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ABSTRACT: 
By applying constraints equivalent to the Lorenz gauge of classical electromagnetic 
theory, wave equations in scalar and magnetic potentials of ECE theory for each of the 
Maxwellian and the cold currents are shown to result.  Solutions provided by this method 
are unaffected by the constraint and are shown to be generally valid.  The set of wave 
equations is equivalent to the original equations of the ECE engineering model. 
 
 
I. REDUCED COLD CURRENT MODEL 
 The ECE Theory of Electromagnetism has been developed at great length elsewhere 
[www.aias.us] and will not be reviewed here.  The field equations are identical in form to 
Maxwell’s equations, ie.  
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where E and B are the electric and magnetic fields respectively and c is the speed of light 
in the medium.  J is the current density, ρ is the charge density, ε is the permittivity and 

oμ  is the permeability of the medium. 
 
In ECE theory, the electric and magnetic induction field have new definitions differing 
from Maxwell’s theory which incorporate a scalar (ωo) and vector spin connection (ω), 
ie. 
 

(5)  φωφ ωAAE +−∇−
∂
∂

−= ot
 

(6)  AωAB ×−×∇=  
 
where A is the magnetic vector potential and φ  the scalar potential. 
 
For the cold current model, it is postulated here that a second electric and magnetic 
induction field given by the spin connections terms is set up quasi-independently of the 
Maxwell field.  New field variables are postulated to be in the following form. 
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where 
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We have separated the current and charge density into two components, the Maxwellian 
component , oJ oρ  and the “cold” component , 1J 1ρ  as before [1], ie. 
 
(13)   1o JJJ +=

(14)   1ρρρ += o

 
The Maxwellian and the cold current electric and magnetic induction fields are 

, ,  and  respectively. oE oE 1E 1B
 
If we substitute equations (7) and (8) into equations (1) through (6), we get 
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Separating these into Maxwellian and cold current pairs as in [1], we have 
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We can the rewrite equation (20) through (27) as the cold current equation set presented 
earlier [1] in a more elegant fashion by introducing new cold current scalar and vector 
potentials. 
 
Substituting equations (9) and (10) into Maxwell equations (22) and (23) gives 
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for the Maxwellian pair of equations. 
 
Noting equation (24) we can introduce a cold current magnetic vector potential A1 where 
 
(30)     11 AB ×∇=

 
and upon substitution of this into equation (25) allows us to write in a completely general 
manner, 
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where 1φ  is a new cold current scalar potential. 
 
Substitution of (30) and (31) into the remaining equations (26) and (27) gives 
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But we also have from equations (10), (12), (30) and (31)  that 
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These latter two equations represent the connectivity equations between the Maxwellian 
pair and the cold current pair. 
 
We note that 
 
(36)  1φφφ += o  
 
which  is easily seen by substituting (9)and (31) into (17). 
 
 
It is also relatively simple to see that  
 
 (37)   
 
Adding equation (28) to (32) and utilizing equation (13) yields the original ECE Ampere 
– Maxwell electromagnetic equation [3]. 
 

1o AAA +=

The reduced cold current equations are presented in summary form in Table 1. 
 
Table 1 Cold Current Equation Summary 
Maxwell Equations Cold Current Equations Connectivity Equations 
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where   1o JJJ += 1ρρρ += o   1φφφ += o        1o AAA +=
 
It was demonstrated earlier [1] that each of these pair of curl and divergence equations is 
over specified.  It is interesting to note that we have lost one pair of curl and divergence 
equations in this representation, having introduced that pair instead as the connectivity 
equations.   
 
II.  POTENTIAL BASED WAVE EQUATIONS  
A wave equation for both Maxwell and the cold current can be derived as follows.  
Equation (32)  can be written as 
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which is the accepted Maxwell wave equation for the magnetic vector potential. 
 
Equation (39) is a generalization of the Lorenz gauge of traditional EM theory [2], ie. 
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According to [2], all potentials that satisfy Maxwell’s equations satisfy the Lorenz 
constraint, so that application of the constraint is not limiting. 
 
Equation (29) using equation equation (41) becomes 
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which is the Maxwellian wave equation for the scalar or electric potential. 
 
The same methods apply to the cold current equations.  A wave equation for the cold 
current can be derived as follows.  Equation (32)  can be written as 
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which is the cold current  wave equation expressed in terms of the cold current magnetic 
potential.   
 
Equation (33) can be treated in a manner similar to equation (29) to give 
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which is the cold current wave equation for the second or cold current scalar potential. 
 
Note that 
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is a constraint identical in form to the Lorenz constraint but now applied to the cold 
current equations. 
 
For the wave equations to be valid, the Lorenz constraint must be compatible with the 
connectivity equations (34) and (35).  Taking the divergence of the second connectivity 
equation (35) and noting equations (10) and (26) gives 
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which we recognize to be generally valid, so that the first connectivity equation is 
unchanged under the Lorenz constraint. 
 
If one substitutes equations (12) and (31) into equation (25), one gets equation (34).  This 
demonstrates that the second connectivity equation is unchanged under a Lorenz 
constraint. 
 
It is straightforward to demonstrate that the two connectivity equations are 
interdependent.  Taking the curl of equation (34) and the time derivative of equation (35) 
and eliminating gives the cold current Faraday equation (25) demonstrating that the 
two connectivity equations are dependent upon each other and collapse to the Faraday 
equation. 

1A

 
The first connectivity equation can be reduced to a wave equation.  Taking the curl of 
equation (34) gives 
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Using  equation (35), this becomes 
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One could further take the curl of this equation to get 
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From equation (25), (10) and (12) 
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which is the third wave equation developed in an earlier paper [1]. 
 
The second connectivity equation (35) can be shown to be equivalent to equation (46) by 
taking the divergence of (35), substituting in equation (48) and noting equation (26).  
This  yields no new information. 
 
The final equation needed to complete the set of connectivity equations is a re-expression 
of equation ( 47 ), ie.   
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Although equation (55) is not independent of the rest, it allows the subsequent calculation 
of oω  once the other field variables are known. 
 
We have thus demonstrated that given the Lorenz conditions for the Maxwell and the 
cold current equations that the potential wave equations are completely general and can 
be used interchangeably with the general cold current equations of ECE EM theory.  
These equations are summarized in Table 2. 
 
Table 2 Cold Current Wave Equation Summary 
Maxwell Equations Cold Current Equations Connectivity Equations 
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The equation set consist of a vector and scalar wave equation for the Maxwellian and the 
cold current fields, and four  connectivity equations, one of which can be represented as a 
vector wave equation.   
 
 
III.   BOUNDARY CONDITIONS 
Solutions to the equation system presented in Table 2 require the specification of 
boundary conditions.  One in general does not know anything about the spin connection 
values or the value of the cold current variables other than the assumption that they 
vanish at sufficient distances from the source of the disturbance.   
 
Equation (12) and (24) gives one boundary condition. From the divergence theorem, this 
equation can be written 
 
(56) ( ) ( )∫∫ =⋅•×=⋅×•∇ 0dsdV nAωAω oo  

 
This, as discussed in [4] represents the normal component of the flux of the quantity 

 at a boundary and so gives a form of boundary condition on the problem that 
could be called a “flux boundary condition” to differentiate it from both the Dirichlet and 
the Neumann (and Robin) conditions. 

( oAω× )

 
Similarly, equation (55) can generate a boundary condition through the use of the 
Divergence theorem  
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which represents the normal flux of the cold electric field o1 A-ωE oo ωφ +=  at a boundary 
should the cold current charge distribution be known. 
 
Boundary conditions on Ao, φ o, and the Maxwellian electric or magnetic field are 
generally known in enough detail to specify the problem.  The question then remains as 
to whether equations (56) and (57), and the fact that we want the spin connection 
variables to vanish at sufficient distance from the source provides sufficient boundary 
information for a solution to be specified. 
 
IV.   CONSTITUTIVE RELATIONSHIPS 
For the purposes of this discussion, we will assume that there are no electric or magnetic 
polarization in any of the materials.  This restriction will be lifted in future variations of 
this theme.   
 
A relationship generally exists in Maxwellian theory between the electric and magnetic 
inductive field and the current flowing in a material [2] ie. 
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(58)   ( )ooo B,EFJ =

 
We postulate a similar relationship for the secondary current, ie. 
 
(59)  . ( )111 B,EFJ =

 
For the case of a conductive material where the currents obey Ohm’s Law, equations (58) 
and (59) reduce to,  
 
(60)  oo EJ 0 σ=  
 
(61)  11EJ 1 σ=  
 
where 1σ  is a material property somewhat akin to conductivity  oσ  in traditional 
Maxwell-Heaviside theory.   
 
 
V. CONCLUSION 
The Lorenz constraint of classical electromagnetic theory is shown to be valid for the 
cold current model of the ECE electromagnetic equations.  Wave equations in scalar and 
magnetic potentials for each of the Maxwellian and the cold currents are shown to result, 
and to be generally  valid under this constraint. 
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