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In a previous paper the writer treated of particular classes of cosmological
solutions for certain Einstein spaces and claimed that no such solutions exist
in relation thereto. In that paper the assumption that the proper radius is
zero when the line-element is singular was generally applied. This general
assumption is unjustified and must be dropped. Consequently, solutions do
exist in relation to the aforementioned types, and are explored herein. The
concept of the Big Bang cosmology is found to be inconsistent with General
Relativity.

1. Introduction

In a previous paper [1] the writer considered what
he thought was a general problem statement in relation
to certain Einstein spaces, and concluded that no such
solutions exist for those types. However, the problem
statement treated in the aforementioned paper adopted
an unjustified assumption - that the proper radius is zero
when the line-element is singular. Although this occurs
in the case of the gravitational field for Rµν = 0, it is not
a general principle and so it cannot be generally applied,
even though it can be used to amplify various errors in
the usual analysis of the well known cosmological mod-
els, as done in [1]. By dropping the assumption it is
found that cosmological solutions do exist, but none are
consistent with the alleged Big Bang cosmology.

2. The so-called Schwarzschild-de Sitter model

Consider the line-element

ds2 =
(

1− α

Rc
− λ

3
R2

c

)
dt2−

−
(

1− α

Rc
− λ

3
R2

c

)−1

dR2
c−R2

c

(
dθ2 + sin2 θdϕ2

)
, (1)

where Rc = Rc(r) is the radius of curvature, r a para-
meter, and α a function of mass. This has no solution
for some function Rc(r) on Rc(r) →∞ [1].

If α = 0, (1) reduces to

ds2 =
(

1− λ

3
R2

c

)
dt2−

−
(

1− λ

3
R2

c

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
. (2)

This has no solution for some function Rc(r) on
√

3
λ <

Rc(r) <∞ [1].

For 1− λ
3R

2
c > 0 and Rc ≥ 0, it is required that

0 ≤ Rc <

√
3
λ
. (3)

The proper radius on (2) is

Rp =
∫

dRc√
1− λ

3R
2
c

=

√
3
λ

arcsin

√
λ

3
R2

c +K,

where K is a constant. Rp = 0 is satisfied if Rc = 0 = K,
in accord with (3). Then

Rp =

√
3
λ

arcsin

√
λ

3
R2

c .

Now √
3
λ

arcsin 1 =

√
3
λ

(1 + 4n)π
2

= lim
Rc→

√
3
λ

−

√
3
λ

arcsin

√
λ

3
Rc = lim

Rc→
√

3
λ

−
Rp,

n = 0, 1, 2, ... (4)

in accord with (3). Thus, Rp can be arbitrarily large.
Moreover, Rp can be arbitrarily large for any Rc satisfy-
ing (3) since

Rp =

√
3
λ

arcsin

√
λ

3
Rc =

√
3
λ

(ψ + 2nπ) ,

n = 0, 1, 2, ...

where ψ is in radians, 0 ≤ ψ < π
2 .

In the case of (1), the mutual constraints on the ra-
dius of curvature are

λ

3
R3

c −Rc + α < 0
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0 < Rc(r). (5)

The proper radius on (1) is

Rp(r) =
∫

dRc√
1− α

Rc
− λ

3R
2
c

+K, (6)

where K is a constant, subject to Rp ≥ 0. The difficulty
here is the cubic in (5) and (6). The approximate positive

roots to the cubic are α and
√

3
λ . These must correspond

to limiting values in the integral (6). Both Rc(r) and
Rp(r) also contain α and λ.

In addition, it was argued in [1] that the admissible
form for Rc(r) in (1) must reduce, when λ = 0, to the
Schwarzschild form

Rc(r) = (|r − r0|n + αn)
1
n

n ∈ <+, r ∈ <, r 6= r0, (7)

where r0 and n are entirely arbitrary constants. Note
that when α = 0 and λ = 0, (1) reduces to Minkowski
space and (7) reduces to the radius of curvature in
Minkowski space, as necessary.

Determination of the required general parametric ex-
pression for Rc(r) in relation to (1), having all the re-
quired properties, is not a simple problem. Numerical
methods suggest however [1], that there may in fact be
no solution for Rc(r) in relation to (1), subject to the
stated constraints. At this time the question remains
open.

3. Einstein’s cylindrical model

Consider the line-element

ds2 = dt2 −
[
1− (λ− 8πP0)R2

c

]−1
dR2

c−

−R2
c

(
dθ2 + sin2 θdϕ2

)
. (8)

This of course has no Lorentz signature solution in Rc(r)
for 1√

λ−8πP0
< Rc(r) <∞ [1].

For 1− (λ− 8πP0)R2
c > 0 and Rc = Rc(r) ≥ 0,

0 ≤ Rc <
1√

λ− 8πP0

. (9)

The proper radius is

Rp =
∫

dRc√
1− (λ− 8πP0)R2

c

=
1√

λ− 8πP0

arcsin
√

(λ− 8πP0)R2
c +K,

where K is a constant. Rp = 0 is satisfied for Rc = 0 =
K, so that

Rp =
1√

λ− 8πP0

arcsin
√

(λ− 8πP0)R2
c ,

in accord with (9).
Now

1√
λ− 8πP0

arcsin 1 =
(1 + 4n)π

2
√
λ− 8πP0

= lim
Rc→ 1√

λ−8πP0

−

1√
λ− 8πP0

arcsin
√

(λ− 8πP0)R2
c

n = 0, 1, 2, ...

in accord with (9). Thus Rp can be arbitrarily large.
Moreover, Rp can be arbitrarily large for any Rc satisfy-
ing (9), since

Rp =
1√

λ− 8πP0

arcsin
√

(λ− 8πP0)R2
c =

(ψ + 2nπ)√
λ− 8πP0

,

n = 0, 1, 2, ...

where ψ is in radians, 0 ≤ ψ < π
2 .

4. de Sitter’s spherical model

Consider the line-element

ds2 =
(

1− λ+ 8πρ00

3
R2

c

)
dt2−

−
(

1− λ+ 8πρ00

3
R2

c

)−1

dR2
c−

−R2
c

(
dθ2 + sin2 θdϕ2

)
. (10)

This has no Lorentz signature solution in some Rc(r) on√
3

λ+8πρ00
< Rc(r) <∞ [1].

For 1− λ+8πρ00
3 R2

c > 0 and Rc = Rc(r) ≥ 0,

0 ≤ Rc <

√
3

λ+ 8πρ00
. (11)

The proper radius is

Rp =
∫

dRc√(
1− λ+8πρ00

3

)
R2

c

=
√

3
λ+ 8πρ00

arcsin

√(
λ+ 8πρ00

3

)
R2

c +K,

where K is a constant. Rp = 0 is satisfied for Rc = 0 =
K, so

Rp =
√

3
λ+ 8πρ00

arcsin

√(
λ+ 8πρ00

3

)
R2

c ,

in accord with (11).
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Now√
3

λ+ 8πρ00
arcsin 1 =

√
3

λ+ 8πρ00

(1 + 4n)π
2

= lim
Rc→

q
3

λ+8πρ00

−

r
3

λ + 8πρ00
arcsin

s„
λ + 8πρ00

3

«
R2

c ,

n = 0, 1, 2, ...

in accord with (11). Thus Rp can be arbitrarily large.
Moreover, Rp can be arbitrarily large for any Rc satisfy-
ing (11), since

Rp =
√

3
λ+ 8πρ00

arcsin

√(
λ+ 8πρ00

3

)
R2

c

=
√

3
λ+ 8πρ00

(ψ + 2nπ) ,

n = 0, 1, 2, ...

where ψ is in radians, 0 ≤ ψ < π
2 .

5. Cosmological models of expansion

Transform (10) by

R̄c =
Rc√

1− R2
c

W 2

e−
t

W , t̄ = t+
1
2
W ln

(
1− R2

c

W 2

)
,

W 2 =
3

λ+ 8πρ00
,

to get

ds2 = dt̄2 − e 2t̄
W (dR̄2

c + R̄2
cdθ

2 + R̄2
c sin2 θdϕ2), (12)

where according to (11), 0 ≤ R̄c < ∞. Clearly the
proper radius on (12) is

R̄p = lim
R̄c→∞

e
t̄

W

∫ R̄c

0

dR̄c = ∞.

Therefore (12) describes an infinite Universe for all t̄.
Consider the line-element

ds2 = dt2 − eg(t)(
1 + k

4G
2
)2 [dG2 +G2

(
dθ2 + sin2 θdϕ2

)]
,

(13)
where G = G(r), r a parameter. If k = 0 a form of (12)
is obtained. If k > 0,

Rp = e
1
2 g(t)

∫
dG

1 + k
4G

2

= e
1
2 g(t)

[
2√
k

arctan

√
k

2
G+K

]
,

whereK is a constant. Rp = 0 is satisfied by G = 0 = K,
so

Rp = e
1
2 g(t)

∫
dG

1 + k
4G

2
= e

1
2 g(t) 2√

k
arctan

√
k

2
G.

Now for (13), the radius of curvature is

Rc =
G

1 + k
4G

2
, (14)

which is maximum when G = 2√
k
, i.e.

Rcmax
= Rc(

2√
k

) =
1√
k
.

Also, limG→∞Rc = 0. Therefore, on (13),

0 ≤ Rc ≤
1√
k
, (15)

or equivalently

0 ≤ G ≤ 2√
k
. (16)

Now

Rp

(
G =

2√
k

)
= e

1
2 g(t) arctan 1 = e

1
2 g(t) arctan 1

= e
1
2 g(t) (1 + 4n)π

4
,

n = 0, 1, 2, ...

which is arbitrarily large. Moreover, Rp is arbitrarily
large for any Rc satisfying (15) (or equivalently for any
G satisfying (16)), since

Rp = e
1
2 g(t) 2√

k
(ψ + nπ) , n = 0, 1, 2, ...

where ψ is in radians, 0 ≤ ψ ≤ π
4 .

If k < 0, set k = −s, s > 0. Then

Rp = e
1
2 g(t)

∫
dG

1− s
4G

2

= e
1
2 g(t)

[
1√
s

ln

∣∣∣∣∣G+ 2√
s

G− 2√
s

∣∣∣∣∣+K

]
,

where K is a constant. Rp = 0 is satisfied for G = 0 =
K. Then

Rp = e
1
2 g(t) 1√

s
ln

∣∣∣∣∣G+ 2√
s

G− 2√
s

∣∣∣∣∣ .
To maintain signature in (13),

− 2√
s
< G <

2√
s
.
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However, since a negative radius of curvature is mean-
ingless, and since on (13) the radius of curvature in this
case is

Rc(G) =
G

1− s
4G

2
, (17)

it is required that

0 ≤ G <
2√
s
. (18)

Now

lim
G→ 2√

s

−
e

1
2 g(t) 1√

s
ln

∣∣∣∣∣G+ 2√
s

G− 2√
s

∣∣∣∣∣ = ∞,

in accord with (18). The proper radius of the space and
the radius of curvature of the space are therefore infinite
for all time t.

The usual transformation of (13) to obtain the
Robertson-Walker line-element involves expressing (13)
in terms of the radius of curvature of (13) instead of the
quantity G, thus

Ḡ =
G

1 + k
4G

2
,

carrying (13) into

ds2 = dt2 − eg(t)

[
dḠ2

1− kḠ2
+ Ḡ2

(
dθ2 + sin2 θdϕ2

)]
.

(19)
If k = 0 a form of (12) is obtained.

Comparing Ḡ with (14) it is plain that Ḡ = Rc(G),
where 0 ≤ Rc ≤ 1√

k
by (15), k > 0, and therefore 0 ≤

Ḡ ≤ 1√
k
. Now

Rp = e
1
2 g(t)

∫
dRc√

1− kR2
c

= e
1
2 g(t)

(
1√
k

arcsin
√
kRc +K

)
,

where K is a constant. Rp = 0 is satisfied for Rc = 0 =
K, so

Rp = e
1
2 g(t) 1√

k
arcsin

√
kRc,

in accord with (15).
Then

Rp(Rc =
1√
k

) = e
1
2 g(t) 1√

k

(π
2

+ 2nπ
)
, (20)

n = 0, 1, 2, ...

in accord with (15), and so Rp is arbitrarily large for
all time t. When making the transformation to the
Robertson-Walker form the limits on the transformed

coordinate cannot be ignored. Moreover, RP is arbitrar-
ily large for all time for any Rc satisfying (15), since

Rp = e
1
2 g(t) 1√

k
(ψ + 2nπ) ,

n = 0, 1, 2, ...

where ψ is in radians, 0 ≤ ψ ≤ π
6 .

If k < 0 set k = −s where s > 0, then (19) becomes

ds2 = dt2 − eg(t)

[
dR2

c

1 + sR2
c

+R2
c

(
dθ2 + sin2 θdϕ2

)]
.

(21)
The proper radius is

Rp = e
1
2 g(t)

∫
dRc√

1 + sR2
c

= e
1
2 g(t)

[
1√
s

ln

(
Rc +

√
R2

c +
1
s

)
+K

]
,

where K is a constant. Rp = 0 is satisfied for Rc = 0
and K = − 1√

s
ln 1√

s
, in accord with (17) and (18). So

Rp = e
1
2 g(t) 1√

s
ln

Rc +
√
R2

c + 1
s

1√
s

 .

Now Rp →∞ as Rc →∞, in accord with (17) and (18).
Thus, (21) describes an infinite Universe for any time t.

6. Conclusions

By the foregoing types of spacetimes, General Rel-
ativity permits cosmological solutions, contrary to the
claims made in [1]. However, the Big Bang theory is not
consistent with General Relativity, since the spacetimes
permitted are all spatially infinite (arbitrarily large) for
any time t.
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