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ABSTRACT

A quaternion-valued curved space-time metric is derived for the calculation of the B(3) field from
the Sachs Einstein theory of general relativity.
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1 INTRODUCTION

The field equations of classical general relativity, the Einstein equations, form a set of ten metric
equations in ten unknowns. This set of equations represents a field theory of gravitation, and in
the language of group theory is based on reducible representations of the Einstein group, which
corresponds to the topological group T, a locally covariant compact connected topological field
satisfying the second axiom of countability. The most general mathematical system with which to
express the laws of physics in general relativity is then the set of quaternions[1]. We refer to this
system as “extended general relativity”.

The field equations of electromagnetism can be derived[1] from extended general relativity. The
starting point is the realization that the covariance group underlying the tensor form of Einstein
and Maxwell field equations are reducible. This is because they entail[1] reflection symmetry, not
required by general relativity, as well as the continuous symmetry of the Einstein group E, a Lie
group. The irreducible form of the Einstein field equations is obtained by factorizing the differential
line element using the quaternion form:

ds = qµ(X)dXµ (1)

where the metric qµ is a set of quaternion valued components of a four vector.

Therefore the basic variable that represents the generalized spacetime that is appropriate to gen-
eral relatiivity is a 16-component variable. Such a generalization must then EXTEND the physical
predictions of the usual tensor forms of the general relativity of gravitation and the standard vec-
tor representation of the Maxwell-Heaviside theory of electromagnetism. This extension gives new
physical phenomena such as the B(3) field[2]-[5] of O(3) electrodynamics. The B(3) field is obtained
in this paper from the quaternion valued component:

Bµν =
1

8
QR(qµqν∗ − qνqµ∗) (2)

of the complete electromagnetic field tensor[1] of extended general relativity. In eqn.(2) Q is a
constant with the units of weber and R is the scalar curvature. Therefore the metric used to obtain
the Bµν field must be one of curved space-time.

2



In Section 2 we devise a metric that gives the Bµν in curved space-time so that the scalar curva-
ture R remains rigorously non-zero. This metric corresponds to circular polarization, as observed
empirically in electromagnetism, and is developed in the complex circular basis ((1),(2),(3))[2]-[5].
The electromagnetic field equations that emerge correspond to an O(3) symmetry gauge field the-
ory of electromagnetism, a theory which is contained within extended general relativity. These are
equations of higher symmetry than the Maxwell Heaviside field equations in flat space-time, and
produce novel optical phenomena from the first principles of extended general relativity, phenomena
such as the inverse Faraday effect (IFE) and its resonance counterpart, radiatively induced fermion
resonance (RFR)[2]-[5].

2 DEVELOPMENT OF THE METRIC FOR CIRCULAR POLARIZATION IN
CURVED SPACE-TIME

The metric is developed from the first principles of curvilinear coordinate analysis[6] by first con-
sidering it in three and four dimensional vector notation and extending it to the four dimensional
quaternion form required by the Sachs Einstein theory. We start with basic definitions.

Consider the curve in three dimensional space:

r = Xi + Y j + Zk (3)

then the unit vector is defined as:

i =
∂r
∂X∣∣ ∂r
∂X

∣∣ , etc. (4)

the metric vector is defined as:

gX =
∣∣ ∂r
∂X

∣∣ i = i, etc. (5)

and the metric element as:

gX =
∣∣ ∂r
∂X

∣∣ = 1, etc (6)

The line element is defined as:

dr =
∂r

∂X
dX +

∂r

∂Y
dY +

∂r

∂Z
dZ = gXdX + gY dY + gZdZ (7)

The three metric vectors are defined as:

gX =
∂r

∂X
; gY =

∂r

∂Y
; gZ =

∂r

∂Z
(8)
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and the Einstein metric tensor is:

gij = gji =
∂r

∂X
· ∂r
∂Y

, etc. (9)

If gij = 0 for i 6= j then the coordinate system is orthogonal.

If we now consider the functional relations that define the complex circular basis[2]-[5]:

e(1) =
1√
2

(X − iY ), e(2) =
1√
2

(X + iY ), e(3) = Z (10)

then

X =
1√
2

(
e(1) + e(2)

)
Y =

1√
2

(
e(1) − e(2)

)
(11)

Z = e(3)

are curvilinear coordinate relations in three dimensional space. The curve (3) can therefore be
written as:

r =
1√
2

(
e(1) + e(2)

)
i +

1√
2

(
e(1) − e(2)

)
j + e(3)k (12)

giving the three unit vectors in the complex circular basis

e(1) =
∂r
∂e(1)∣∣ ∂r
∂e(1)

∣∣ =
1√
2

(
i + ij

)
e(2) =

∂r
∂e(2)∣∣ ∂r
∂e(2)

∣∣ =
1√
2

(
i− ij

)
(13)

e(3) = k

In this basis the line element is:

dr =
∂r

∂e(1)
de(1) +

∂r

∂e(2)
de(2) +

∂r

∂e(3)
de(3) (14)

and the metric vectors are:

giving the three unit vectors in the complex circular basis

g(1) =
∂r

∂e(1)
=

1√
2

(
i + ij

)
= q(1)

g(2) =
∂r

∂e(2)
=

1√
2

(
i− ij

)
= q(2) (15)

g(3) = k = q(3)

4



extending to four dimensions produces the metric four vectors:

q(1) =
(
q
(1)
0 ,q(1)

)
=
(
0,

1√
2
,
i√
2
, 0
)

q(2) =
(
q
(2)
0 ,q(2)

)
=
(
0,

1√
2
,
−i√

2
, 0
)

(16)

q(3) =
(
0, 0, 0, 1

)
q(4) =

(
1, 0, 0, 0

)
The metric three vectors form an O(3) symmetry cyclic relation:

q(1) × q(2) = iq(3)∗

q(2) × q(3) = iq(1)∗ (17)

q(3) × q(1) = iq(2)∗

where the asterisk denote complex conjugation.

In order to decide whether the metric vectors derived in this way are metrics of curved space-time
or flat space-time we calculate the Einstein metric tensor. If this is unit diagonal then the metrics
correspond to flat space-time, but otherwise they correspond to curved space-time, as required by
the Sachs Einstein theory.

First consider the Cartesian unit vector system (i, j,k). The metric tensor is formed from

q1 = i; q2 = j; q3 = k; (18)

and is given by

The metric three vectors form an O(3) symmetry cyclic relation:

g11 = q(1) · q(1) = 1

g22 = q(2) · q(2) = 1 (19)

g33 = q(3) · q(3) = 1

so:

gij =

 1 0 0
0 1 0
0 0 1

 (20)

representing an orthogonal coordinate system in flat, Euclidean space.
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Next consider the complex circular coordinate system
(
e(1), e(2), e(3)

)
. The metric tensor is

formed from the ordinary products of the complex unit vectors:

q(1) =
1√
2

(
i− ij

)
q(2) =

1√
2

(
i + ij

)
(21)

q(3) = k

so
q1 · q2 = q2 · q1 = q3 · q3 = 1 (22)

all other elements being zero, and

gij =

 0 1 0
1 0 0
0 0 1

 (23)

representing a non-orthogonal coordinate system in a non-Euclidean, curved, three dimensional
space.

The metric four-vectors (16) are therefore metrics of curved space-time.

To find the quaternion-valued equivalent of eqn. (16) we use the Pauli matrix basis, so:

e(1) =
1√
2

(
i− ij

)
↔ 1√

2

([
0 1
1 0

]
− i
[

0 −i
i 0

])
:= σ(1)

e(2) =
1√
2

(
i + ij

)
↔ 1√

2

([
0 1
1 0

]
+ i

[
0 −i
i 0

])
:= σ(2) (24)

e(3) = k ↔
[

1 0
0 −1

]
:= σ(3)

and [
σ(2), σ(3)

]
= −2σ(1)∗[

σ(3), σ(1)
]

= −2σ(2)∗ (25)[
σ(1), σ(2)

]
= −2σ(3)∗

The quaternion-valued metric in the complex circular basis is therefore:

qµ =
(
σ0, σ

(1), σ(2), σ(3)
)

(26)

which is a four-vector with sixteen components in all. The quaternion conjugate of this metric is:

qµ∗ =
(
σ0,−σ(1),−σ(2),−σ(3)

)
(27)
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and the B(3) field is obtained from:

B12 = −1

8
QR
(
σ(1)σ(2) · σ(2)σ(1)

)
=

1

4
QRσ(3) (28)

In vector notation this result is:

B(3) =
1

8
QRk (29)

To check that qµ represents a metric of curved space-time we use the relation given by Sachs[1]:

−1

2

(
qµqν∗ + qνqµ∗

)
↔ σ0g

µν (30)

i.e. the symmetric second rank metric tensor gµν of Einstein’s formulation of general relativity
corresponds to the symmetric sum from the quaternion theory: In the flat space-time represented
by:

σµ =

([
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
(31)

eqn.(30) gives the result:

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (32)

the metric of flat space-time in Einstein’s general relativity.

The use of the metric:
qµ =

(
σ0, σ

(1), σ(2), σ(3)
)

(33)

gives:

gµν =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (34)

a metric tensor of curved space-time.

To represent the circularly polarized electromagnetic field in the curved space-time described by
eqn.(34), the electromagnetic phase, φ, must be incorporated in eqns.(10), which become:

e(1) =
1√
2

(X − iY )eiφ

e(2) =
1√
2

(X + iY )e−iφ (35)

e(3) = Z

φ = ωt− κZ
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Here ω is the angular frequency, t the time, κ the wave-vector, Z the position vector coordinate
(not to be confused with Z). The phase is therefore generally covariant, because it is a number:

φ = φ
′

= ω
′
t
′ − κ′

Z
′

(36)

From eqn.(35),

X =
1√
2

(e(1)e−iφ + e(2)eiφ)

Y =
−i√

2
(e(2)eiφ − e(1)e−iφ) (37)

Z = e(3)

and we obtain the metric vectors:

q(1) =
∂r
∂e(1)∣∣ ∂r
∂e(1)

∣∣ =
1√
2

(
i + ij

)
e−iφ

q(2) =
∂r
∂e(2)∣∣ ∂r
∂e(2)

∣∣ =
1√
2

(
i− ij

)
eiφ (38)

q(3) = k

These form an O(3) symmetry cyclic relation, eqn.(17), and the metric tensor from eqn. (38) takes
the same form as eqn.(23), i.e. the tensor is one of curved space-time.

The quaternion valued metric four vector from eqn. (38) is:

qµ =
(
qµ(0), qµ(1), qµ(2), qµ(3)

)
(39)

where

qµ(0) =

[
1 0
0 1

]
= σ0

qµ(1) = σ(1)eiφ

qµ(2) = σ(2)e−iφ (40)

qµ(3) = σ(3)

Using eqn.(40) in eqn.(30) gives the curved space-time metric tensor (34).

The metric vector q(1) in parametric form is the equation:

q(1) =
1√
2
e−iφ

(
1, i, 0

)
(41)

whose scalar curvature in inverse square meters is[2]-[5]:

R =

∣∣∣∣∣∂2q(1)

∂Z2

∣∣∣∣∣ = κ2 =
ω2

c2
(42)
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From eqn.(40) we can define the three magnetic fields associated with circular polarization in the
Sachs Einstein theory:

B(1) = B(0)q(1)

B(2) = B(0)q(2) (43)

B(3) = B(0)q(3)

These three fields form the B Cyclic Theorem of O(3) electrodynamics[2]-[5]:

B(1) ×B(2) = iB(0)B(3)∗

B(2) ×B(3) = iB(0)B(1)∗ (44)

B(3) ×B(1) = iB(0)B(2)∗

3 DISCUSSION

The B(3) field is obtained from the term (2) of the Sachs-Einstein electromagnetic field tensor
through a choice of metric corresponding to circular polarization in electromagnetism, eqns.(40).
In vector notation, and with this choice of metric, the B(3) field[2]-[5] is given by:

B(3)∗ = −1

8
QRq(1) × q(2) = B(0)q(3)

k = q(3) (45)

B(0) =
1

8
QR

and is therefore derivable from extended general relativity[1]. The transverse B(1) and B(2) are
given by

B(1)∗ = −iQR
8

q(2) × q(3

B(2)∗ = −iQR
8

q(3) × q(1 (46)

The electromagnetic field is therefore described directly in terms of the metric, as required for
any field in general relativity; the field is the frame itself, and the frame is one of curved space-time,
as required for a finite scalar curvature R. The electromagnetic fields B(1) and B(2) have a finite
radius, the Thompson radius κ−1, and the tip of the vectors B(1) and B(2) draw out a circular helix
of this radius.

The depiction of circular polarization in special relativity on the other hand is one where the
electromagnetic field is an entity distinct from the frame, a frame of flat space-time in which B(1)
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and B(2) are solutions to the Maxwell Heaviside equations and where B(3) does not exist[2]-[5].
In the Sachs Einstein theory of electromagnetism the depiction of circular polarization is one in
curved space-time in which B(3) is identically non-zero and related to B(1) and B(2) through the B
Cyclic Theorem(44)[2]-[5]. To distinquish between the two theories the inverse Faraday effect[2]-[5]
is used to observe B(3) directly in plasma, liquids and solids. The resonance equivalent of the
inverse Faraday effect is radiatively induced fermion resonance (RFR), which is a novel resonance
spectroscopy that leads to ESR and NMR without permanent magnets[2]-[5].
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