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Two types of correlation function which depend on rotation-translation coupling in a structured
molecular fluid are studied. First are investigated the correlation functions of Berne and Montgomery
for a fluid of rough spheres (@) by direct computation and (b) by computer simulation for nitrogen.
Secondly it is proposed that rotation-translation coupling can also be investigated in terms of total
velocity autocorrelation functions. A decoupled approximation for this function is developed within
the model framework of itinerant oscillation/liberation and its limitations are studied.

In this paper we develop two types of correlation function which depend upon
rotation—translation coupling in a structured molecular fluid. First we examine the
coupled rotation-translation correlation functions for a fluid of rough spheres, calcu-
lated recently by Berne and Montgomery;! secondly we calculate the total velocity
autocorrelation function for an atom within the model framework of itinerant oscilla-
tion/libration.

For a fluid of rough spheres, Berne and Montgomery used approximate methods to
calculate the coupled correlation functions

Cg; 1) = Pn() . n(O)) exp [(ig . 4r(ODI = 1,2, .. ., 6]

where P,(x) is the Legendre polynomial of order /, u is a unit vector embedded in the
molecule, g is the scattering wave vector and 4r(¢) = r(t) — r(0) the displacement in
time t. The C)(g; t) were Fourier transformed and the resulting spectra compared
with those calculated in the uncoupled approximation

Ci*Xg; 1) = (Pyn(r) - w(0)]><exp [ig . 4r(1)]> 2

used almost universally in the theory of neutron scattering.? It was found! that the
maximum deviation between C/(g;t) and C{*)(g;1) occurs for wavenumbers com-
monly found in thermal neutron scattering, and it was pointed out that the effect of
the coupling would increase for structured molecules as opposed to rough spheres.
In their work, Berne and Montgomery adopt three levels of approximation (apart
from their model): (i) the Chandler binary collision approximation;® (ii) a second
order expansion for the Laplace transform of the free particle rotation—translation
correlation function; (iii) a partial curtailment to first order of approximation (ii)
in obtaining Cy(g;p), the Laplace transform of Ci(g; t). In our approach we dis-
pense with approximation (iii), i.e., we keep to second order in (ii) in our calculation of
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Ci(q:;p). The resulting ratio C,(q:t)/C{*(¢;¢) is then calculated for several values
of the roughness and mass distribution parameters used by Berne and Montgomery.
We also simulate and compare the correlation functions C,(q; 1), C,'*)(q; 1) for nitro-
gen, using a molecular dynamics algorithm based on atom-atom interactions of
Lennard-Jones type.

The present authors have demonstrated®® how Mori 3-variable theory with its
associated model of itinerant oscillation/libration can help to describe rotational and
translational motions in molecular fluids. 1In the later part of this paper we begin to
study how this model may cope with rotational-translational coupling. We show that
although it is difficult to treat the coupling of spin angular velocity with linear velocity,
the model does allow coupling between angular velocity and reorientation, which can
be examined in terms of cylindrical probability density functions. Taking the analogy
of eqn (1) and (2) we derive expressions for

u(®) - n(O)o(r) . @(0)> and {p(t) . p(0)><ax(r) . ©(0)>.

ROTATIONAL—TRANSLATION COUPLING IN A FLUID
OF ROUGH SPHERES

Berne and Montgomery characterize a rough sphere fluid by the following para-
meters:}

(i) kx, a loading parameter which specifies the mass distribution in the sphere.
k takes values 0, % and 4, when the mass is distributed entirely in the centre, uniformly
or entirely on the surface of the sphere, respectively.

(ii) the slip coefficient 4 which varies between zero for a perfectly smooth sphere to
unity for a perfectly rough sphere. If 7, and 7, are the linear and angular velocity
correlation times then 7,/1. is a strong function of 1 but a weak function of .

Starting from the binary collision approximation, Berne and Montgomery obtain

the relation .
Ci”1Q; p + B(Q))
1 — B(QCI1Q; p + (DY

where Q denotes the dimensionless wave vector and C{®(Q; p) the Laplace transform
of the free particle rotation-translation correlation function. f,(Q) is defined by

(1 + A + 1
BAQ) = B [’(’ +h+ {'*"—x }Qz],

CI(Q; p) =

3

H+1n+4 @
where B, is the dimensionless relaxation time 1/z,. If §; > I, then to second order
1 +nH+ 0

CPIGP + MOV = 5330 ~ o + AOF @
which when substituted directly into eqn (3) gives

PP 28(00p + [BUO) — I+ 1) — Q7]
ClQ:P) = 5 3810W + BHQP + BAOUT + 1 F O )

Eqn (5) is more complex than that quoted by Berne and Montgomery but its inverse
transform C,(Q; t) may still be recovered analytically.® (z here denoted dimension-
less 2.)

The time dependence of C(Q; 7) is illustrated for several parameter values in fig.
1. We see that for Q = 1 (i) the ratio C(Q; 7)/C{*(Q; 1) always increases (from
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F1G. 1.—Correlation functions C; plotted against 7. (1) Co(Q;7); (2) Ci{@Q;1); (3) Ci(0: 7).

(- - --) the ratio C(Q; 7)/C{¥ (Q;7) for @ =1, xk =04. (@) A =0.1, fu=150. (b) A =0.1,

Po=20. (¢) A=0.1, Buw=10. (d) A=0.5, fu=50. () A =05, Bu=20. (f) 1=0.5,

Po=15. (g A=10, fu=150. (h) Ai=10, fu=20. (/) 1 =10, fu=735. 1 is the roughness

parameter, x the mass distribution parameter of Berne and Montgomery.! The above parameters
are in reduced units specified by these authors.
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unity) with time; (ii) for fixed 4, the ratio increases more rapidly the smaller the value
of f.; (iii) the ratio is greatest for small A and least for A approaching unity. Thus
for given Q the coupling effect is small when f,, is large and collisions are rough. ltis
greatest when slipping conditions are invoked in a dilute fluid where the angular
velocity relaxes fairly slowly.

COMPUTER SIMULATION

To simulate the motion of nitrogen molecules in the liquid state we have made use
of the molecular dynamics algorithm developed originally by Tildesley and Streett.
The algorithm solves the equations of motion of 256 particles under atom-atom inter-
action of Lennard-Jones type. At a dimensionless density of 0.643 and dimensionless
temperature of 2.32 the pure orientational autocorrelation function C,(0;71) =
{n(t) . m(0)>, and the correlation functions C(Q; 1), C{*(Q;1) were calculated.
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F16. 2.—Simulated correlation functions for nitrogen at reduced density of 0.643, reduced temperature
of 2.32. (a) Top to bottom: C(0;7); C(Q:7); C¥(Q;71); Q = 10. (b) As (a), but Q = 20.

It was found that for @ <C 10 the effect of rotation—-translation coupling was small at
the short times probed in the algorithm. The results for Q¢ = 10 and Q = 20 are
shown in fig. 2(a) and (b), respectively. These illustrate that the higher the wave-
number the more quickly C;(Q; 7) decays relative to C;(0; 1), a behaviour which is
predicted by Berne and Montgomery’s (and our) expression for C,(Q; 7). We also
find that the ratio C,(Q; 1)/Cf*(Q; 1) increases steadily for high values of momen-
tum transfer, again confirming the analytical trends of the rough-sphere model.
Finally, we see that the autocorrelation {n(z) . p(0)> in fig. 2 does not decay as a pure

exponential, again in agreement with the rough-sphere C,(0; 1) (except, of course, in
the diffusion limit.)

ROTATION-TRANSLATION COUPLING
IN FLUIDS OF STRUCTURED MOLECULES

Rather than consider the correlation function Cy(g;¢) an alternative and simple
way of investigating the interplay between spin angular velocity and linear velocity
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is to calculate the total velocity autocorrelation function for an atom. If p denotes a
dipole of unit length then the total velocity v, of an atom is

v=v+ioAp ©
where v denotes the centre of mass velocity and o the angular velocity. Thus the auto-
correlation function of v, contains information on both linear and angular velocities.
In fig. 3 we simulate for computer nitrogen the four autocorrelation functions for
v,, v, ® and p. The relation between the autocorrelations of », and » can easily be
found if @ is constrained to lie in a fixed direction. From eqn (6) we have

Pa(t) - vo(0)> = <¥(t) . ¥(0)> + <¥(r) . @(0) A w(0)) + () - n(O)x(r) . (0)> (7)

since

{ax(r) A n(2) - w(0)> = <{v(1) . @(0) A p(0)>.

Fic. 3.—Simulated autocorrelation functions for nitrogen at reduced density of 0.643, reduced
temperature of 2.32. (1) <a(v)* @(©0)>. 2) W2).»0). ) (). p@O)). (D) (r(m). w0

The central term in the right hand side of eqn (7) describes the effect of rotation—
translation coupling and would vanish in a decoupled approximation; the third term
describes the coupling of reorientation and spin angular velocity which vanishes only
in the limit ¢ — 0.

We have shown elsewhere*-* how to calculate <{»(¢) . »(0)>, (@(?) . ®(0)> and {p(?) .
1(0)> when p is embedded in an itinerant oscillator/librator, with @ fixed in direction.*
Below we show how to extend our previous analysis to calculate the cross-correlation
<u(t) . p(0)o(t) . e0)>. A direct calculation of the coupling term <v(¢) . @(0) A n(0))
will not be attempted here since it would involve modelling the collision dynamics
(possibly along the lines of Berne and Montgomery.) An indirect approach involving
Morl matrix theory is at present under investigation by one of us (A. R. D.). Here we
content ourselves with the calculation of the decoupled approximation

ra(1)  1(0)> = <v(2) . ¥(0)> + p(2) . pO)e(?) . ©(0)>. @®
Since p(z) . p(0) = cos [#(t) — 6(0)], where 8(¢) denotes the angular orientation of
the dipole at time ¢, the required cross-correlation function is defined by

B(r) - nO(r) - (0)> = | l / :, / _ [ oy c05 (6~ 0)p(w, 0;

t|cwg, Go)p(we, 85) « dw dw, d8 d6, 9
* See appendix A.
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where p(w, 0; t|w,, Op) denotes the joint conditional probability density function for
w(t) and 6(¢) at time ¢, given that w(0) = wy, 8(0) = O, and p(w,, ) is the joint density
for the initial distribution of @ and @ at time r = 0. Since w and 9 are statistically
independent variables, and the initial distribution of w may be assumed Maxwellian
we may write

2nkT\~* 2
o 09 = (250} exp| — 2 ] o0 (10)
where the initial distribution p(6,) satisfies
[ peyas =1, (11)

but otherwise need not be specified for the purpose of our present calculations. The
main problem here is to specify the joint conditional density in eqn (9). If (t) were
the total angle swept out in time ¢ then the joint conditional distribution could be
taken as bivariate normal. Since 6(¢) is restricted to the range —n < 0 < n, how-
ever, we require a cylindrical distribution whose marginal distribution for w is normal
and whose marginal distribution for #is wrapped normal. We achieve this by general-
zing a well-known result in the theory of wrapped distributions.” If x is a normally
distributed random variable with mean (x> and variance 62 = {(x — {x))?), then the
corresponding wrapped variate ¥ = x(mod 27) has a density

(%) = %[1 + 2 3 {cos (n{x>) cos (nX) + sin (n{x)) sin (ni)}e“*""’?r].
n=1

Extending this result to the case of two normal variables, only one of which is wrapped,

we obtain the expression

plw, 8; tlw, Bo) = (21 )2/ [etscor—4stak g tsw

+ 2 Z {cos (s<w) + n{B) cos (sw + nb) +

+ sm (s<w> + n(0>) sin (s + n9)} X
exp {—3(s%2 + 2ns . cov + n*a})}] ds (12)

where the convariance term is defined by cov = {(@—<w))(@—<O>)>. In terms
of the normalized correlation functions C.(f) and X.(¢f) defined in Appendix A we

have
{w) = Cu(t) . wy,

0> = 0y 4 Xult) . wo,

o2 = L1 — cxo),

ot = -1_[2 [ Xo(x) dt — X20)],

and cov = T X,(0)[1 — Cu).

(13)

Using eqn (10)—(13), the integration of eqn (9) is described in Appendix B. The final
result is

W0 w0l - w0 4| ety — 5 xx0 |eso | -5 / Ko |
— (u(t) - O)> {<m(z).m(0)> [T ,.,(z)]} (14)
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This last relation enables us to examine the limitation of the decoupled approximation
(8). The results of our investigations will appear in the Discussion Remarks section
of the printed volume. As a final remark we note the interesting result that in analogy
with eqn (1) and (2), for t > 0

) - n(0)ax(t) . (0)> + (u(t) . p(0)><o(2) . (0)).

APPENDIX A

If C.(¢), C.(t) and C,(¢) denote the normalized autocorrelation functions for »,
® and p, then in terms of constants a, 8, I' defined in ref. (4) and (5) we have

Cu(t) = 5z <(D) - WO

= T——_FI—I-,-V [{cos Bt + (9‘.‘%’“_”2) sin ,B.,t}e"“"x’ + F,e‘“vz’];

Cult) = - <0le) - 0(O))

Ct) = u(t) - 10> — exp[— 9 " X(0) dr]

and

where

Xo(t) = /0 " Cun) dr.

k denotes Boltzmann’s constant, T the absolute temperature, and m and I the mass and
moment of inertia of the inner disc in the itinerant oscillator/librator.

APPENDIX B
INTEGRATION OF EQN (9)

This calculation is quite straightforward if the integrals are evaluated in a certain
order. First, using the standard integral

(+55%)
© _4+(¢
/ cos (as + P)e—#@s?+ms+0) gg — ﬁ cos (,B — c%b> ,

eqn (12) may be written
1
p(a), 0; t[ Wy, 00) = W expl:—

(0 — L))?

202

l:l 12 z cos n{(O — 05 — cozv (0 — <w>)}e—in2092{1—p2):| (B1)
where
__cov

Ouw0y



238 MOTION IN MOLECULAR FLUIDS

Since

" 0, n>1
2/_ﬂcos (@ —a)cosn(@ — B) = {27: cos(B—a)n =1
it follows from eqn (B1) that

0w 20’3,

L _ 2
/ cos (6 — Gp)p(w, G; t ] w,, 6p) df = \/ZL exp| — g-ai——@—»]
X €os [c;_zv (0 + a)o)]e‘ FoX1—ph)

which is independent of 8,. Hence eqn (11) may be used to carry out the integration
with respect to 0,. Next, using the standard integral

/w w cos (aw + f) exp[—- @—2;{22] do =

- = V27ro[u cos (ait + B) — ao? sin (apt + B)Je= 2%
we obtain

fo /” w ¢cos (6 — Go)p(w, G; t| wy, Gp) dw db =

- — {Culf) - o €08 [Xult) ] — cOV - sin [Xu()e} X & 140,
Finally we integrate with respect to w, to obtain eqn (14), using the results
<27sz

7 )ﬂk/w w? cos (Xw,)e~“0olI2kT dgy, = l—‘z(l — EqX’)e‘*”‘”"/’

I I
and

1

- * a0

<27sz> / 0o Sin (X )e~ 12T day, = g . Xe—*kTXYI
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