
e ,;=2(9,9;-9,4,) = -sinf cosy,

e,y =2(9,9,-9,9;) = —cosa cosf siny-sina cosy,

ezy=q5‘—q12+q22—q32 = -sina cosP siny +cosa cosy, ¢ (1.1.85)

ezzzz(q2q3+qoq1) =sinf siny,

;5 =2(4,9,+9,9,) =cosasinf,

3y =2(9,9;-944,) = -sina sinf,

a2 22 2
e5,=4dg ~4q; —9> +q; =cosp.

Therefore rotation in three dimensions can be represented equivalently in
terms of vectors, spinors, quaternions, and Euler angles. Rotation about the
Z axis is represented by

cosp=cosy=1, sinf=siny=0, (1.1.86)

and so
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e,y =Cos 0, e,y =sina, e,,=0,

e, = —Sina, e,y=cosa, e,,=0, (1.1.87)

e3X=0, e,y =0, e;,=1.
A possible description of rotation about the Zaxisis p =0,y =0, ie,
o .o
qO:cosE, q3=s1n5, q,=0, 4¢,=0. (1.1.88)

The rotation matrices are therefore

cosa sina O S
™ 0
-sina, cosa O <—>[ }, (1.1.89)
0 0 1

or, in terms of quaternion components or coefficients

2 13
- 2 0
90~y <9043 4y +id, 0

0 9014,

<> (1.1.90)

8} .2
-2949; 90 -93 O
0 0 1

The self consistency of this process can be checked through the fact that it
gives the well known half angle formulae,
28 _gin2 & ?

2 7
COS(X=q0 —q3 = COS 2

(1.1.91)
! s AN
sino =2 =2¢0Ss — sin — .
93 X2
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Note that the O(3) rotation matrix is set up in terms of o« and the SU(2) in
terms of /2 . The O(3) rotation matrix is real, the SU(2) rotation matrix
is complex. The same quaternion coefficients appear in O(3) and SU(2).

1.3.3 Infinitesimal Rotation Generator in SU(2)

Our first example of the development of Egs. (1.1.79a) to (1.1.79¢)
uses infinitesimal rotation generators in SU(2). Let

eia/Z 0
R(Z) := —— (1.1.92)
be an SU(2) rotation matrix. Its infinitesimal rotation generator is then
defined to be
19R, 111 0 g,
T, =——(« =— =, 1.1.93
; ia()a:() 2[0—1 2 (1.1.93)

where 0, is the third Pauli matrix.
Now apply the Taylor series to the matrix exponential to obtain

2 3
faza/2 1+ (0] E_EE _ciz__(_xi+
Saodatiy 31 B
10 Lo 1 0| g2
4 ¥ LAe B, (1.1.94)
o1l eisk2r 21 b0 a4

and therefore
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io o/

R(Z) =e""? =g +ig,q,. (1.1.95)

In the small angle limit,

91, ¢ >, (1.1.96)

ig,al2 — ¢/
e oo 5% (1.1.97)

which are self consistently the first two terms of a Taylor series.

1.3.3.1 Field Rotation in SU(2)

The rotation of a field { is now definable by [5],
' =e" 7y = (g, +ig30, )¢, (1.1.98)

and with these components in hand the gauge transformation process in
SU(2) is based on the idea that the Euler angle ¢ is a function of x", the
space-time four-vector. This is a gauge transformation of the second kind,
which is underpinned by special relativity [1—5]. The quaternion
coefficients become functions of x*, and derivatives are replaced by
covariant derivatives in SU(2) [5 ]. Under gauge transformation of the
second kind, the potential four-vector becomes

4, =548 —éauSS‘l , (1.1.99)
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in which appears an inhomogeneous, purely topological, term, the second
term on the right hand side. In our example, this equation is developed as

a0” _  ZO S::eioza/Z. (11100)

In analogy with Eq. (1.1.1) of Sec. 1.2, the object Ap is a matrix in an

internal gauge space indicated by the superscript a. In this notation,
summation is implied over all repeated indices. Greek indices are covariant-
contravariant Minkowski space indices. Latin ones denote the internal
gauge space. The placement of the Latin indices as subscript or superscript
is not significant, because they are not contravariant-covariant indices. For
the rotation about the Z axis that we are considering here, a =Z. The
symbol § is a rotation matrix in SU(2) in exponential form. Therefore the
symbol 4 is interpreted as the matrix,

[ Z
A_“ 0
A 2 (1.1.101)
B AZ ?
0o -*
2 e

for this example of Z axis rotation in SU(2) of the field { . The SU(2)
gauge transformation of 4, is given by Eq. (1.1.99), with its characteristic

inhomogeneous or topological term. In a U(1) symmetry theory this term is
the well known gradient of an arbitrary function first introduced in the late
nineteenth century. In SU(2) however, it is not arbitrary, and is determined
by S,ie., by a particular Euler angle o , or quaternion component.
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1.3.3.2 The Inhomogeneous or Topological Term in SU(2)
We use Eq. (1.1.99 ) with
S=¢'%z2 g1 oo 102/ (1.1.102)

and
.OZ
0S=|i—=0alsS. (1.1.103)
[ 2 n

Therefore gauge transformation results in

4l =q -2 %25 1.1.104
e ”_E7 n® > (1.1.104)
or in matrix form,
£
o g
2
Z/
0 _f“_
2
g (1.1.105)
z
4
o) 1 aua 0
=, + — !
. _A_uz 2¢| 0 -0
2

where,
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o =cos’! (q02~q32) =sin™! (2q0q3) . (1.1.106)

Therefore ,

/
Af:Af+§Qp. (1.1.107)
This is clearly a geometrical result, rotation of the field §r about the Z axis
has this effect on the Z component of A, inthe SU(2) internal gauge space.
We are dealing with curvilinear coordinates because in a flat space-time,
d,x=0 because ¢ is nota functionof x*. Termssuchas (1/g) d
are the physical bases of effects such as that of Aharonov and Bohm. The
latter are usually given in terms of U(l) electrodynamics, in which o is
effectively an arbitrary function. InSU(2), « is clearly the Euler angle, and

a finite rotation must always take place through a finite Euler angle.
In the small angle limit,

o .
5 " sinc:=gs, (1.1.108)

and so,

zZ z
Ay = A +=0,4;. (1.1.109)

Note that gauge transformation in an SU(2) symmetry field theory is
a geometrical process. If Jda/dx* =0, A/Z goes to A, , there is no
topological term and no Aharonov-Bohm effect. The object AILl is a

physical four-potential in the classical field theory. It is not a mathematical
Subsidiary variable as in a U(l) gauge field theory of classical
electrodynamics. There is therefore a profound difference between O(3) and
U(1) electrodynamics.
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1.3.3.3 Self Consistency of Equation (1.1.107)

There are various ways of self checking Eq. (1.1.107), for example,
for small angle rotation in the O(3) group, homomorphic [5,8,9] to SU(2),
we should obtain the same result. It is convenient to develop the concise
description given by Ryder on his p. 119 [5], and to consider the small angle
rotation of a field ¢ with components described by ¢,, ¢,, and ¢,, in

general, a matter field. In the O(3) internal space,

P 1 A, 0] |9
Gyl =|-Ay 1 Of [d,], (1.1.110)
P! R T R T

for a rotation about the small angle A;. This process is

o) =9, + A,
¢£=¢2_A3¢1a (1.1.111)
b; = b,

and is a component of the small angle rotation given by -A x¢. When
A = Ak we obtain, self consistently,

i ok
“Ax=- 0508 Ay = A, i-Ad, ). (1.1.112)
¢ &, &

In O(3) vector notation,
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P eV Ap<>p =p-Axd, (1.1.113)

in the small angle limit.
Now apply the formula for gauge transformation,

/ I -
A, = (SAu—gauSJ S, (1.1.114)
with
SA, =exp(iJ-A)A ~A4 -AxA4,, (1.1.115a)

where A b is a vector in the internal O(3) group space, with

9,8 =(io,A)S, (1.1.115b)
to obtain
-2
A= Au—AXAu—’—auAS) s, (1.1.116)
g
where
S=e T A=1+iJ-A+...
, (1.1.117)
Stlze /Ao _jJ A+
SO
/ . 1
A, ~A -AxA +=3 A+ .., (1.1.118)

g
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which is the Yang-Mills approximation given by Ryder. The small angle
gauge transformation in the O(3) gauge group's internal space is a
geometrical process, not a random process as in the U(1) gauge group. Later
an example of this different role played by the potential is considered, the

gauge transformation of the conjugate product 4 x A4 @ In O(3) this
object is physical, in U(1) it is unphysical. However, it is an observable of
magneto-optics, and so empirical data prefer the O(3) hypothesis. In O(3),
rotation about the Z axis, a gauge transformation, leaves A x4 @
unchanged; in U(I), it becomes random, because 4V =4 @" becomes

random.. |
Returning to the development in this section, then for a Z axis

rotation,
A =A,=0, (1.1.119)
and
—AXAH=A3A“2i—A3Au1]', (1.1.120)

where i, j and k are Cartesian unit vectors in the internal space. So,

/
A, =4, +A3Au2 ,

A/

w2 = A A4 (1.1.121)

/ 1
A“3 :Au3 + Ea“A:; .

The third of these equations is Eq (1.1.107) in the small angle limit, QED.
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1.3.4 Gauge Transformation in an O(3) Gauge Field Theory

Considering a Z axis rotation in an internal O(3) space of a gauge
field theory governed by Eqs (1.1.79a) to (1.1.79¢) we obtain,

S=e”2 §lag M (1.1.122)

b

where J, is the infinitesimal rotation generator defined in Ref 5. Thus,

cosee sina O
L 202 3l B
S—1+1JZOL—JZ§—1J— +.. =|-sina cosa O], (1.1.123)

Z31
0 0 1

which is self-consistently the rotation matrix for a rotation about the Z axis
in an O(3) symmetry gauge field theory.
The inverse of S is formed by o — - «,

cosoe -sing O
S1=|sina cosa 0| =e ", (1.1.124)

0 0 1

and it is easily checked that SS ! is the unit 3 x 3 matrix as required.
The existence of the term auS depends on « being a function of

x¥, since « is the only independent variable in S. So,

cosee sino O
auS:au -sino cosa O, (1.1.125)
0 0 1
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Now use the calculus,

d_dd
& d (1.1.126)

soif y =cos (f(x)) for example, then,

% = o) sin (A1) . (1.1.127)

We obtain
ap(cos oc(x“)) =—8uoz sin ¢ ,
(1.1.128)
au(sin oa(x")) =d,acosa,
and
-sina coso O
GPS=apa -coso -sina 0. (1.1.129)

0 0 O

The existence of 4§ depends directly on that of J & and on the

postulate that o is a function of x* ; a postulate that springs directly from
special relativity via type two gauge transform theory [5], or gauge
transformation of the second kind.
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1.3.4.1 Definition of AJu

In O(3) symmetry gauge field theory the object 4, is expressed as

a matrix,

AuzJaAS, (1.1.130)

where J¢ are the three infinitesimal rotation generator matrices of O(3)
[1—9] and where the double indexed A: are scalar coefficients of the

internal space, a vector space. For Z axis rotation,

_7Z42
A —JA“.

. (1.1.131)

In this notation, the placing of Z as an upper or lower index has no algebraic
significance, as discussed already, whereas p is covariant-contravariant.

Thus, for Z axis rotation,

0 -i 0
. V4

A4,=1i 0 04r, (1.1.132)
000

The inhomogeneous term in Eq (1.1.114) is also directly dependent
on the existence of apoc,
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-sinet coso O||coso -sino O

auSS'1=8“oz —coso -sinee O||sino cosa O

0 o ol o 0 1
(1.1.133)
010
=auoc -1 00
0 00
So,
; J
198571 =290, (1.1.134)
g g

Note that this is the topological term responsible for the Aharonov-
Bohm effect and so forth [1—9]. The scalar g is a dimensionality
coefficient introduced as such in the definition of the covariant derivative
[5]. The operator J, is the infinitesimal rotation generator of O(3) about
Z. The existence of this term in the gauge transform of 4 is the direct

result of special relativity, of gauge transformation of the second kind. Ina
U(l) gauge field theory the equivalent of « is arbitrary, and has no
geometrical meaning as we have argued already. In the O@3) = SU(2)
versionitisan Euler angle whichisa function of x * fora givenrotation, o(x")
is clearly finite and well defined, being a physical Euler angle in curvilinear
coordinates necessitated by special relativity.

The above calculation can be checked for self consistency using the
operator formalism. If,

K= exp(iJZoc) , then §,5=iJ,0,aS, (1.1.135)

and, QED,
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0,SS™=iJQ . (1.1.136)

1.3.4.2 The Term SA S -1

This is also a matrix given by,

A

= ET—
SAuS = lAu

cosa sina O 0 1 0jjcosa -sinc O
x| -sine cosee 0||-1 O Of|sinac cosa O (1.1.137)
0 0 1 0 00 0 0 1

The overall result of the gauge transformation is therefore,

z 1
AHJZ—>( Af+§apa) s, (1.1.138)
ie.,
z z: 1
G A, +§apoc . (1.1.139)

Self consistently, this is Eq. (1.1.107) of Sec. 1.3.3.1. The O(3) and SU(2)
symmetry theories give the same result for the scalar AHZ of the internal

gauge space. If the space is such that o has no dependence on x*, the

2. :
4, is unchanged by rotation about Z. Self-consistently, this is Euclidean
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space, in which rotation about Z does not change the direction or magnitude
of a vector component aligned in Z.

1.3.5 Transformation of the Field Tensor

The rule for transformation of the field tensor in general gauge field
theory is,

G,y =SG,, S (1.1.140)

The inhomogeneous term does not appear and the transformation takes place
covariantly rather than invariantly as in U¢I) [5]. The B® field transforms
as follows, for a Z axis rotation and in matrix algebra,

0 -B,0
-B, 0 0
0 0 0
cosa sina 0T -B, cosa -sina 0

0
—>| -sin¢t cosa O B,

0
0 O0]|sine cosax O (1.1.141)
0 0 Ijlo o0 o

0o 0 1
[0 -B, 0
=B, 0 0],
0 0 0
ie.,
B, —> B,. (1.1.142)
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The B field is therefore self-consistently invariant under rotation
about the Z axis, and the O(3) gauge transform is a rotation which produces,

1
A, = 4,+-9,,0a,
‘ Y (1.1.143)

B, — B,.

In U(1) these concepts do not arise because both 4 zand B, are zero, and

the idea of gauge transformation being a rotation through a physical Euler
angle does not exist.

1.3.6 O(3) Gauge Transformation of the Optical Conjugate Product
AV x 4@

The optical conjugate product is a well accepted physical observable
of the semi classical, phenomenological, theory of non-linear optics [1-—4].
As argued in several ways [1-—4] already this observable is identically zero
by definition in U(l). In O@3) it is identically non-zero by definition and
proportional to B® by definition. To check the consistency of the result
(1.1.142) of the preceding section this section is devoted to the details of
gauge transformation of 4 x 4@ in O(3). Since B® is invariant under
O(3) gauge transformation defined as a rotation about Z, so should be
ADx 4D 1n order for this to be so, we shall see that the gauge
transformation in O(3) must generate an electromagnetic phase shift defined
in terms of the physical angle of rotation. This result is akin to the
topological phase [8,9] and the Aharonov-Bohm effect [8,9] as discussed
lucidly by Barrett. It'means that there exists an optical Aharonov-Bohm
effect which is measurable in principle by this phase shift. In Ufl), as
argued already, the electromagnetic phase is random because of the random
nature of gauge transformation of the second kind in U(l) [1—4]. To see
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this result in O(3), the gauge transformation rules must be applied carefully
to A® and to A @ as follows,

4D —> s4051 - L5 5571,
J (1.1.144)

4@ > 5405 +i(a ss).
g H

In vector notation, the A ¥ and 4 ® components are complex conjugates
such as,
© L ©) )
AO A7 G ver, 4@ A (jgj)e e,
V2 V2 (1.1.145)

. . 2). 2).
= ALY, = AP+ AT) .

Therefore in matrix form,

0 (0 0 i
AD=4Pl0 0 -i| +43°]0 0 0],
i 0] | -1
> (1.1.146)
Oq i
A@=4P10 0 -i| +4P|0
Fiege| +i

Rotation of these terms about the Z axis produces results such as the
following,
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s
-cosoc sinoe 0|0 O O {jcosa -sing O
=|-sino cosee 0|0 0 -i||sinae cosa O A;l)
0 0O 1([0 i O 0 0 1 (1.1.147)
0 0 -isin &
- 0 0 -—icosa Ai,l).
| isina icos o 0

Therefore the vector 4™ is changed by an O(3) gauge transformation
defined as a rotation about the Z axis. This is self consistent because 4 ¥

has X and ¥ components only.
Similarly,

0 0 icosq
5 4P 0 0 -isina|. (1.1.148)

-icos o isino 0

It can now be checked that the commutator [ SAS)S 154 ;1 'S,

IS a Z axis rotation as required,
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saPs1, 405" | = (5495 1545 5405 545 )

0 0 -isin o 0 0 icos o
=44 Mo 0 -icosa 0 0 -isina
isinot icoso 0 -icosa isino 0

0 0 icosa 0 0 ~isina
494000 0 -isina|l 0 0 -icosa
-icosa isino 0 isinee icosd 0
(1.1.149)
0 10
~APAM -1 0 0]=ia4P,.
0 00

The overall result is that a rotation about the Z axis changes the X and Y
components of the potentials 4™ and 4@, but leaves B® unchanged.
However, the polar longitudinal component 4 ,, (which has no existence in

U(l)), is changed by the same gauge transform process to A,+3 0.

Therefore, A ™ x A ® is self consistently proportional to B® in O(3). In
U(1), as we have seen, B® is zero and A M x 4@ is randomized by the
U(1) gauge transformation of the second kind because random quantities are
added to 4™ and 4@ (gradients of arbitrary scalars). It seems clear that
O(3) is the more consistent theory on these arguments alone, because
AM x4 s an optical observable. In U(l), the potential is never an

observable according to the Heaviside interpretation, it is strictly a
mathematical subsidiary. The latter conclusion has been shown to be false
by Barrett [8,9] using half a dozen phenomena of nature. The Heaviside
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view was criticized by Ritz as early as 1908 [13] on the grounds that the
classical potential denoted delayed action at a distance as advocated by
Schwarzschild in 1902 [12], and so must be physical.

As a further check on self consistency of Eq. (1.1.142) we can
calculate the commutator,

[SAMs 1, SA@s ]

(1.1.150)
=S40 1 4 Ds-1_54@g-1 g4Dg-1
where
000 0 0 i
AV =4P10 0 -i|+aPl0o 0 -0, (1.1.151)
0i:i 0 -i 00
and
SAMS =54 P51 + 5405
0 0 -sin & +coso
o ' (1.1.152)
=2 it 0 0 ~icosa-sina
‘/i isine -coso icosa +sind 0
Similarly,
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SADS 1 =S4 +84 5!

0 0 -sin o ~cosa (1.1.153)
A0 .
=2 i 0 0 ~icosa +sin o
ﬁ isin o +cos o icos o -sin o 0

Straightforward algebra then shows that,

[SA(I)S-I,SA(Z)S_I] :—A(O)ZJZ’ (11154)

or in vector notation, we obtain the self consistent result,

. K
B9 - _,ﬁAﬂ)xA(z), (1.1.155)

which again shows that the cross product of two polar vectors, 4 and
AP is the axial vector B®. (Recall that the cross product of two polar or

of two axial vectors both give rise to an axial vector, not to a polar vector
[1—4].) Therefore the longitudinal polar vector potential A4, can be a

component of the overall potential four-vector, but cannot be generated by
the cross product 4 x 4@ The latter always generates an axial vector

proportional to B®.
Now evaluate the commutator [4®, 4@ |, with,

00 1 o |00
(W] 0
A -A7 el g o 4@ A7l o —i|. (1.1.156)

V2 -1 i 0 V2 1 i 0

to obtain

Gauge Transformatic

[A<1),A<2)] =-402y (1.1.157)

and so,

(4D, 4@ ] = [S4D51, 54D 1] (1.1.158)

This result means that an O(3) gauge transformation defined as a Z axis
rotation changes A ¥ and 4 @ but leaves 4V x 4 @ ynchanged. Thisis an
obvious and simple geometrical result which is physically meaningful as a
geometric rotation in three dimensions, and which is self consistent with the
invariance of B® under such a gauge transformation. These concepts do
not exist in U(1).

1.3.7 The Topological or Inhomogeneous Term: The Optical
Aharonov-Bohm Effect and Topological Phase Effect in O(3)

The complete gauge transformation is,

AO — 540571 - L5 551)®
N ’
g
, (1.1.159)
4D > s4@571 L (5 5571)@
N >
g
and for a Z axis rotation,
(40, 4@] = [s4WsT, S4D51], (1.1.160)
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0 -i 0 J
L(ass)0=La.ai 0 0] =g, (1.1.161)
g i g * H
0 00O
0 i 0 7
1(a,857)®=25,a|~i 0 0|=-Zya, (1.1.162)
i i g
0 0O

From Eq. (1.1.160) we know that the sum generated by the commutator of
inhomogeneous terms and cross terms on the right hand side must be zero.
The commutator of inhomogeneous terms is indeed zero,

0o 10[[o0o 10
L@@ | [-100[[-100
4 0 00[/[0 00

(1.1.163)
0.10]10. 10
-{-100||-100 =0
0 00(|O0O OO
Therefore the sum of cross terms must be zero,
(s4Ws-1) (3,581 )® - (3,85 )" (s4Ps )
(1.1.164)

+ (SA @5 -1 ) (auss-l )(1) = (auss—l )(2) (SA Hg-1 ) =0
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After some elementary algebra the result reduces to

0 0 ie ™ 0 0 je™
e 0 0 e™|+e™® 0 0 -e=|=0, (1.1.165
-ie i _eﬂa 0 _lewL eia 0
ie.,
e!@ % = _g7H(@9), (1.1.165a)
or,
cos(dp-a) =0, (1.1.165b)
T
¢ — ax (2n+1)5, (1.1.165¢)

Therefore the O(3) gauge transformation produces a topologically induced
change in the electromagnetic phase. A rotation through the angle produces
achange a+(2n+1)m/2 inthe phase. This is also a polarization change

because for instance,

(i+ij)e'® — (i+ij)e@CrDmD (1.1.166)

and using the angle formulae,

cos (A£B) = cos A cos B sin4 sinB,} (1.1.167)

sin (A+B) =sin 4 cos B+cos4 sinB,

it follows that
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Re((i+ij)e™) =cos ¢pi-sindj

. . (1.1.168)
— £ (sm<b01+cosd>0]) ,

where ¢, = .

This result clearly shares the features of the topological phase effect,
for example, winding an optical fiber on a drum, and sending a linearly
polarized laser beam through it produces a rotation of the linear polarization
plane [8,9]. Thisis in O(3) an optical Aharonov Bohm effect as argued. In
U(1) the same effect is random, and unphysical. This seems to be further
clear empirical reason for preferring O(3) to U(1) and the observation of the
topological phase in this manner is also an observation of the optical
Aharonov-Bohm effect. For example, a rotation of 37/2 increases ¢ in
Eq. (1.1.165) by the same amount, 31/2 , and changes the polarization of

the light beam. For example, for n = 0,

: T L
sm(a+5) =cosec  ( #sine in general ) ,
(1.1.169)

T : :
cos(a+5) =-sina  ( #cosa in general) .

Since gauge transformation in O(3) is a physical (or geometrical) rotation,
the rotation of the direction of the light beam as it propagates through an
optical fiber wound about the Z axis as a helix [8,9] is a geometrical process
that is a gauge transformation, one which can be observed empirically to
change the polarization of that light beam, QED. The geometrical details are
different, because the helical rotation of a beam propagating within a fiber
is not the same as a straightforward rotation of that beam about its own
propagation axis Z when the latter is held constant, but the overall result is
the same, a change of polarization of the light beam. Such a phenomenon
has no existence in U(1).
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Definitions in Ref. 10.

Chapter 2
The Geometry of Gauge Fields

Contemporary bundle tangent theory is able to establish the basic
structure of any gauge theory from pure geometry. It can be shown [1] that
the internal space is a symmetry space. Vector fields, forms and tensors on
the basic manifold are related to their correspondents on the bundle. Vector
fields are lifted by a section to certain fields on the bundle and this is pure
geometry as is well known in contemporary mathematical physics. A frame
[e“] on the basic space will be taken by a section o into a set of basic

fields X , =0 (ell ) . Around any point of the bundle there exists a separated
basis, called a direct product basis, formed by the basic fields x, and the
fundamental fields X . In this (direct product) basis the commutation

relations are [1],

(X, X, ] = ChLX,, (12.1)
(X, X, ] =0, (1.22)
(X X, | =fa X, s (1.2.3)

As described in Ref. 1, Eq. (1.2.2) establishes the independence of the
algebra of the fundamental and basic fields.



64 Chap. 2 The Geometry of Gauge Fields

2.1 Application to Electromagnetic Theory with Internal Space ((1), (2),
3))

Usually, electromagnetism is described as a gauge theory with U(1)
internal symmetry [2—4]. However, in Chap. 1 we have developed a gauge
theory of electromagnetism with an internal space ((1), (2), (3)) which is a
physical space with O(3) symmetry. Does this gauge theory comply with
Egs. (1.2.1) to (1.2.3)? This question can be tested with a particular choice
of generators for the X fields. If, for example, we choose the X, tobe

rotation generators of the Lorentz group we obtain [5—38] for Eq. (1.2.1),

[ 1 2] =iy,
Sy | =iy, (1.2.4)
[Jy 1} =iJ,

so fp=i,a=X,b=Y, c=2Z. Similarly for Eq. (1.2.3),

[, J<2>] = -J®r (1.2.5)

et cyclicum, so /3, = -1, a = (1), b = (2), ¢ = (3). However, when we come

to test Eq. (1.2.2), we obtain results such as

[/, /@] - Lo, (12.6)

/2

and so forth. This simply means that the internal gauge space as used in
Chap. 1 is net independent of space-time, as in Egs. (1.2.1), (1.2.2), and
(1.2.3). How are we to justify the gauge theory of Chap. 1 therefore in the
general structure described for example by Aldrovandi [1]? It turns out that
the answer is to be found in the theory of extended Lie algebra.

Note firstly that the X* vector field symbols used by Aldrovandi [1]
can represent space-time translation generators, for example, or rotation
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generators. In a simple or direct product Lie algebra he proves that all gauge
theories must have the following structure (his Egs. (61) to (63)) [1],

[Xu/, Xv/] =ChX]-F., X, (12.7)
/

X/, x,] =0, (12.8)

(X X, | =fan Xes (1.2.9)

where Xp/ =X f —A:Xa. If XlLl is a translation generator proportional to Gu

[4], then X pf is a covariant derivative. The X generators can be matrix

generators for example.
In simple gauge theories such as these, Eq. (1.2.8) shows that the
internal (gauge) space and the external space are independent.  The

connection A ;’ modifies the translation generator X, = 9, and alters space-

time homogeneity [1]. This is a key point in all gauge theories applied to
electrodynamics. Essentially, the non-linearities in electrodynamics become
a property of space-time in the spirit of general relativity. The O(3)
symmetry electrodynamics is only one example of many possible self
consistent theories of non-linear optics, all of which reduce to the
Maxwellian formalism in the linear limit. In a simple gauge theory such as
the Yang-Mills theory the underlying group Jacobi identities completely
determine the structure of the theory, which is fixed by Egs. (1.2.7) to
(1.2.9). The Bianchi identity for example is formed from the Jacobi identity
through the use of covariant derivatives [1], and all of these results are
purely geometrical. They are of the type used in particle physics, where it
is usually assumed that the internal space is independent of Minkowski
space-time.
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2.1.1 Extended Lie Algebra

A rigorous geometrical basis for the theory used in Chap. 1 can be
given using a simple example of the Lie algebra extension theory given by
Aldrovandi [2.8] in his section 6.1. This is developed in this section using
the Lie algebra of rotation generators in the basis (X, Y, Z) and the basis
(1), ), (3)). The L algebra [1] is defined by

[Jydy), =i (1.2.10)
and the V algebra by:
[J(l) , J(z)]V S (O (1.2.11)

Given a Lie algebra L and a representation p of L on another algebra V' we
produce a joint algebra £ encompassing L and V, following the methods
given by Aldrovandi [1]. The algebra E is an extension of L by V' through
p. The extension of V' to E is an inclusion such that

3)* *
[0, J@], = [JO @], = £ JOr (1.2.12)
so, (13))(;) = - 1. The extension of L to E is a mapping such that,
o:L = F,
1.2.13
0:J, = JO;  (@=(1) @, B, R
and,
. (3 * *
10, I, =iC s 1219
where

[Jus ] =G, (1.2.15)

uvp -
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Therefore C(jyy = i and,

. ~(3)r _ ,(3)x
iChe =fme - (1.2.16)

The mapping (1.2.13) means that the Cartesian space of J, in L is extended

to a complex spherical space in E.

The Lie algebras L and 7 have been combined into a Lie algebra E
with an underlying vector space L @DV, the direct sum of those of L and V.
In general, L and ¥ can be combined [1] to give many different extended
algebras E. In this case E is an algebra that incorporates the Cartesian basis
(L) and the spherical basis ¥ where L describes a Cartesian basis and V' a
spherical basis only. For rotation generators, the extended Lie algebra E is

given by

3)* *
[J(l),J(Z)]E - [J(l)aJ(z)]V - (l))(z o, (1.2.17)
70, T® ] =p (4, )7 = iCiiy ™" (1.2.18)
sy ]y = Gy =BT (1.2.19)

where the constants [353 measure the departure from homomorphism [1].

2.1.2 Extended Lie Algebra with Connections

Equation (1.2.18 ) above measures that the coupling between the
internal space ((1), (2), (3)) and the extended space of the E Lie algebra.
This can be made clear by writing the commutator on the left hand side of
Eq. (1.2.18) as [5—38],
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1 (Jy-idy), J?

5 : (1.2.20)

1
(JO, s ], -

This means that the theory developed in Chap. 1 is an extended Lie algebra
with connections, which is described in general gauge theory by Aldrovandi
on his page 39 [1], his Eqs. (105) to (111). In this extended Lie algebra, the

connection is denoted [1] B, and
/ a
X=X -B°X,. (1.2.21)

The commutator relations become
/ I _ e/ fc
[XN’X" J B CMVXP —ﬁu c?
x/.x,] =clx., (12.22)

[Xa’ Xb ] :f:ch >

where [1],
I c c
ﬁpv = ﬁpv +K“V ’
c a a apb
Ky, =CB) -CyBl -BCP ~fy,BB, (1.2.23)
/e c a
Cllb = C}lb —'B,Jﬁb .
If C,ﬁ = ﬁ:fv = 0 there is no extension [1].
We are now in a position to check this extended gauge theoretical
structure against the O(3) gauge theory given by Ryder [4] in his Chap. 3.

This theory is in turn the basis of our development in Chap. 1. We shall first
show that even U(!) electrodynamics, seen as a gauge theory, is a special
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case of Eq. (1.2.22), but with CL/IZ not equal to zero. This means that the

Lie algebra underlying ordinary U(1) electrodynamics is an extended Lie
algebra, and so the spaces L and V are not independent, even in Maxwellian
electrodynamics seen as a gauge field theory. So application of gauge
theory, with affine algebra, to electrodynamics is different in principle from
its application to elementary particle physics, if- when the latter takes the
two spaces to be independent. The only idea in common is that space-time

is made inhomogeneous.
The special case of U(1) electromagnetism can be recovered from
Egs. (1.2.22) as follows. Firstly define the covariant derivatives by taking

XJ and Xv/ to be extended translation generators,

X, =0,-igd,, X, =0,-igd,, (1.2.24)

where g = e, the charge on the proton, and 4, and A4 are the U(l) four
potentials [4]. Then,

/ / . .
X/, x| = ~ie(8,4,-8,4,) = -ieF,,. (1.2.25)
where F . is the ordinary U(1) field tensor. From Aldrovandi's Eq. (99),
[Xu , X, ]E =ChX, =0, (1.2.26)

because Xp = au; X, =0, X - ap are translation generators within a

proportionality factor [4]. Therefore,

Co =0, (1.2.27)

and
Bisy = igF, (1.2.28)
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Since we are dealing with an affine algebra, we obtain in Aldrovandi's
Eq. (100),

B =0. (1.2.29)

Furthermore, in U(1),
X =X,=X=1, (1.2.30)

being interpreted as rotation generators of U(1) [4]. Therefore,

[ =0, (1.2.31)
and
lc c c a a
Bu =Ky =Cp By -Cy, B . (1.2.32)
We can identify:
Cpra =180, 5 C,, :=1igd,,
(1.2.33)
B]:=4,, B:=4,.

As described by Aldrovandi the C’s are interpreted as matrix operators
which in U(l) are 1 x 1 matrices, e.g.,

C:c = (XlLl )i’ =9, etc.. (1.2.34)

When we come to examine the commutator (1.2.22b) we find,

[X;,Xb] = [0, -igd, . 1] =Cp5 X, =0. (1.2.35)
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We have shown that f, = 0, so,

Cyp=Cpy =0, (1.2.36)

and

lc
Cuch = aul =0. (1.2.37)

So Eq. (1.2.35) becomes

0=C50, Cg#0, (1.2.38)

and since the spaces L and ¥ decouple if and only if C,, =0, the U(l)

theory of electrodynamics is a gauge theory in an extended Lie algebra. So
the fundamental and basic fields in U(1) electrodynamics occur in an £
space; E = L DV, the direct sum of L and V. The internal U(7) gauge space
is not independent of the space-time of the gauge theory. This is of course
a physical result, because the potential four-vector 4 of the U(1) theory is

well defined in both L and V.

These points appear not to have been realized hitherto, or not made
clear. The application as exemplified by Ryder, of gauge field theory to
classical electrodynamics implies an extended Lie algebra whose two spaces
are not independent. If elementary particle theory is to be defined as a gauge
field theory then it is usually assumed that the two spaces are independent.
This hypothesis is justified by its success in particle physics, but evidently,
the photon does not fit into a gauge field theory whose spaces are
independent, even in the U(l) linear approximation. This questions the
standard model again at a fundamental level, and questions the assertion that
the photon is a particle, or at least the same type of particle as for example
a quark or electron. This is a rigorous result of pure geometry applied as we
have just demonstrated to U(I) electrodynamics, the kind of electrodynamics
that is usually quantized to give the photon.



72 Chap. 2 The Geometry of Gauge Fields

On the classical level, the same geometrical methods of advanced
fiber bundle theory show [1] that there is no conceptual problem whatsoever
in replacing U(l) by O(3) in classical electrodynamics, we are simply
changing the symmetry of an internal space which by definition is a
symmetry space if we are to apply group theoretic restrictions to the
covariant derivative. (More generally we can lift these restrictions and make
the covariant derivative a Taylor series for example.) Extended gauge theory
[1] gives as rigorous a basis for O(3) as it does for U(1), or any other group
theoretic restriction on the covariant derivative. In the last analysis, such a
description is a guess about the vacuum, or in-homogeneity of space-time,
and shifts the description of what mediates interaction between two charges
from the field to the potential and to space-time itself, in the spirit of general
relativity. In this scenario, the classical electromagnetic field is the result of
a round trip with covariant derivatives [4]. If the round trip has a physical
effect, the field is not zero. The U(l) hypothesis makes the covariant
derivative linear in the potential four-vector. A round trip produces the
familiar four-curl, but from a theory akin to general relativity [4] in which
space-time itself is given a structure. This simple linear hypothesis results
in Maxwell's equations. The next simplest guess, or hypothesis, is O(3)
electrodynamics, in which the covariant derivative contains rotation
generators of O(3), and in which the field is non-linear in the potential as
developed in Chap 1. The O(3) guess results in a theory which is already
much richer than U(l), but is still a simple guess. Proceeding in this way
there emerges a set of classical electrodynamic theories, each member of
which is as rigorous as U(l). The differences between each member of this
set of theories show up most vividly in the vacuum. For example, as we
have seen in Chap. 1, O(3) gives vacuum polarization and magnetization
(the B cyclic theorem), which are all missing from U(1). Similarly, an SU(3)
group theoretic guess will bring out a far richer structure than O(3) and so
on. In this way we can begin to describe the various non linear optical
phenomena [ 5—=8] which have no existence at all in U(Z). The conventional
9] phenomenological approach simply inserts non-linear terms into U(1)
through the classical constitutive relations: a hybrid, self-contradictory,
approach. (Recall, for example, that A M x 4@ has no existence in U(l),
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but is thrown ad hoc into the theory in order to be able to describe the
inverse Faraday effect.)

The O(3) theory emerges from the general geometrical equations if
the internal space V' has this symmetry, so that X, X, and X become

rotation generators of O(3),
X,:=J, X;:=J, X:=J,
[Ja"]b] “faler S * 0.

The O(3) covariant derivatives are extended space-time translation
generators of the general theory given by Aldrovandi [1],

(1.2.39)

/ . a . .
Xu=8u—nguJa:=8u—ngu.—Du, (1240,
X, =0,-igdlJ =8, -igd, :=D,,

and g is proportional to the elementary charge e through different
coefficients in free space and in the presence of matter. This has no effect
on the O(3) symmetry of the internal gauge space. So [5—38],

X/ x]| --ig(0,4,-0,4,-ig[4,.4,]). (12.41)

and the commutator [A " A, ] is non-zero, making the theory non-linear.

Note that this is still a theory of electromagnetism, the elementary
charge e still appears in it, and the potentials are electromagnetic potentials.
The theory is, in the last analysis, a purely geometrical description of

classical electromagnetism.
As in U(1) theory,

Cf =0, (1.2.42)
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because unextended translation generators commute, e.g. [6“ , 0, ] -0 as

used for example by Ryder [4] in an SU(2) symmetry gauge field theory of
elementary particles. So,

uv=-e?

X/, x| = -x (1.2.43)

indicating the existence of an internal vector space as in the notation of
Egs. (1.1.38) of Chap. 1; and so, as in Eq. (3.169) of Ryder [4],

B, = ig(auAf -0,4, -igeca,,A;’Avb ) . (1.2.44)

If we assume no departure from homomorphism [1], i.e., that,

B, =0, (1.2.45)

we obtain,

(4 ¢ nd c na apb
Biw = Cpan - CvaBp _f:beBv s (1246)

and so,

CuB) :=igd A, C.Bl:=igdA;

pav

igd,:=B,, igd;:=B

v v

o= i€,

(1.2.47)

The spaces L and V are connected into an extended Lie algebra because
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XX, | =[8,-igd, . J,] = [3,.,] -ig[4,. ;]
=9,J,-ig4, [Ja,Jb] (1.2.48)

=3,J, ~igd 15,

This result, in Aldrovandi's notation, is identified as,

CoX,:=8,J, =0,

The O(3) theory of classical electromagnetism is therefore an example of a
gauge field theory in an affine space with E=L@ V. So all the
development by Aldrovandi in his pages 39 ff. can be taken over unchanged
as a description of O(3) electrodynamics. This means that all the insights on
pp. 39 ff. of Aldrovandi [1] can be implemented, including those in unified
field theory. The result is a powerful support for O(3) electrodynamics
based on pure geometry. No physics has yet entered the scene [1]. In other
words we have guessed that space-time can be made inhomogeneous by the
imposition of an internal O(3) symmetry in a gauge field theory.
Metaphorically, Maxwell guessed that this symmetry is U(Z). (Historically,
gauge field theories were not, of course, available to him.)

(1.2.49)

2.2 The Geometrical Meaning of O(3) Electrodynamics

The results of Sec. 2.1 mean that O(3) electrodynamics is
completely defined in contemporary geometrical theories, provided that
E=L®V,ie, that E is the direct sum of L and V. For example, O(3)
electrodynamics can be fully developed using exterior derivatives in an
anholonomic basis, extending the Maurer-Cartan equations as described in
Aldrovandi's Sec. 6.2. The O(3) electrodynamics can also be developed as
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a field algebra on manifolds, leading to a similarity with gravitational
theories as developed in Vol. 4 of this series [8]. The key empirical
difference between U(1) and O(3) electrodynamics is that the commutator
[Ap. , Av] is non zero in O(3), as observed in the inverse Faraday effect of

nonlinear magneto-optics [9].

2.3 The Field Equations of O(3) Electrodynamics

Physics enters the scene when we come to consider field equations
[1]. In this section, their complete self-consistency in classical O(3)
electrodynamics is demonstrated for the free field and in the presence of
field matter interaction.

2.3.1 The O(3) Field Equations in Free Space

It is argued in this section that the following O(3) free space field
equations are rigorously self-consistent,

DG" =0, (1.2.50)
v J (vac
D ,G" =L€—), (1.2.5D)

where G"' is the dual of the O(3) field tensor defined in Chap. 1,

SUV 1
G" 1= 26, (1.2.52)

and where J* (vac) isa vacuum Noether current, or helicity current, to be
defined. Eq. (1.2.50) is the Feynman-Jacobi identity for an O(3) symmetry
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gauge field theory [4], one in which the covariant derivative is defined in
terms of O(3) rotation generators. The O(3) field tensor G*’ is defined and
discussed in detail in Chap. 1. The equations (1.2.50) and (1.2.51) are
therefore,

8,G" +gd, xG" =0, (1.2.53)
v v_ J"(vac
3,G™ +gd xG" = ————(e ) : (1.2.54)

0

for the free classical field. Equations (1.2.53 ) and (1.2.54) use the same
notation as in Ryder's discussion of Yang-Mills theory [8], but as discussed,
form an extended Lie algebra. The coefficient g for the free field is,

_ K

e
0y (1.2.55)

and is proportional to the elementary charge e after quantization [5—38],

K

This concept of photon momentum %k occurs after quantization of the U(1)
theory, but usually, it is not clear that this quantum of momentum, the
photon momentum, is equal to e4® for the free field. The conceptual
problem posed by Eq. (1.2.55) is the presence of e in the free field, and as
argued already, its presence does not mean that the field is charged. It means
that the field is C negative. Therefore non-Abelian gauge field theory such
as O(3) classical electrodynamics allows charge quantization, the elementary
charge e being that on the proton, minus the charge on the electron.
Equation (1.2.56) is similar to Planck quantization, £n = hw, of the energy.
The self consistency of this result is illustrated through the fact that an
electron accelerated to ¢ becomes the electromagnetic field in free space as
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described by Jackson [2], and charge conservation means that e is present in
the free field. On an elementary physical level, the electromagnetic field
must be C negative for one charge to influence another through the field.
In action at a distance theories the same must apply, for example in
Schwarzschild's delayed action at a distance theory of 1902 [10] the
potential is C negative. On the classical level, the factor g in free space is

the wavevector magnitude divided by 4@, and so g is C negative as
required. In electrostatics, g goes to zero, and the O(3) theory takes on a
linear form, giving the Coulomb, Gauss and Ampere Laws of electrostatics
and magnetostatics. This is easy to see because g goes to zero gives a linear
theory which has the same structure as the familiar Maxwellian theory,
except for the presence of indices (1) and (2), indicating complex
conjugation. In the static limit however, we can use a real potential four-
vector, so that the indices (1) and (2) are equal. (Complex conjugation does
not affect a real valued variable.)

More subtly, we must consider whether the elementary magnetic flux
density on one photon, which is the elementary magnetic fluxon [8], divided
by a quantization volume, is localized or not after quantization. It is well
known that the photon, the quantum of energy, is not localized, and that the
photon can be created and destroyed with creation and annihilation operators
without affecting the principle of conservation of energy. These are features
of the quantized U(l) electromagnetic field. After quantization of O(3)
however, we find Eq. (1.2.56), and it seems that the fluxon h/e may share
these properties of being non localized with the quantized unit of energy, the
conventional photon, hw. It then seems appropriate to ask whether /e
divided by the quantization volume can also be created and destroyed
statistically within the quantized O(3) field without violating the principle
of conservation of charge. This is not a feature of the quantized U(1) field.
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2.3.2 Self Consistency of Eqs. (1.2.50) and (1.2.51)

Equations (1.2.50) and (1.2.51) are self consistent and consistent
with the definition of A4 " and G" usedin Chap. 1. The detailed proof of

this self consistency is given in this section. The solution of the two field
equations (1.2.50) and (1.2.51) must be consistent with the fact that the B
cyclic theorem is produced from the fundamental definition of the field
tensors appearing in the field equations. This can be so if and only if,

A, xGY =0, (1.2.57)
v Jlvac
A, xG* = —(E—) ; (1.2.58)

These conditions give the O(3) field equations in the form,

3,G" =0 (1.2.59)
9,G" =0, (1.2.60)
where
G" = G"WVe® 1+ GPPe® 4 GHDe® | (1.2.61)
G = G L GV @ 1 GrvB)eB) (1.2.62)

so we obtain the equations for indices (1) and (2),

0,G"W=5G6"? =0, (1.2.63)



80 Chap. 2 The Geometry of Gauge Fields

3,G"W =5, G =0, (1.2.64)

and the equations for the B® field,

3,G"Y =36 =0, (1.2.65)

Equations (1.2.63) and (1.2.64) are formally identical with the Maxwell
equations in free space for the complex field tensor components

G"WM = GW@D* and its dual. Equation (1.2.65) is not present in U(l)
electrodynamics and in vector notation gives the B® field equation in free
space,

&)
BY _,
o

VxB® =0, (1.2.66)

It will be shown that Eq. (1.2.57) produces the B cyclic equations self
consistently. Equation (1.2.58) produces the helicity current, which depends

on B®=+0; A4®=+0. These concepts are not available in Ufl)
electromagnetism. Equations (1.2.57) and (1.2.58) also produce the vacuum
Maxwell equations given, self-consistently, that the plane waves B® and
B are solutions of the Maxwell equations and that B® is a solution of
Egs. (1.2.65) and (1.2.66), being phase free. A third self-consistency check
isthat B®, B® and B® are linked by the B cyclic theorem which is given
by Eq. (1.2.57). A fourth check for self consistency is given by the fact that
the O(3) electrodynamical equations in free space give E® = 0. The B®
field is not accompanied by an E® field [S—8] as shown by Eq. (1.2.57)
to (1.2.66), and as shown empirically by Raja et al. [8] and Compton et
al. [8]. There is no Faraday induction due to B® and it is observed
experimentally through 4 ® x 4 @ in field-matter interaction, for example
the magnetization of the inverse Faraday effect is dueto A® x4 ® as
shown in Chap. 1. Note thatB® is therefore a fundamental field of O(3)
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electrodynamics, but does not occur in U(l) electrodynamics. As shown
earlier in this chapter, both theories are rigorous gauge field theories in an
extended Lie algebra £ = T® V. However, O(3) has several advantages
over U(1) and gives insights and concepts which U(l) does not. For
example, the commutator 4 x 4@ is zero by definition in U(l)
electrodynamics, yet 4V x 4@ is an empirical observable of the inverse
Faraday effect. This is a sure indicator of the need for an O(3) or other

non-linear electrodynamics.
There is no known electric analogue of the inverse Faraday effect,

suggesting that there is no E® field as indicated by O(3) electrodynamics.
The effect, as for its famous counterpart, the Faraday effect, is magnetic in
nature and is mediated by the same Verdet constant [9].

The Stokes Theorem applied to B® is clearly not to be found in the
U(1) electrodynamics, and is the integral form of the B® curl equation,
VxB® =0. This is simply a consequence of the fact that B® is
irrotational, and that the Stokes Theorem means that the curl of an
irrotational vector field vanishes for any contour [8]. Again, such a result
will not occur in Url) electrodynamics because B® is not defined there.

2.3.2.1 Self Consistency of Equations (1.2.57) and (1.2.50)

In order for the linearization scheme leading to Eqgs. (1.2.59) and
(1.2.60) to be applicable the solutions of Eq. (1.2.57) must be consistent
with Eq. (1.2.50). In order to show this we write the covariant derivative as
[5—38],

D, =0, -ighd, (1.2.67)
s its action on the general m component field {_ is,

Dy, =9V, -ig (M), A5, = 0,0, ~8€ 1, AV, - (1.2.68)
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Therefore the Feynman-Jacobi identity is

apé,;” -ge, A'G" =0. (1.2.69)

amn‘"j

We know that the B cyclic theorem is constructed from,

aué,;‘v =0, m=(),Q2),03), (1.2.70)

and that this implies Eq. (1.2.57), i.e.,

e A°G"=0. (1.2.71)

At this point it is necessary to verify that Eq. (1.2.70) is self consistent with
Eq. (1.2.71) . For m = (3), for example,

3,G*"V" ~ige Al G < 0, (12.72)
with,
GPV = G 40, (1.2.73)
and with all other components zero. Therefore,
5,6 "" - ig (4GP - 4PG") - 0. (1.2.74)

This equation is consistent with,

GO _ 5080 _ AO(I) =A0(2) =0, (1.2.75)

b
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ged. For m =1, Eq. (1.2.71) gives,

6(2)(1)(3)‘4;52)6(2; * 6(3)(1)(2)‘4:3)6(;; =0, (1.2.76)
ie.,
406Gy =406 (12.77)
For m = (2),
ANGE = 40GE (1.2.78)
In vector notation, Eq. (1.2.78) gives,
AD-BO =40 .M (1.2.79)
and
~ALPBO + ADXE® = - 4P cBO + 4O x ED (1.2.80)

Equation (1.2.79) is consistent with the fact that 4! is perpendicular to
B® and 4@ to BM. Equation (1.2.80) simplifies to

AOXED = 4 B~ (1.2.81)

which is consistent with the fact that the cross product of two polar vectors,
A® and ED gives an axial vector B®* = B® multiplied by c4.>, a
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scalar. To show that Eq. (1.2.81) is a component of the B cyclic theorem,
and consistent with the fundamental definitions given

in Chap. 1, use
A® = APk = 4e®, (1.2.82)
SO,

AOXE® - 4P (kxED) =ca4’BO, (1.2.83)

a result which is consistent with

cBW =fkxEW, (1.2.84)

which in turn is a plane wave relation consistent with the fact that the B
cyclic theorem is constructed from plane waves. This result is enough to
show that Eq. (1.2.57) is conmsistent with Eq. (1.2.50). To reduce
Eq. (1.2.83) to the B cyclic theorem use,

3)
E® > -jcB®, 40 > BT' (1.2.85)

The arrows are used in the above equations to denote that EW is
numerically the same as -icB® and that A® is numerically the same as

B®/x. Wedonotuse E® = -icB® because a polar vector cannot be

equal to an axial vector in O(3). Equations (1.2.85) are then examples of
duality transformations, rather than equations. Equation (1.2.85a) occurs
in the U(l) theory, i.e., for transverse plane waves, Eq. (1.2.85b) occurs
only in O(3) theory. Use of the transformations (1.2.85) in Eq. (1.2.83)
produces

B®xBW® - jpOB@~ (1.2.86)
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which is one component of the B cyclic theorem, ged. The overall result is
that the B cyclic theorem linearizes Eq. (1.2.50) to Eq. (1.2.59) in a
rigorously self consistent way.

2.3.2.2 Tensor to Vector Notation

Considering for example,

@F My _ (1) 5@y
A7GT = 4,76, (1.2.87)

and taking v =0,

AO(Z)G,(I)OO +A1(2)G~(1)10 +A2(2)G~(1)20 +A3(2)G(1)30

I i ) 3 (1.2.88)
o AéI)G(Z)OO +A1(1)G @10 . +A2(1)G (2)20 +A3(1)G (2)30 ,
ie.,
A . pH - 40. gD , (1.2.89)
in vector form..
Similarly, for v =1,
Ao(z)é(l)m +Al(z)é(l)n +A2(2)G(1)21 +A3(2)G(1)31
(1.2.90)

1) % (2)01 5 x x
:AO( )G @0 +A1(1)G(2)11+ +A2(1)G(2)21 +A3(1)G(2)31,

ie.,
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_AO(Z)B(l)l _Az(Z)E(1)3 +A3(2)E(1)2

_ _Aél)B(Z)l -AZ“)E(Z” +A3(1)E(2)2

(1.2.91)
—AéZ)B“) +AD < ED = _Aél)B(z) +AD X E®
ie, ADxED =4O x @
This result is consistent with the fact that
B®=VxA®, (1.2.92)

ged.
Similarly self consistent results are found for v =2 and for v =3,

demonstrating the rigorous self-consistency of O(3) electrodynamics in free
space for the special case of plane waves B = B®" and for longitudinal

phaseless B®.

2.3.3 Self Consistency of Equation (1.2.58)
Examination of the self consistency of Eq. (1.2.58) leads to the

definition of a vacuum current that has no existence in U(l) theory.
Linearization of Eq. (1.2.58) proceeds on the basis that in free space

3,G* =0, (1.2.93)

ie.,

3,G uv(l) _ 3,G wv2) _ 3,G wi -0, (1.2.94)
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which is consistent with transverse plane waves; a phaseless longitudinal
B®, and E® =0 in free space.
This result implies that

J" (vac)

€

gA, x G* = (1.2.95)

where J" (vac)is a conserved current caused by the B® field in free
space and which does not exist in U(1) theory. We refer to it as the vacuum
current, a polar vector in the O(3) symmetry internal gauge space whose
scalar components in this space are polar four-vectors:

D _ @Gwe) _ 4 Oame) ]
Jrx "geo(Av G””()—Av G”V()>

~

JHO* < jge. ( AOGHD_ 4 vﬂ)(;uv(a)) (1.2.96)

Ju®x - -ige, (AV(I)G LW(2)_AV(2)GHV(1)> .

Using Eqs. (1.1 .64) and (1.1.65 ) we can proceed to investigate the above
cyclic relations for each p.
For u =0 we obtain, for example,

ADGO® - 4 OGN g%ﬂ@)* =0, (1.2.97)
0

because all terms of

APGO® = 4 OGO | (1.2.98)

are zero on both sides.
For n=1,
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WA1vE) _ 4 ~tv) _ L p12)+
4,6 -4GM = — 1@ (1.2.99)
g€,

which reduces to

MpBG _ M ,40) 1,3 i 1
cAy'B; " = XAO( —cBy 4z +—J)((): (1.2.100)
g€,
Using
EPa = B4, (1.2.101)
we obtain
¢)]
Jy) = ~icgeyAy By = -ieje—o By (12.102)
A

which is a transverse current whose phase average is zero. It exists if and
onlyif B® isnon-zero, and can be interpreted as a type of helicity current

[8]-

For p =2 we obtain

AV - 4 OG0 - & e (1.2.103)
g€
which reduces to
cADB3® - g PEM 1 4 PRI - LA O (1.2.104)
g€

ie.,
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L0 gOFA < cq OB 4 cq OB (1.2.105)
g€, .
or
I ), O _ (HpB)
ajy +APE" = ~2c4BY (1.2.106)
and using
ED - B0, (1.2.107)
we obtain

Therefore Eq. (1.2.51) linearizes to Eq. (1.2.94) provided that there is a
vacuum current which phase averages to zero. This can be identified as a
helicity current due to 4P and B®. Equation (1.2.93) is a vector
equation in the O(3) internal space and produces three scalar equations in
this space, Egs. (1.2.94). Those for indices (1) and (2) are the
inhomogeneous Maxwell equations in free space and the third in vector form
is Eq. (1.2.66), a result which shows that B® is irrotational if B® and
B@ are plane waves orif B® and B ®have imaginary phases opposite in
sign. This is consistent with the B cyclic theorem, or vacuum magnetization.

To summarize, a theory of electrodynamics has been proposed based
on the structure of general gauge field theory as used in particle and high
energy physics. This theory linearizes self-consistently to the homogeneous
and inhomogeneous Maxwell equations giving in the process a phase
dependent vacuum current proportional directly to B®. This vacuum
current is therefore zero in the U(l) theory: a self inconsistency of
Maxwellian electrodynamics in the received view because if the
electromagnetic field is assumed to propagate in vacuo at ¢, it must carry a
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C negative influence at a finite velocity from one charge to another. This is
a current which is always non-zero, yet which is set to zero in "charge free
regions". In O(3) electrodynamics there is always a vacuum current which
depend on the non-zero B®) component of the field. Therefore there are
several ways in which the O(3) hypothesis is more self-consistent than the
U(l) hypothesis. In other words, linearization as in Maxwellian
electrodynamics removes a great deal of information and leads to self
inconsistencies. The simplest possible type of non linear theory, based on the
O(3) group symmetry, produces non-linear effects which are missing from
the U(1) theory, and which are reinstated in that theory by hand. One of
these is the vacuum current as demonstrated in this section; other examples
include vacuum polarization and magnetization.
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Chapter 3
Field-Matter Interaction

3.1 Introduction

In this chapter we demonstrate the fundamental B® to one fermion
interaction that leads to the phenomenon of radiatively induced electron spin
resonance (ESR) and nuclear magnetic resonance (NVMR). The Dirac
equation was first solved to show the existence of radiatively induced
fermion resonance (RFR) as reported in the third volume of this series [1].
The term responsible for the effect was isolated to be the novel interaction
energy, the real valued and physical expectation value,

2
En=i—0-AxA", (1.3.1)
2m

where e/m is the charge to mass ratio of a fermion (electron or proton) and

iAxA* the real valued conjugate product of complex vector potentials in a
circularly polarized electromagnetic field, considered to be classical in the
manner first proposed by Dirac [2]. InEq. (1.3.1), o is the Z component of
the Pauli matrix [3—6]. The interaction energy can be expressed in terms of
the B® field of the radiation as [1]

eh
En=-—"0-B®,
m (1.3.2)
and this is an ESR or NMR equation with the static magnetic field replaced

by B®. All known ESR and NMR effects can therefore be induced by
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radiation rather than by a static magnetic field. The technique produces
unprecedented resolving power because the resonance frequencies are
proportional to I/ w? where I is the beam power density (or intensity in
Wm?) and w beam angular frequency. With moderate microwave pumping,
fermion resonance can be induced in theory in the visible, and picked up
with an ordinary Fourier transform infra red-visible spectrometer acting as
probe. This produces in theory a resolving power about one¢ thousand to ten
thousand times that available with magnet based ESR or NMR of any kind
(including multi dimensional ESR and NMR) because the visible range is
that much higher in frequency than the microwave (or gigahertz) range in
which the current instruments operate.

This result indicates the existence and usefulness of the B® field
and is the fundamental spin-spin coupling between the photomagneton [7]
(the photon’s B field) and the fermion’s half integral spin B® proposed

by Pauli [8] and Dirac [9]. Indications of the existence of B ® open the road
to non-Abelian electrodynamics and non-local and superluminal
interpretations [10] unknown in the traditional view [11].

In this chapter the above result is reproduced with several equations
of motion, beginning with the Newton equation of a classical charged
particle in a classical electromagnetic field; and ending with the quantum
relativistic van der Waerden equation [12 ] for a two component spinor. The
complete hierarchy of known equations of motion in physics produces the
same RFR term, Eq. (1.3.1). Itis areal, non-zero and physical ground state
term in Rayleigh-Schrédinger perturbation theory [13]. The same type of
coupling appears to have been recognized in principle by Pershan ef al. [14]
in 1966, during their establishment of the inverse Faraday effect, but these
authors used higher order perturbation theory near optical resonance as did
Li et al. [15] and others [16—20] in recent papers confirming the original
proposal of RFR [21]. The key o-A xA" coupling in higher order
perturbation theory is clearly represented in Ref. [14] Eq. (8.6) and was
confirmed by them empirically in paramagnetic, rare earth doped glass
samples. These authors did not appear to realize however that the ground
state term (1.3.1) is non-zero. This is the fundamental B® term discussed
in this chapter and occurs independently of any optical resonance, as in
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ordinary magnet based ESR and NMR. The great beauty of the new theory
therefore is that one merely replaces B of the magnet by B® of the
electromagnetic field [1]. One can then proceed to understand the gallery of
consequences as in the highly developed theory of ESR and NMR, but with
a potential resolving power up to ten thousand times greater. In analogy,
successful development would be the metaphorical equivalent of replacing
the optical with the scanning tunneling electron microscope.

3.2 Classical Non-Relativistic Physics

In order to derive Eq. (1.3.1) in Newtonian physics, write the kinetic
energy in SU(2) topology through the use of the Pauli matrix ¢ [8] and
describe the field to particle interactions with the minimal prescription
applied to a complex valued A representing the magnetic vector potential
of the electromagnetic field [11]. Finally use ordinary complex algebra to
extract the real valued and physically meaningful interaction kinetic energy
corresponding to Eq. (1.3.1). The Newtonian kinetic energy of a classical
charged particle interacting with the classical electromagnetic field in SU(2)
topology is therefore the real part of

1 1
H =—o0-(p-eA)o-(p-eA")=—o0"pc-
.mzm(p)(p)zmpp
e
-—(c-Aop+o-po-A’
2m( p+o-p ) (1.3.3)
2
+2 0-d0-4".
2m
Using the results,

o-Ao-p=A-p+ioc-Axp,
(1.3.3a)

o-po-A"=p-A’+ic-pxA~,
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we can isolate the following terms from the right hand side of Eq. (1.3.3).

1) Magnetic Dipole Term

H=--p@A+a"
1= 75 P ( ) (1.3.3b)
= m,-ReB
=5 —my ReB, (1.3.3¢)

where m, is the magnetic dipole moment of the electron or proton and Re B
is the real magnetic component of the electromagnetic field.

2) Spin-Flip Term
H=-i-% 0-px"-4),
2= 7l 0°P ( ) (1.3.3d)

which for an electron or proton moving initially in the Z axis can be
>xpressed as

A© . ..
H,=-e—p,0-(jcosd +ising), (1.3.3¢)
V2
~vhere
B Z
b=wt-xkZ=w(t-=). (1.3.39)

c

finitially ¢ = O the spin ¢ points in the Y axis; when ¢ = 7 /2it points in
he X axis; when ¢ = 7 in the -Y axis; when¢ = 37/2 in the -X axis and
vhen ¢ =2 back in the Y axis. So this confirms that H, is the spin-flip
erm used in all Fourier transform ESR and NMR instruments.
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3) Polarizability Term
This is,
[-[:e_zA.A":e_zA(O)2 (1.3.3g)
> om om o8

and is the basis of susceptibility theory [13].
4) The RFR Term

The RFR term, finally, is,

e?
H =i—0"AxA"
2m
(1.3.3h)

2
Ll qong. g
2m

All four terms have been observed empirically. Terms 1) to 3) are well
known and term 4) was observed by Pershan et al. [14] in the paramagnetic
inverse Faraday effect.

Thus Eq. (1.3.3) contains the spin-flip and RFR term in addition to
the familiar and observable O(3) terms as found in a text such as that by Pike
and Sarkav [22]. These terms rely for their existence on topology rather
than quantum mechanics. It is well known [23] that SU(2) is homomorphic
with O(3), the usual rotation group of three dimensional space in Newtonian
physics. However, the Clifford algebra underlying SU(2) gives more
information, as advocated by Bearden et al. [24]. Our Newtonian result is
consistent with the fact that Eq. (1.3.1) was obtained in the non-relativistic
limit of the Dirac equation as a real expectation value [1].
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3.3 Classical Relativistic Physics

It is a straightforward matter to repeat this simple exercise for
classical relativistic physics because one can use the same minimal

prescription in the Einstein equation written in SU(2) topology. For a free
classical particle, the latter is

Y, ¥'p, =mic?, (1.3.4)

where y* is the Dirac matrix, P, the energy momentum four-vector, and ¢

the speed of light in vacuo. The interaction of the classical electromagnetic
field with the classical, relativistic, particle is described therefore by the
quation of motion,

Y (p, ~ed )¥"(p, -ed,) =m?c?, (1.3.5)

which in Feynman’s slash notation becomes [1]
(P-ed) (p-ed™) =m*c?. (1.3.6)
T'he RFR term is [1] the real valued interaction energy,
e? /.
En:=—44", (1.3.7)
m

wvhich includes term (1.3.1) of this chapter as part of a fully relativistic
reatment,

A =44, ~(0-A) 0 -A") =4 Ay -A A" ~ic-AXA". (1.3.8)

Non-Relativistic Qua
3.4 Non-Relativistic Quantum Physics
We can consider the Schrodinger Pauli equation [8],
By = Eny, (1.3.9)
in which the classical kinetic energy becomes an operator on a wavefunction

which is a two component spinor in SU(2) topology. The usual operator
replacements are used as follows:

ph-id*, p“ﬂ"hau,
En~z‘°ﬁ% , p- -V,

. —E—np s @ p (1.3.10)
. c b b u‘ c b b

10 10
ot:=f ——, -V, 0 :=| —,V|.
(cat ] g (cat )

It is interesting to note that for a real valued A (static magnetic field
problem of ordinary ESR and NMR [13]) the Schrodinger-Pauli equation
produces the famous real expectation value,

En--2"6-B, B-VxA, (1.3.11)

2m

where % is the Dirac constant. This is the fundamental ESR or NMR term
obtained in the non-relativistic quantum limit and has no classical equivalent
because it depends for its existence on the operator rules (1.3.10). The
Hamiltonian operator that produces result (1.3.11) is
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I{T:Z—I—o-(ﬁ—eA)o-(ﬁ—eA)+V, p=-inv, (1.3.12)
m
where V is a potential energy.

In order to obtain the new RFR term (1.3.1) this operator becomes

A 1 A A *
H=_—0-(p-ed)o-(p-ed")+V, (1.3.13)
2m
and leads to the classical real valued term,
H € o AxA”
=1—0" X ’ I
rer ¥ . Y (1.3.14)

which obviously has the same expectation value, Eq. (1.3.1). Therefore,
unlike ordinary ESR and NMR, RFR depends on a term which does have a
classical equivalent if we treat the field classically as did Dirac [2].

3.5 Relativistic Quantum Physics

The most straightforward route to relativistic quantum mechanics is
through the replacement of P, in the Einstein equation (1.3.4) by its

operator equivalent to give the van der Waerden equation of motion as
detailed by Sakurai [8 ] for example,

(iv*a,) (iv*3,)w = ( E) ’ v, (1.3.15)

Here (is a two component spinor and the equation is well known to be
equivalent to the much better known Dirac equation involving a four
component spinor. The RFR term emerges from the van der Waerden
equation in the form,
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2
T (iau—eAu)y” (iau—eAu*)q: = (E) V. (1.3.16)

The real and classical e ZM * is a simple multiplicative operator on the two

component spinor, with the same, real, expectation value. This is also the
case for the Dirac equation as given in Ref. 1, and in general for all SU(2)
topology quantum mechanical equations.

3.6 Rayleigh-Schridinger Perturbation Theory

In perturbation theory [13] the RFR term is a non-zero ground state
term,

2
En = ize— <O]o "AxA *]O>+ second order terms. (1.3.17)
m

As shown recently by Li et al. [15] and by others [16—20] small second
order RFR shifts also occur in second order corrections in perturbation
theory, but term (1.3.17) is of far greater practical interest, because as shown
in Ref. 1, it produces fermion resonances in the visible. Second order
perturbation theory was also used by Pershan et al. [14] to produce the
paramagnetic inverse Faraday effect, which they confirmed experimentally.

3.7 Discussion

In free space, the novel B® field of O(3) symmetry electrodynamics
is defined for one photon by,

B® .= _,foA*, (1.3.18)
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where e is the elementary charge [1]. Substituting this definition into
Eq. (1.3.17) we find that the RFR term takes the same form precisely as the
spin Zeeman effect produced by a static magnetic field,

eh
Enger) = “5;<0|0'B‘3’|0>- (1.3.19)

We need only replace B by B® as defined in Eq. (1.3.18).
Equation (1.3.19) is the fundamental spin-spin interaction between one
photon and one fermion. For a free electron, the resonance frequency is
straightforwardly calculated [1] from Eq. (1.3.19) to be

res

elu.c
= ( Ho® | 1 _ 1.007 x 1023i , (1.3.20)
hm w2 w?

where 1 is the pump beam power density in watts m? (10,000 watts m2)
= 1.0 watt cm™®), p, the free space permeability in ST units. For the H atom,

the Hamiltonian operator is well known to be,
A %2

Hor wom = =577V (1.3.21)

where V' denotes the classical Coulomb interaction between electron and
proton and p is the reduced mass,

mm
_tr

m +m
€ p

W= ~m,, (13.22)

where m, and m,, are respectively the electron and proton masses. The

resonance frequency in atomic H from Eq. (1.3.20) is therefore slightly
shifted away from the free electron resonance frequency because the reduced
mass is slightly different from the electron mass. The Hamiltonian operator
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(1.3.22) for a monovalent alkali metal atom such as sodium (Na) must take
account of the fact that there are several protons, neutrons and electrons
arranged in orbitals according to the Pauli exclusion principle [13]. This
atomic structure gives rise to the possibility of spin orbit coupling, spin-spin
coupling between electrons, Fermi contact splitting, and hyperfine splitting
as in ESR or NMR [13]. However, as a rule of thumb estimate, the outer or
valence electron can be considered as superimposed on closed shells of inner
electrons and a nucleus made up of protons and neutrons of a given reduced
mass. To a first approximation, the Hamiltonian (1.3.22) can be used in
which the sodium atom’s reduced mass is slightly different from the free
electron mass. This means that the main RFR resonance frequency in
sodium is well estimated by Eq. (1.3.20) and so sodium vapor can be used
in the experiment to detect RFR.

In order to detect RFR experimentally adjust conditions in the first
instance so that,

W =W, (1.3.23)
which is the auto-resonance condition in which the pump beam is absorbed
at resonance because the pump frequency matches the resonance frequency
precisely. Equation (1.3.20) simplifies to

W, = 1.007 x 10% 1. (1.3.24)

Therefore we can either tune w_ for a given [ or vice versa. Since auto-

resonance must appear in the GHz if the pump frequency is in this range it
is convenient to slightly modify the set up used by Deschamps et al. [25] in
their detection of the inverse Faraday effect in plasma. They used a pulsed
microwave signal at 3.0 GHz from a klystron delivering megawatts of power
over 12 microseconds with a repetition rate of 10 Hz. The TE,; Mode was

circularly polarized with a polarizer placed inside a circular waveguide of
7.5¢cm diameter. The plasma sample was created by a very intense
microwave pulse and held in a pyrex tube inserted coaxially in the
waveguide of 6.5 c¢m diameter and length 20.0 cm. The section of the
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waveguide surrounding the tube was made of nylon internally coated with
a 20 micron layer of copper. The inverse Faraday effect was then picked up
with Faraday induction [25].

To detect RFR change the sample to sodium vapor, which is easily
prepared and held in the sample tube. Equation (1.3.24) predicts that
resonance occurs at 3.0 GHz if I is tuned to 0.0665watts cm™. For a
circular waveguide of 7.5 c¢m diameter this requires only 2.94 watts of CW
power from the klystron at 3.0 GHz. In deriving Eq. (1.3.20) it has been

assumed that [1,26]

_ € pon
I_u_oB 2. (13.25)

This is a simple theoretical estimate and it is strongly advisable that / can
be tuned over a considerable range around 2.94 watts to allow for

unforeseen discrepancies between Eq. (1.3.25) and the actual experimental
beam intensity generated by the apparatus. Once the main resonance is
detected however, further refinements can follow, making full use of
contemporary electronics. To repeat the experiment with atomic H or with
the free electron gas is likely to be more difficult purely because of sample
handling problems. The experiment should be repeated after auto-resonanc
is detected to demonstrate the major advantage of RFR by pulsing the pump
beam for increased power density at the same frequency and by using
Eq. (1.3.24) to estimate the resonance frequency. A sample of expected
results is given in Table 3.1. As can be seen it is possible in theory to
produce ESR (and NMR) in the visible range, with a four-order of magnitude
increase in resolving power over current magnet based techniques.
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Table 1. RFR Frequencies for a 3.0 GHz Pump for given /

Pump Intensity Resonance Frequency

I (watts cm™)

10.0 15.04 cm™ (Far infra red)
100.0 150.4 cm’! (Far infra red)
1,000.0 1,504 cm™ (Infra red)
10,000.0 15,040 cm™ (Visible)
100,000.0 150,040 cm™* (Ultra violet-X ray)

For a 3.0 GHz circularly polarized pump pulse of 10 kwatts cm™ the RFR
frequency is at 15,040 cm’' in the visible, and can be detected with a Fourier
transform infra red-visible spectrometer such as a fully computerized Bruker
IFS 113v. The detector of the spectrometer must be fast enough to record
an interferogram during the microsecond interval of the microwave pulse.
Therefore pulse repetition and computer based refinement is necessary for
good quality data. The pump should be kept as homogeneous and noise free
as possible, but because of the /w? dependence of RFR , simple Maxwell-
Boltzmann theory [1] shows that conditions can be adjusted to produce a
much larger population difference between up and down fermion spins than
in magnet based ESR or NMR. Therefore this alleviates the well known
problem of magnet homogeneity in magnet based ESR and NMR, a problem
which is due to a small (one part in a million) population difference. In RFR
the latter can easily exceed 20% [1] at a conservative estimate for moderate
pump power of ten watts order of magnitude. The complete ESR spectrum
of sodium vapor can therefore be taken, in theory, in the infra red or visible.
This is terra incognita in magnet based technology, which is reaching its
design limit. The whole process can then be repeated for NMR and MRI.
The characteristic and key /w? coefficient of our theory [1] appears
also in the second order perturbation theory of Harris and Tinoco [17], their
p. 9291, second column, premultiplied by a factor. These authors miss the
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first order or ground state term (1) and in consequence their theory falls short
of empirical indications by Warren et al. [27] by eight orders of magnitude.
Straightforward estimates [1] based on Eq. (1.3.1) applied to NMR fall in the
order of magnitude of the data obtained by Warren et al. [27] by visible
frequency irradiation of molecular liquids with various circularly polarized
lasers, including an argon ion laser at 528.7 nm, 488 nm, and 476.5 nm.
Accounting simply for the different g factors of the proton and electron,
Eq. (1.3.1) applied to NMR [1] produces very tiny shifts of 0.12, 0.10 and 0.098
Hz respectively for the three argon ion laser frequencies quoted above and
for an intensity of ten watts per square centimeter, approaching the highest
CW intensities used by Warren et al. [27] in important and pioneering
experiments at Princeton following our early theory [21,28] which also
missed the key term (1.3.1) introduced finally in Ref. 1. Equation (1.3.1)
now shows now why Warren ef al. [27] were not able to obtain more than
indications of RFR shifts, both in proton and '*C Fourier transform and two
dimensional NMR. In 3C NMR the mass of the '3C nucleus is an order

of magnitude heavier than in !H NMR and the shifts from Eq. (1.3.1), all
other factors being equal, are in consequence an order of magnitude smaller,
in the 0.01 Hz range — too small to be detected, as found experimentally
[27]. The remedy is also given by Eq. (1.3.1), which is to replace the lasers
with pulsed or C/ microwave generators for about the same /. Their effort
[27] nevertheless remains as a landmark in the field.

Finally, Li et al. [15] have shown that even in second order
perturbation theory of the type used by Harris and Tinoco [16,17], or
Buckingham et al. [18,19], large RFR shifts of up to 10 MHz are possible
using pump lasers tuned near to optical resonance. Systematic development
of RFR, first proposed by the present author in Ref. 21 and in several
consequent papers [28], is clearly going to be highly beneficial to chemical
physics and medicine unless all the equations of physics are misleading or
unless some unforeseen technical difficulty occurs. With contemporary
technology it is unlikely that such a difficulty, if it occurred, could not be
overcome. Philosophically the whole process can be thought of as stemming
from the B® (Evans-Vigier) field of O(3) electrodynamics [1], which for
sne photon, is the fundamental photomatic [29].
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