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ABSTRACT

A newly developed version of the itinerant oscillator model for molecular
translation in fluids is evaluated by means of data obtained from a molecular
dynamics simulation of the fluid using an atcom-atom potential. The data cohsists of:'\
(i) Velocity (v) and force (F) autocorrelation functions. |
(ii) Mean Squar; displacemEngg of molecular centres of mass and even moments

thereof,

(i1i) Autocorrelation of v2" and F2? (as a means of investigating the‘deviation of

v and f from Gaussian behaviour).

(iv) The van Hove fuﬁcﬁion qug,t).

The latter is matched against incoherent neutron scattering data observed by
Dasannacharya and Rao [13] for liquid argon. The theoretical picture ié realistic
except that the neglect of cross-correlations and rotation-translation coupling is
clearly affecting the agreement between the simulated and calculated mean square
displaCEments.. The self wvan Hove function Gs(E’t) exhibits com?licated non-Gaussian

behaviour which will be difficult to follow using the theory of Brownian motion.

INTRODUCTION

In recent articles [1-6] a model of the dynamical behaviour of a molecule in a
fluid has.been developed from Frenkel's [7] idea of oscillation about a temporary
equilibrium position in the laboratory frame. The essential feature of the model

(termed 'itinerant oscillator') is that a molecule may undergo harmonic.oscillation
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in a potential well within a cage of its nearest neighbours. This cage 1s assumed
to undergo Brownlar motion (8}, so that the central molecule diffuses throughout the
fluid., 4

v . .
The equations governing the translational version of this model are tractable

in three dimensions [6,9,10], whilst their rotational counterparts (for molecular
libration) can be solved only for molecules that contain a dipole whose axis rotates
in a plane [1-5]. In this case the cage may be represented by a rigid annulus con-
centric and coplanar with the disk traced out by the motion of the dipole, Lastly,
the more general case of joint translational and rotational motion has yet to be
investigated. The particular advantage of such a treatment over one based on the
Brownian translation of a free particle is that the velocity autocorrelation function
(Cv(t)) is no longer an exponential. It is now at least capable of becoming
negative, in closer accord with the indications given by simulations of molecular [11]
and atomic [12] motions in the fluid state, and also in plastic crystals, In this
paper we shall concentrate exclusively in studying translational movements using
molecular dynamics and incoherent neutron scattering data [13] to measure quantit-
atively the validity of Frenkel's original idea [7]. In addition, the more general
postulate [14] that the probability distribution underlying the motion of a molecule
in a2 fluid is Gaussian is investigated by computing the a.c.f. of force (CF(t)) and
those of moments of the force (i.e. of Mz(t), where v is the velocity of the encaged
molecule, and M its mass), This exercise is repeated for the particle vélocity V.
‘ The van Hove self correlation function (GS(E,t), where B = X)’ has been -
evaluated elsewhere [6] for the itinerant oscillator, and here ye compare the
theoretical value with experimental neutron écattering results obtained for liquid
argon by Dasannacharya and Ra@ [13]. Thils comparison is made possible by the devel-
opment of an analytical link between GS(E,t) and Cv(t), phenomenological parameters
being optimised by a least mean squares fitting of the latter to Rahman's molecular
dynamics simulation of liquid argon [12]. This serves as a check for consistency
between experiment [13], simulation [12], and analytical theory [6]. Finally, by
simulating the speed a.c.f. and that of or the direction of v, it is shown that a

constant speed approximation is adequate for most fluids at short and long times [15].

Theoretical background

Since this is set out fully in another paper [6] we discuss only briefly the
nature of the phenomenclogical quantities mentioned above, It is assumed that the
cage of neighbours is essentially rigid and that its fluctuations in space may be

represented by the translational Brownian motion of a mass m. The position of m
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relative to the origin at time t is denoted by a coordinate E(t); The vibrating
atom or molecule is represented by a second particle of mass M inside the cage at
R(t). This particle is attracted towards the cage by a restoring force proportional
:o the difference [R(t) - r(t)]. Finally, in order to obtain the simplest possible
"presentation of the—theorJ.it is assumed that the frictional force (and by inference
the stochastic force) acting on M may be ignored, so that the equations of motion of

the dynamical system comprising m and M are

m?(t) + m?é(t) - Mug[g(t) - E(t)] = mé(t) | ¢9)
MR(E) + Mo[R(E) - z(8)] = o o ()

Here W(t) is a Wiener process, mpﬁ(t) is the frictional force acting on m and arising
from the surroundings, and Med? is the spring constant. The three guantities

regarded as phenomenological are B, £2,? and @,?, where
CSLo s (a/mng (3

This is not the first attempt to develop an analytical theory for translational
itineraht oscillation. However, other treatises by Sears [9], and by Damle et al
[10] compare disadvantageously since the former suffers from mathematical inconsist-
encies [10], and the latter is rather too flexible and heuristic in the sense that

six adjustable parameters were employed, four of which are independent,

Table 1

Best Fit Parameters in Reduced (Dimensionless) Units

2% 2%

dx T Number o RN *
: Density ° ? ﬁ
(p*)
0.200 2,00 - 0.80 62.1 172.1 24,7
0.329 2,00 0.80 102.1 175.3 18.8

0.400 2.00 0.80 °  133.5 182.9 16.8
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Comgutation

The algorithm developed recently by Tildesley and Streett [16], and by Wegdam
et al,{l1] for the solution, using Newton's equations, of the motion of 256 interact-
ing double Lennard-Jones potentials is used here to evaluate the following statistical
quantities. '
(i) The velocity and force autocorrelation functions,
(i1) The mean square displacement, <rig(t) - E(o)]z:> of the encaged molecule,
(iii) Autocorrelations of v" and F?" to investigate the deviation from Gaussian
distribution of velocity and force, .
(iv) Even moments of the mean square displacement, in order to investigate the non-
Gaussian nature of G (R £).
(v) The a.c.f.'s of the modulus and direction of velocity, to 1nvestigate the nature
of speed conservation in the dense fluids.
It was found that stability in the computed translational energy: rotational
energy ratio was attained at high densities after about 800 time ipncrements of
5 x 10-2% secs., These first steps were rejected and the next 400 used to calculate
the statistical quantities of interest. An interatomic distance of d* (in reduced
units defined by Cheung and Powles [17], for example) of 0.3292 corresponds to the
'real' molecule Nz.‘ Here we have used d* = 0.2, 0.3292 and 0.4 in order to
investigate the effect of geometrical elongation on the m01ECuiar motions, No

difference in the calculated a.c.f.'s could be discerned by compéring runs of 200 and

400 steps, their being so short-lived. For the more general calculation of cross-

. i
correlation and multi-particle c.f.'s, stability is not attained usually until 3000 or

4000 steps have been used and rejected. Using the two-centre potential builds in

an anisotropic repulsion core, but the dispersive part is cut off at 3.20 (where O
i{s the bond length) so that the whqlé of the potential is representative of both
geometrical and electrostatic anisotropy. Naturally, here we are interested only in
the centre of mass translation of the molecules, However; this is clearly affected
to a greater or lesser extent depending on the facility with which the dumbell shaped

molecules may rotate.

RESULTS

The computed a.c.f.'s of force,- velocity (and of its modulus and direction) are
shown in Fig.(l) wilth the least mean squares best fit of the analytical to the
simulated & (t). Here w§, LLJ and B are optimised, and tabulated below.
Rahman's velocity a.c.f. and power spectrum [12} are matched in Fig.(2), where is J
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illustrated the GS(E,t) fﬁnction predicted therefrom. At cons:gnt températu:e, LA
is proportional to the mean square force (fF2:7 on the inner pafticle M, which may be
computed independently. The latter is plotted in Fig,(3) against the former (found
by least mean sqﬁares fitting), the two curves being normalised at d* = 0.3292, so
that the underlying trend is broughtout more clearly. In Fig.(4) the computed mean -
square displaceﬁents are plotted against those calculated analytically from CF(t),
and the non-Gaussian deviations in Gs(g,t) investigated by simulating the Rahman
an(t) functions (see below) for n = 2,3,4. In Fig.(5) the non-Gaussian nature of
force and velocity is investigated using a.c.f.'s of their even powers. If the

velocity were a Gaussian varlate the following relations [15] hold

Cay(t) % [l +-% ci(ol,’

Cay(t) = (225 + 600 Cé(t) + 120 Cz(t))/945

and so on.

Here, C,,(t), for example, is defined as <v2 (t)vz(o)> /(v“(o)) , the kinetic
energy a.c.f. Both C,y(t) and C,,(t) were calculated using CF(t) for optimisation.
They were also simulated independently using the atom-atom algorithm, and the tyo
sets of functions are compared in Fig.(5), where is also shown thé three a.c.f.'s,
<:F2(t)F2(oi> /<{F“(o;> , which ought to decay to a constant were the force a

Gaussian variate.

{a)
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Fig. 1.
(a)

(1) Atom-atom simulation of the force a,c.f. CF(t) for a reduced interatomic
separation d* = 0.20, (p* = 0.8, T =2.0).
— (2) Simulated velocity a.c.f.
—— {3) Simulated a.c.f, of the direction of velocity,
____ (4) Simulated speed a.c.f., the horizontal line is 8/(3%).
————— (1) l.m.s, best fit of the itinerant oséillator to the simulated CF(t).
- - = (2) Cv(t) calculated from the optimised CF(t).

(b) d* = 0,3292 (N,).

(c) d* 0.40,

1}

Ordinate : C(t); Abscissa; time steps of about 0.005 ps.

- ————
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DISCUSSION

The classical theory of Brownian motion [8,14], where the centre of mass of a

moving particle is assumed to be governed by Langevin's equation of 1906, namely,

v(t) +7-}v(t) = W(t), corresponds to: C_(t) = exp( - £/T), where T Is a constant
for the ensemble under consideration.

Thus any negative parts in the observed or
simulated Cv(t) may not be reproduced.

The autocorrelation function, Cv(t), of the itinerant oscillator is better

behaved in that its series expansion in time contains odd terms only in t* and there-

after, but Is still not ideal because a classical a.c.f. should retain the even terms

1 .

\ (a)
F

i

i

(b)
—1-5
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Fig. 2.
(a)

Rahman C_(t), simulated [12] for liquid argon.
- ~ - (1) Itinerant oscillator, best fit.
- - = (2) CF(t) estimated from the Cv(t) best fit,
Ordinate:.C(t); Abscissa : time/ps.

(b)

Rahman simulated normalised velocity power spectrum,

- - - = (1) velocity power spectrum calculated from the itinerant oscillator .
best fit to Cv(t).
- - - (2) Itinerant oscillator normalised force spectrum.
Ordinate Intensity; Abscissa frequency/THz.

(c) Plot of Gs(E’t) calculated for the itinerant oscillator from fitting the Rahman
Cv(t) function,
Ordinate: GS(E,C)/R-3; Abscissas 5/&

only [l5], However, as Fig.(l) shows, negative regions in CF(t) and Cv(t) are dealt
with fairly satisfactorily, albeit that the Cv(t) obtained analytically by fitting
the slmulated CF(t) is always slightly different from the simulated Cv(t). Again,
the characteristic long negative tail in the computed Cv(t) of both Rahman and our-

selves 1s not reproduced at all. This means that the low frequency peak in the
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| —-120 /
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Fig. 3. Plot of Ko(0) and {F¥H* vs d*
~¢- wWo3; <F2> ; normalised at d* = 0,3292, Abscissa: d¥

computer argon velocity power spectrum does not appear analytically. Damle et al,,
[10] have forced an agreement with this spectrum by optimising their six parameﬁers.
At present, therefore, there is doubt as to whether the peak arises from uncoupled
translationél motfion of some kind, or whether cross-correlations (collective motions
or shearing) are mainly responsible, Both our treatment, and that of Damle et al.,
neglect this part of the total velocity correlation function, but Madden and
Kivelson [19] have shown recently that the equivalent multi- and single-particle
a.c.f.'s of angular velocity decay roughly on the same time scale, Confinement to
auto-correlation is inevitable in simple Brownian theory, which means that inter-
molecular dynamical coherence cannot be investigated without some estimate of
Gd(g,t), the van Hove distinct function, This is the probability of finding a
particle at‘g(t) glven the location of another at the origin initially. It is
observable in fluids by cohErént neutron or light scattering experiments [20] and
its long range part may be thought of as being due to macroscopic density fluctuations
Obvicusly, a major problem of liquid-state theory is i1ts calculation using the
.trajectories of individual molecules or atoms.
It is difficult to separate Gs(E,t) and Gd(B,t), but by use of incoherent,

inelastic neutron-scattering, Dassannacharya and Raoc [13] have estimated the former

for liquid argon at 84.5 K, and found it to be Gaussian within'experimental uncert-
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Fig. 4.

(a)

(b)

(e)

(d)

Mean square displacements
Q) d*F =0.20

—— (2) d* = 0.3292
—— (3) d* = 0,40
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- - (3} i.0. mean square displacement calculated from the optimised C (t).

Ordinate: <:R1(t2>> Abscissa s time steps.

. Mean square displacements in liquid argon computed by Rahman.

calculated from the itinerant oscillator fitting to Rahman's Cv(t).

2
Ordinate:(fR1 (t)j>-/XZ; Abscissa: time/ps.
Plot of an(t) for n = 2,3,4, d* = 0,200.

Ratio of kinetic to rotational energy.

after 800 steps.

— - = 200 - 600 steps.
Abscissae:Figs. 4(c) to 4(d), time steps.
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(o)

7

—
—
2l —
40 80
| | [ |
Fig. 5.
(a) (1) Kinetic energy a.c.f., d* = 0.200; atom/atom potential,

(2) da* = 0.3292,
(3) a* = 0.400
- - -
(2) As above, calculated by itinerant oscillation.
(b) <F2(t)F2(o)> /< F*(0) > Simulation only.

Ordinatest C(t); Abscissae: time steps..
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ainty. The Rahman simulation of Cv(t) was carried out at 94.4 K, but the overall
features of the experimental G_(R,t) are reproduced fairly well by using @3, <L o2
and P estimated from Rahman's Cv(t). (For details of the analytical link between
Cv(t) and GS(E,C) the reader is referred to ref.[6]). For our dumbell molecules,
however, GS(B,t) is distinctly non-Gaussian, as expressed by non-zero values of

an(t), defined by

o - SBEO - B> -t
%n & {R® - ROIHT

where §{ = (20 + 1).....5.3.1/3"

The link with the van Hove function is [12]

<[E<t) - 5(0)]2n> ) JB‘ZH Gg (Ra, )Ry
l %
- 1 _ 2n
= § i1 Bi® - R]

in our simulation, where N = 256, and R; = R(t) - R(0). Berne and Harp, in ﬁheir
simulation [15] of CO with a modified Stockmayer potential, found an(t) to be
moderately sensitive to variations in N, becoming less significant as N was changed
from 256 to 500 or thereabouts, Accordingly, it is expected that our simulation
would over stress these deviations of an(t) from zero to an unspecified extent,
Further it is difficult to estimate the effect of our periodic boundary conditions

on these functions, Berne has discussed {[21] their effect on long tails in the auto-
correlation of angular velocity. The complicated dependence of an(t) (n = 2,3,4)
upen time (stepped from an arbitrary t = o (Fig.4)) is not correlated with statistical
noise in the ratio of rotational to kinetic energy, as is illustrated in Figs,4(e), |
(£) and (g). There seems little to be gained by attempting to follow these
analytically with the techniques available at present except perhaps in the case of
computer argon and other atomic fluids where the curves an(t) are simpler in overall
form, Work is continuing on the direct evaluation by molecular dynamics simulation
of various p.d.f,'s, including GS(E,C) and Gd(g,t). '

The mean square displacement of argon atoms as simulated by Ralman is reproduced
satisfactorily by a process of itinerant oscillation (Fig.4(b)), but Fig.4(a) shows
clearly that the rate of diffusion calculated analytically for our more anisotropic
molecules (packed at higher densities than Rahman's) is far too great, The calcul-
ated curve in Fig.4(a) 1s estimated, as usual, from the CF(t) fitting. Only at

times close to the start are the simulated and analytical functions similar, there-
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after the former flatten out and increase only slowly with a tendency to oscillate

as in a clathrate solid. It seems, therefore, that an improved 1.o0. model should

be capable of.taking this high density behaviour in its stride, possibly by consider-
ing rotational constraints upon the centre of mass translation, These effects are
discernible quite clearly in Fig.é(a) itself, since the simulations are all at the
same reduced pressure and temperature, so that elongation of interatomic distance is
the only variable. Fig.5(d) brings out the coupling through the fourth force-moment
a,c.f., a function which for free translation falls at the time origin immediately

to its long time limit, The fall-off is collision-free and thus the same for all
elongations up to 10 time steps or so, but thereafter molecular interaction occurs
and the three curves behave differently even though p* and T* are identical for each.
In fact, throughout Fig.(5) the constant long time limits expEctEd.of Gaussian
statlstics are reached with difficulty (if at all) for both the second and fourth
moment a.c.f.'s of velocity and force, There is 1little doubt, however, that this is
due in part to statistical noise In the averaging (e.g. the simulated C,,(t) function
for d* = 0.3292 (fig.5(b)) falls below the theoretical limit of (.2381), but in other
instances these moment a,c.f,'s behave similarly to those computed by Berne and Harp
for CO, in that a limiting value is approached at long timES. The calculated moment
a.c.f.'s are obtained, again, from fitting C_(t) and optimising w3, 2 and ﬁ ,
and follow the simulated functions at short times, Finally, it is clear that
a.c.f.'s of molecular speed must be conserved fairly well in any system (ldecaying, as
they do, to only 8/(3%) of their initial value), but even here Fig.l shows up
discernible effects of elongation on the translational motion, the decay being

oscillatory and faster the longer the molecule,
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