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ABSTRACT

The interaction of rotation and translation in dipolar molecyles is investigated
by means of a molecular dynamics simulation of the mixed autocorrelation functions of
energy (moments) and speed, The forms of these autocorrelation functions are

sensitive to shape anisotropy as measured by three interatomic distances, one of which

corresponding to N,.

INTRODUCTION

In this note we present some calculations by molecular dynamics simulation of
rototranslational autocorrelation functions of interest to a fully self-consistent
theory of the molecular dynamical evolution in liquids. The rotations and trans-
lations cannot be considered separately (as in the theory of inelastic neutron
scattering) because there are strong mutual interactions. These have been discussed
for loaded rough hard spheres by Chandler [2] who finds analytically a strong retard-
ation of rotational diffusion by translational effects and vice-versa. Condiff and
Dahler [3] have discussed the problem using statistical mechanics based on the work
of Kirkwood et al. [4] and Rice et al. ([S] and find that the rototranslational
effects vanish only in two extremes;

(a) unloaded hard spheres;
(b) symmetrical hard spherocylinders,

With the computing power available now it is possible to investigate the problem
more thoroughly and with more acceptable intermolecular potentials, using the Lenpard-
Jones type, for example, with attractive as well as repulsive components, It is
possible to examine the problem directly in a molecule such as N, by computing the
mixed autocorrelatioﬁ functions;

(a) <rl X’tﬂ[ggfo)\:> , the linear /13‘) and angular ’\g{\) speed iutocorrelation
functions.

rb)<:;2nro)g,2nrc;>, the kinetic energy autocorrelation functions and their even
s
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moments (2n).

These are chosen for computational convenience because they represent more
clearly the nature of the interaction than the simple mixed autocorrelation function s
<Q(0),2(t8>. For N, symmetry the latter is very small (but not necegsarily vanish-
i;gly so [6]) and would need enormously long runs for its proper definition. This is
because N, can be reasonably approximated by a symmetric spherocylinder if the electro-
dynamics (e,g. guadrupole-quadrupole interaction) are neglected. The purpose of
computing such functions (which are, apparently, unrelated to experimental data) may

be demonstrated using a formalism for the N-body dynamical evolution such as that

embodied in the Fokker-Planck type equation [7]
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Here A is a column vector of linearly independent dynamical variables, C (t) is the

corréI;tlon function.(fA A (oi) M a variance- covariance matrix and f(A(t), t\A(o))
a conditional probability density function. If rotational motlon and translational
motion are mutually intercorrelated statistically then A 1s defined as:

A= % , where P is the linear and L the angular momentum of the rigid molecule.

Eqn. (1) may then be solved [7] for £ in terms of the autocorrelation functions
(pp (o)) <LL (o)> éL (o)) and< p (0)/. The self-consistency of any theory for
Eaese four autocorrelation functions may then be elucidated with the use of molecular
dynamics simulations by building up from f the energy and speed autocorrelation
functions described already,

A framework for such efforts is provided phenomenologically by using successive }
approximents of the Mori continued fraction [8] based on

. t A
AR) = - [ dTP(E -TIA@) + F, (£

[}
which defines the autocorrelation matrlx as

~

N
6 ® = [ s +p, 1

-A

in the usual way. Here 1BA is the memory operator and F, 1s Mori-propagated, using
projection operators,

The molecular dynamics results are therefore usefuyl in themselves and since they
are the first of their kind (as far as we are aware) are communicated briefly as
follows,  They were computed using atom-atom interactions with 256 molecules arranged
initially on an of nitrogen lattice, Running time-~averages were developed and used
to build up the results over a restricted range of 1000 to 1600 time steps,
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Fig,1. Molecular dynamics simulation of translation/rotation coupling for
a diatomic molecule, ( Interaction separation = 0.2 in reduced units
V = centre of mass Hneor velocity, & = angular velocity):

® <lyEheo ;5 OF@a®); @t )
normalised to unity at t = o.

(4) Angular velocity autocorrelation function,

(5) Linear (centre of mass) velocity autocorrelation function.

Abscissa, time steps (of ca,5 x 10 %7 g),
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Fig.2. As for Fig. 1 , interatomic separation as for N,.
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Fig.3. As for Fig. 1 , interatomic separation = 0.5.

DISCUSSION

The nature of the roteotranslationmal functions changes dramatically with increas-
ing shape anisotropy (Figs. 1-4). The peaks and troughs reflect the influence
of collision and become more or less clearly defined for molecules respectively
longer than or shorter tham N,. The simulation was carried out at a reduced
density of 0.643, a reduced temperature of 2,32 and for reduced bond lenghts of
L* = 0.20, 0.33 (NZ) and 0.50. The shape varies therefore from almost spherical
to pronouncedly dumbell. The ranges of interaction mean that periodically, it
becomes increasingly probable that the correlation between angular and linear
speed, and the equivalent kinetic energies, is sharply increased after the
arbitrary initial t = o in the more elongated molecules. 1In the almost spherical
case correlation rises to a plateau level and remains beyond the limit of our

simulation time. This is related to the fact that the elemental functions
<v(t).v(o)> and (ca(t).U(o)> are longer lived.

For the case L* = 0.33 and L* = 0,50 it is possible to compute the cosine Fourier
transforms of the mixed autocorrelation functlons thus giving us the associated power'
spectra in the frequency domain @). The power spectra of r/t speed and r/t energy
are illustrated in Fig.(4). Both spectra are finite at @ = o and thereafter decay
similarly to the usual behaviour of autocorrelation functions such as <0_3 (t),&’(o)) in

the time domain. The negative reglons in the mixed kinetic-energy power spectrum
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Fig, 4, Power spectra of the mixed autocorrelation functions:

(a) ﬁ“(o)mﬁ(t)}, i | cos sk dt, for N,.
{4 (0)e “ (o)
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come from the narrow half-width in time of the autocorrelation function peaks.

may be thought of physically as emission details rather than absorption, i.e. surges
of rotation~translation time correlatiom rise to emission spectra in the frequency
domain. Future simulations will probably be able to produce much more accurate r/t
functions on the single molecule level, allowing a gradual extension of the

methodology to mode-mode coupling on the many-particle levels coupling which produces

spectral features discernible spectroscoplcally.
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