Foundations of Physics Letters, Vol. 12, No. 2, 1999

INCONSISTENCIES OF THE U(1) THEORY OF
ELECTRODYNAMICS: STRESS ENERGY
MOMENTUM TENSOR

Peter K. Anastasovski (1), T. E. Bearden, C.
Ciubotariu (2), W. T. Coffey (3), L. B. Crowell
(4), G. J. Evans, M. W. Evans (5,6), R. Flower,
S. Jeffers (7), A Labounsky (8), D. Leporini (9),
B. Lehnert (10), M. Mészaros, J. K. Moscicki
11;, P. R. Molndr, H. Minera (12), E. Recami
13), D. Roscoe (14), and S. Roy (15)

Institute for Advanced Study, Alpha Foundation
Institute of Physics

11 Rutafa Street, Building H

Budapest, H-1165, Hungary

Also at: (1) Faculty of Technology and Metallurgy, De-
partment of Physics, University of Skopje, Republic of
Macedonia; (2) Institute for Information Technology,
Stuttgart University, Stuttgart, Germany; (3) Depart-
ment of Microelectronics and Electrical Engineering, Tri-
nity College, Dublin 2, Ireland; (4) Department of Phys-
ics and Astronomy, University of New Mexico, Albu-
querque, New Mexico; (5) former Edward Davies Chem-
ical Laboratories, University College of Wales, Aberyst-
wyth SY32 INE, Wales, United Kingdom; (6) sometime
JRF, Wolfson College, Oxford, Great Britain; (7) De-
partment of Physics and Astronomy, York University,
Toronto, Canada; (8) The Boeing Company, Hunting-
ton Beach, California; (9) Dipartimento di Fisica, Uni-
versita di Pisa, Piazza Toricelli 2, 56100 Pisa, Italy;
glO) Alfven Laboratory, Royal Institute of Technology,

tockholm, S-100 44, Sweden; éll) Smoluchowski Insti-
tute of Physics, Jagiellonian University, ul Reymonta,
Krakow, Poland; (12) Centro Internacional de Fisica,
A. A. 251955, Bogota, DC Colombia; (13) Faculty of
Engineering, Bergamo State University, 24044 Dalmine,
Italy; %4) School of Mathematics, Sheffield University,
Great Britain; (15) George Mason University, Virginia,
and Indian Statistical Institute, Calcutta, India.

187

(894-9875/99/0400-0187$16.00/0 © 1999 Plenum Publishing Corperation



188 Anastasovski et al.

Received 4 February 1999; revised 1 March 1999

The internal gauge space of electrodynamics considered as a U(1)
gauge field theory is a scalar. This leads to the result that in free
space, and for plane waves, the Poynting vector and energy vanish.
This result is consistent with the fact that U(1) gauge field theory
results in a null third Stokes parameter, meaning again that the
field energy vanishes in free space. A self consistent definition of the
stress energy momentum tensor is obtained with a Yang Mills theory
applied with an O(3) symmetry internal gauge space. This theory
produces the third Stokes parameter self consistently in terms of the
self-dual Evans-Vigier fields B(3).

Key words: inconsistencies of U(1) gauge field theory, stress energy-
momentum tensor.

1. INTRODUCTION

In Heaviside Maxwell electrodynamics the field energy, Poynting vec-
tor and Maxwell stress tensor are incorporated in one tensor, the
stress energy momentum tensor [1). In order to obtain a non-null
energy and field momentum (Poynting vector), the method of aver-
aging [2,3] is used. The Poynting vector, for example, becomes pro-
portional to E x B*, where E is the electric field strength of the field
and B its magnetic flux density. In this note it is shown that this
method is inconsistent with electrodynamics considered as a U(1)
gauge field theory, but consistent with electrodynamics considered
as a Yang Mills theory with an O(3) internal gauge symmetry with
a complex internal gauge space ((1),(2),(3)) base§ on the existence
of circular polarization in radiation at a fundamental (one photon)
level. The U(1) gauge field theory of electrodynamics produces a null
third Stokes parameter, which again produces a null field energy in
free space. The O(3) theory of electrodynamics produces a non-null
third Stokes parameter in terms of the self-dual Evans-Vigier B()
4-10], and so produces self-consistently a non-null field energy in
ee space.

2. THE U(1) COVARIANT DERIVATIVE AND NULL
FREE SPACE POYNTING VECTOR AND FIELD
ENERGY

In general gauge field theory for any gauge group the first tensor is
defined through the commutator of covariant derivatives, giving the
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result [11}: .
Gy = auAv - 0,4, - zg[A,‘,A,,], (1)

where the commutator is non-zero in general. Here A, is the connec-
tion, or potential, and is defined in general through the gauge group
symmetry. The field tensor G, is covariant for all gauge groups,
and the general gauge field theory is compatible with special rela-
tivity for all gauge group symmetries. In the general theory, the
homogeneous and inhomogeneous Maxwell equations in vacuo are
generalized respectively to

D”a,w =0, DUG‘AV =0, (2)

where D¥ denotes the covariant derivative pertinent to the gauge

group symmetry being used and G*¥ is the dual of G,,. In the U(1)
gauge theory the commutator in Eq. (1) vanished because the U(1)
group only has one structure constant and the internal symmetry of
the gauge theory is a scalar symmetry. The covariant derivative in

U(1) is
D¥ = 9" +igA”, (3)

where g is a proportionality constant. Therefore Egs. (2) reduce to:

(ay + igA”)ﬁpu = 0’ (4)
(0" +1igA”")F,, =0, (5)

which become the free-space homogeneous and inhomogeneous Max-
well-Heaviside equations if and only if:

A*F,, =0, (6)
A'Fy, =0, (M

or, in vector notation,

A-B=0, AxXxE=0,

(8)
A-E=0, AxB=0.
For plane waves, and using the usual U(1) relation
B=V xA, 9)

the vector potential A is proportional to B, and so
BxE=0. (10)
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If we attempt to define the free-space field energy and momentum in
terms of the products B - B and B x E the results are zero in U(1)
gauge field theory. In order to obtain the well known field energy
and Poynting vector (12) of the free electromagnetic field, products
such as B-B* and B x E* have to be used. This procedure, although
commonplace, and referred to in the textbooks as time averaging [12],
introduces phenomenology extraneous to U(1), because it introduces
the complex internal gauge space ((1),(2),(3)

The fundamental inconsistencies of electrodynamics regarded
as a U(1) gauge field theory are summarized therefore as follows:
(1) If the U(1) covariant derivative is used, the field energy, momen-
tum, and third Stokes parameter vanish. (2) If the phenomenological
“times averaging” procedure is implemented, the resultant Poynting
vector is proportional to E x B* and perpendicular to the plane of
definition of U(1) (the group homomorphic with O(2), the group of
rotations in a plane). This result is internally inconsistent because
if O(2) defines the plane, there can be no physical quantity in free
space perpendicular to that plane.

3. STRESS ENERGY-MOMENTUM TENSOR IN YANG
MILLS THEORY WITH O(3) INTERNAL GAUGE
SYMMETRY

Yang Mills theory [13] was originally intended to generalize elec-
trodynamics and in this theory the potentials and field tensor are
written in an internal gauge space. If this space is of O(3) symmetry
and is defined with the complex basis ((1),&),(3)), with unit vectors

e, e e(® the potentials and field strength tensor becomes vectors
in this internal space, so there are three components of the potential
and of the field strength tensor [14]. The stress energy-momentum
tensor in the O(3) symmetry theory is therefore

1
T: =€ (Gup "Gop — ZGM : Gpa) ) (8)

and self-consistently defines, for example, the energy of the field as

U=e- (El(l)Ei’l) + Ez(l)E§2) + El(z)Efl)E2(2)E§1) + E3(2)E§2)*)
(9)

The energy is finite and made up of complex conjugate products.
The Poynting vector is similarly defined as:

TY = (G - Gy + G2 - Gyy), (10a)
Ty = (G - G2 + G" . Gyy), (10b)
T:? = 60(G01 . G13 + G02 . G23), (10(:)
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and is finite. There also emerges the self-duality condition for longi-
tudinal components:

E*OE®* = 2B g, (11)

The B(3) component of this theory is defined [4-10] in terms of a
finite third Stokes parameter:

B®* = —jgAM) x A® (12)
giving, self-consistently, a finite field energy through the well-known
relation

So =83 (13)

between the zero-order (S;) and third-order (S3) Stokes parameters
for circular polarization in free space.

4. SELF-DUALITY

The longitudinal magnetic component of this Yang Mills theory,
sometimes referred to [4-10] as the Evans-Vigier field, has the prop-
erty of being self dual. This can be expressed through the fact that
B®) is the dual to an imaginary iE(®)¢, Empirical data from the
third Stokes parameter and magneto-optics show that B(®) is non-
zero and physical. At second order, however, the duality of B®) to
iE®/c can be expressed through Eq. (11), because the product of
iE®) with its complex conjugate is real-valued and finite,

The self duality of B(®) is unique to O(3) gauge theory. Such
a concept does not occur in U(1) gauge theory.
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