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Introduction

The splendid, profound, and highly intuitive interpretation of differential geometry by E.
Cartan, which was first applied to Riemann spaces, has resulted in a highly systematic
description of a vast range of geometric and topological properties of differentiable
manifolds. Although it possesses a somewhat abstract analytical foundation, to my
knowledge there is no instance where Riemann-Cartan geometry, cast in the language of
differential forms (i.e., exterior calculus), gives a description that is in conflict with the
classical tensor analysis as formalized, e.g., by T. Levi-Civita. Given all its successes,
one might expect that any physical theory, which relies on the concept of a field, can be
elegantly built on its rigorous foundation. Therefore, as long as the reality of metric
structure (i.e., metric compatibility) is assumed, it appears that a substantial modified
geometry is not needed to supersede Riemann-Cartan geometry.

A common overriding theme in both mathematics and theoretical physics is that of
unification. And as long as physics can be thought of as geometry, the geometric objects
within Riemann-Cartan geometry (such as curvature for gravity and torsion for intrinsic
spin) certainly help us visualize and conceptualize the essence of unity in physics.
Because of its intrinsic unity and its breadth of numerous successful applications, it might
be possible for nearly all the laws governing physical phenomena to be combined and
written down in compact form via the structural equations. By the intrinsic unity of
Riemann-Cartan geometry, I simply refer to its tight interlock between algebra, analysis,
group representation theory, and geometry. At least in mathematics alone, this is just as
close as one can get to a “final” unified description of things. I believe that the unifying
power of this beautiful piece of mathematics extends further still.

I'm afraid the title I’ve given to this work has a somewhat narrow meaning, unlike the
way it sounds. In writing this article, my primary goal has been to present Riemann-
Cartan geometry in a somewhat simpler, more concise, and therefore more efficient form
than others dealing with the same subject have done before. I have therefore had to drop
whatever mathematical elements or representations that might seem somewhat highly
counterintuitive at first. After all, not everyone, unless perhaps he or she is a
mathematician, is familiar with abstract concepts from algebra, analysis, and topology,
just to name a few. Nor is he or she expected to understand these things. But one thing
remains essential, namely, one’s ability to catch at least a glimpse of the beauty of the
presented subject via deep, often simple, real understanding of its basics. As a non-
mathematician (or simply a ‘“dabbler” in pure mathematics), I do think that pure
mathematics as a whole has grown extraordinarily “strange”, if not complex (the weight
of any complexity is really relative of course), with a myriad of seemingly separate
branches, each of which might only be understood at a certain level of depth by the pure
mathematicians specializing in that particular branch themselves. As such, a comparable



complexity may also have occurred in the case of theoretical physics itself as it
necessarily feeds on the latest formalism of the relevant mathematics each time.
Whatever may be the case, the real catch is in the essential understanding of the basics. I
believe simplicity alone will reveal it without necessarily having to diminish one’s
perspectives at the same time. After all, this little work is intended for beginners.

1. A brief elementary introduction to the Cartan(-Hausdorff) manifold C”

Let w, = Y E, = 0, X' E, (summation convention employed throughout this article)
x

be the covariant (frame) basis spanning the »n —dimensional base manifold C* with local
coordinates x“ = x“(X k). The contravariant (cofiame) basis @’ is then given via the

orthogonal projection <9b ,a)a> =", where 5’ are the components of the Kronecker

delta (whose value is unity if the indices coincide or null otherwise). Now the set of

~

. . o . 0 . .
linearly independent local directional derivatives E, = - =0, gives the coordinate

0X
basis of the locally flat tangent space 7. (M) at a point xeC”. Here M denotes the

topological space of the so-called »—tuples h(x) = h(xl,...,x”) such that relative to a
given chart (U h (x)) on a neighborhood U of a local coordinate point x, our
C” —differentiable manifold itself is a topological space. The dual basis to E,; spanning

the locally flat cotangent space 7. (M) will then be given by the differential elements
dX" via the relation <a’X" ,8i> = &) . In fact and in general, the one-forms dX* indeed
act as a linear map 7 (M) — IR when applied to an arbitrary vector field FeT (M) of

~

0 - ; ;
o = f* ——. Then it is easy to see that /' = F X' and
oX' ox“

f“ =F x, from which we obtain the usual transformation laws for the contravariant

the explicit form F = F’

components of a vector field, ie, F'=0,X' f* and f'=0,x" F', relating the
localized components of F to the general ones and vice versa. In addition, we also see
that <ka ,F> = FX*=F*,

The components of the metric tensor g =g, 0° ®0” of the base manifold C* are
readily given by

gab = <a)a’a)b>

The components of the metric tensor g(x, ) =17, dX' ®dX" describing the locally flat

tangent space 7 (M) of rigid frames at a point x, = x, (x“) are given by



ny =(E,,E,) =diag(+1,+1,..,+1)

In four dimensions, the above may be taken to be the components of the Minkowski
metric tensor, i.e., 77, = <E,. ,Ek> = diag (1,—1,— L,— 1).

Then we have the expression
g,=mn,0,X 0, X"
satisfying
€. 8" =0,

where g = <:9” ,:9”>.

The manifold C® is a metric space whose line-element in this formalism of a
differentiable manifold is directly given by the metric tensor itself; i.e.,

ds’ =g =g, (0,x" 0, x")dx' ®@dx*

where the coframe basis is given by the one-forms 8 =9, x* dX'.

2. Exterior calculus in # dimensions

As we know, an arbitrary tensor field 7€ C” of rank (p,q) is the object

T=T"" 0 ®n ®.Qn0 ® ®0"®.Q0"
Given the existence of a local coordinate transformation via x' = x’ ()?“) in C”, the
components of 7eC” transform according to

ij..s _ qaf.L i J s —u =v =n
Ty =T 0,x 0,x7..0,x" 0, x" 0,X" ...0, X

Taking a local coordinate basis &' = dx', a Pfaffian p — form @ is the completely anti-
symmetric tensor field
© =, d" Ndx" N\..Ndx"

iyly .d



where

S e @y ... Qdx’

JiJ2-dp

dx' Ndx NN = L
p!
In the above, the 5/"1’]22’7 are the components of the generalized Kronecker delta. They
are given by

iy i ip

5 &5

. o S Sn o

hiyend, hodp J2 J2 J2

Oy = Ehjny, € = det
X
o i A
where €, . =,/det(g)e,, , and €™ =—— &™" are the covariant and
JiJadp JiJadp

w/detigi

contravariant components of the completely anti-symmetric Levi-Civita permutation
tensor, respectively, with the ordinary permutation symbols being given as usual by

llll"'lp

€, @0d €

We can now write

w:ia"l’f"’f .. . dx" Ndx” N Ndx”

JiJ2dp iyiy i)
| ) )

such that for a null p-—form =0 its components satisfy the relation
51‘,1'2‘..1'” o, 0.

idaed, Ly,
By meticulously moving the dx' from one position to another, we see that

dx Ndx™ N\ Ndx"" Ndx” Ndx” Ndx” ... \dx”
= (=17 dx" Ndx™ \...N\dx"" Ndx? Ndx” N\...Ndx” Ndx"”

and

dx" Ndx” N\..Ndx"” Ndx" Ndx” N...\dx’
= (=)™ dx” Ndx” N..N\dx’* Ndx" Ndx> N\...\dx"”

Let w and 7 be a p—form and a g—form, respectively. Then, in general, we have the
following relations:



ohr =D rho=aw, , 7, . d" Nde® N Ndx? Ndx" Ndx” A...N\dx’
d(w+7)=do +dr

d(whz)=dolz + (-1Y oNdr
Note that the mapping d:@ = dw is a (p+1)—form. Explicitly, we have

N ... ) ) ) .
dw = % s a— dx” Ndx N\...\dx” Ndx"!
p +1)! 12 p xllm

For instance, given a (continuous) function f , the one-form df =0, f dx'

' satisfies
d’f =ddf =0,0, fdx" Ndx' =0. Likewise, for the one-form A4 = A4, dx', we have
dA=0, A, dx* N\dx' and therefore = d’A=0,0, A, dx' Ndx* Ndx' =0, i,
5" 0,0,4 =0 or 0,0, 4, +0,0,4, + 0,0,

A, = 0. Obviously, the last result holds
for arbitrary p —forms I1%° | ie.,

T, =0

Let us now consider a simple two-dimensional case. From the transformation law
dx' =0 x'dx”, we have,

o<,

P -1 >0, the following:
x4,

upon employing a positive definite Jacobian, i.e.,

dx' Ndx' =0, x' 0, x" dx* Ndx” = 1 a(’"f

Itis easy to see that

1 2 a(xlsz 1 2
dx Ndx® = ———4 dx N\dx
X ,X

which gives the correct transformation law of a surface element

We can now elaborate on the so-called Stokes theorem. Given an arbitrary function f

the integration in a domain D in the manifold C” is such that

_Uf dx' N\ dx> —Hf axl’xz a5 dx’



Generalizing to n dimensions, for any ' = ' (x") we have

1 2 n
dy' Ndy* \..Ndy" = a(‘/’l""z ""’f’n)) dx' Ndx® ...\ dx"

o\ ,x",..,x

Therefore (in a particular domain)

[[-[r av' nay* n.ndy” =[..] rx) aa(wl"/’z"“"/’") A N M. N dx”

1 2
(x X5, X"

Obviously, the value of this integral is independent of the choice of the coordinate
system. Under the coordinate transformation given by x' = x' ()? "‘), the Jacobian can be
expressed as

If we consider a (n—m)—dimensional subspace (hypersurface) SeC” whose local

coordinates u” parametrize the coordinates x’, we have

[[-[rdy'nay* n.nay”

o] e ) D o ) g e

1 2 n—m
8(u UL U )

3. Geometric properties of a curved manifold

Let us recall a few concepts from conventional tensor analysis for a while. Introducing a
generally asymmetric connection I" via the covariant derivative

ab a)a = 1—‘acb a)c
1e.,
T, = (67,0, 0,) = T + iy
where the round index brackets indicate symmetrization and the square ones indicate

anti-symmetrization, we have, by means of the local coordinate transformation given by
x* =x“ ()?“) in C”



a _ 1c a T a s A
ab ea - Fab ec Fﬂl ea eb

where the tetrads of the moving frames are given by e/ =0,x” and e, =0, x“. They
satisfy e, e, = 6, and e; e = & . In addition, it can also be verified that

a T4 a a b ¢
Ope, =15 e; —Ty. e, e

Q

a _ _a T4 p _1a e
0,e, =e; Faﬂ e, —I, e,

From conventional tensor analysis, we know that I'" is a non-tensorial object, since its
components transform as

c _ ¢ a ¢ Ta B A
I, =e, 0,e +e, Iy e, e,

However, it can be described as a kind of displacement field since it is what makes
possible a comparison of vectors from point to point in C*. In fact the relation
0,w, =T, o, defines the so-called metricity condition, i.e., the change (during a
displacement) in the basis can be measured by the basis itself. This immediately

translates into

Ve gab =0

where we have just applied the notion of a covariant derivative to an arbitrary tensor field
T:

ij.s  __ ij..s i pj...s J ip...s s ij..p
Vil =0, Ty + U, T2 + 0 T+ + 1, T,

Im...r Im...r Im...r Im...r Im...r
_ P jos V4 s _ p ij...s
1—‘lk Tpm...r ka Tlp...r Frk T}mp
j..s ij...s
such that (ak T)Im..m - Vk 7—}mr .

The condition Vg, = 0 can be solved to give

cd

c 1 c C e e
r,= 5 g (ab 8w —048am 0, gbd)+ Ty — 8 ‘ ( ae Ul + &he F[da])

from which itis customary to define

AC = ng (617 gda - 8a’ gab +aa gbd)

ab

N | =

as the Christoffel symbols (symmetric in their two lower indices) and



chb = F[:zb] - ng ( ae F[ilb] + Ere F[Z’a])

as the components of the so-called contorsion tensor (anti-symmetric in the first two
mixed indices).

Note that the components of the torsion tensor are given by

Mo =—e (0.ef —0,e" +ef Ty —el T3

N | —

wherewehave set Ty =T, e/ .

The components of the curvature tensor R of C” are then given via the relation

ab...s ab...s w ab...s w ab..s w
(V,V, -V, V, )T =T% R" 4 T% RY + .. +T% R

cd..r wd...r cpq cw..r dpg cd..w rpq
wh...s a aw...s b ab..w s
- Tcd“.r R wpq Tcd.“r R wpg ottt Tcd..r R wpq
w ab...s
-2 F[pq] Vw 71cd4..r

where

d
R abc

:ab rjc _acrjb +rjc r;; _Faeb Fi
=B

abc

(A) + @b K;ic - ﬁcKjb + K;c Kjb - K;b Kedc

where V denotes covariant differentiation with respect to the Christoffel symbols alone,
and where

Bd

abc

(A) = ab A‘jzc - ac A(izb + Aeac Adeb - Aeab AZC
are the components of the Riemann-Christoffel curvature tensor of C”.

From the components of the curvature tensor, namely, R’

abc »

we have (using the metric

tensor to raise and lower indices)

Rab =K ach Bab (A) + ﬁcK:b - Kjd Kgb - @brﬁw] + K:b l—1[(;1] +2 1—1[?{17] r;d
R=R, =B(A)-2g" V T - g Ty Ty — Ko K" +2 " T4 Ty

where B, (A) = B¢

ach

B(A)= B* (A) is the Ricci scalar. Note that K, = g, K and K*’ = g* g K¢

(A) are the components of the symmetric Ricci tensor and



Now since

=K, = A, =2, (Indet(g))
I, = 8, (indet(g)) + 2 I,

we see that for a continuous metric determinant, the so-called homothetic curvature
vanishes:

H,=R_=0T,—03T=0

a~ch b~ ca
Introducing the traceless Weyl tensor C, we have the following decomposition theorem:

1
R, =C° +—(5;’ R, +g, R, -6 R, ~g, R‘i)

abc abc
n—2

1
+m(5cd g — Oy gac)R

which is valid for n > 2. For n =2, we have

R, =K, (é‘bd 2. — 6! gub)

where

1
K. =—R
)

is the Gaussian curvature of the surface. Note that (in this case) the Weyl tensor vanishes.

A n—dimensional manifold (for which n >1) with constant sectional curvature R and
vanishing torsion is called an Einstein space. [tis described by

d 1 d d
= 0, =0 R
abc n(”l _1) ( b gac c gah)
1
Rab = gab R
n

In the above, we note especially that

Rdabc = Bdabc (A)
Rab = Bab (A)
R = B(A)



Furthermore, after some elaborate (if not tedious) algebra, we obtain, in general, the
following generalized Bianchi identities:

RYuy + Ry + Ry == 2 (0, Ty + 0, Ty + 0, Ty + T Tfy + T2 Ty + T2 T
V.RYy +V Ry +V, R, =12 (F[gé] R‘}er + F[f)e] R, + 1—‘[f R‘Zfd)

bec bfe ec]

1 ‘
Va(R“" -3 g’ R j =2 g% I R% + Ty R,

for any metric-compatible manifold endowed with both curvature and torsion.

In the last of the above set of equations, we have introduced the generalized Einstein
tensor, i.e.,

1
Gab ERab _Egab R

In particular, we also have the following specialized identities, i.e., the regular Bianchi
identities:

B +B° +B° =0

bed cdb dbc

A

VeBicd +€cBabde +ﬁdBabec :0
~ 1
Va(B“" - —g® B] =0
2
In general, these hold in the case of a symmetric, metric-compatible connection.

4. The structural equations

The results of the preceding section can be expressed in the language of exterior calculus
in a somewhat more compact form.

ab...e

In general, we can construct arbitrary p —forms @;,"; through arbitrary (p—l) forms

be -
afd'_j ,l.e.,
aaab...e
b.. b.. d... h
a’fd; = dafd‘,.; = ac hf Ndx
: : x

The covariant exterior derivative is then given by

10



Dy =V, oy Nax!
ie.,
e = dafys + (C1f (@5 ATL + 0 5 AT + ok 0 AT
— Ol AT = 0 AT — = @A)
where we have defined the connection one-forms by
;=TI 6°
with respect to the coframe basis 6.

Now we write the torsion two-forms 7° as
t* =DO =d0* + T NG°

This gives the first structural equation. With respect to another local coordinate system
(with coordinates X“) in C” spanned by the basis ¢“ =e. 0“, we see that

' =—e Iy 67 Ne?

We shall again proceed to define the curvature tensor. For a triad of arbitrary vectors
u,v,w, we may define the following relations with respect to the frame basis o, :

V,V.w=u’ Vc(vb waa)a)

a

Vi gw=V,w (u" V.V vV, ub)

where V,  and V  denote covariant differentiation in the direction of u and of v,
respectively.

Then we have
(V,V, -V, V, )w="R, w u" v o,
Note that

*Rabcd =o. Iy, -0, + 0, Tn -1, T, +2 F[id] Ly,
= Rabcd +2 r[id] rbae

11



are the components of the extended curvature tensor R .

Define the curvature two-forms by
RS, 6 NG’
The second structural equation is then
‘R4 =dUy + TNy
The third structural equation is given by
d’Tf =d' R} — 'R° \TY +T*“N\ 'R, = D'R",
which is equivalent to the generalized Bianchi identities given in the preceding section.

In fact the second and third structural equations above can be directly verified using the
properties of exterior differentiation given in Section 2.

Now, as we have seen, the covariant exterior derivative of arbitrary one-forms ¢“ is
givenby D¢’ =dg* + T \@". Then

DD¢* =d(Dg*)+ T ADg"
= d(dg® + T7 Ng")+ T2 Ndg + TS Ng?)
= dr Ng" - T AT? N g
= (T + T2 ATY NG

where we have used the fact that the D¢“ are two-forms. Therefore, from the second
structural equation, we have

DD¢* = "R Ng"
Finally, taking ¢“ = 0, we give the fourth structural equation as
DD = Dz = "R \O"
or,

dr® = R4 N — T N\c"

12



Remarkably, this is equivalent to the first generalized Bianchi identity given in the
preceding section.

The elegant results in this section are especially due to E. Cartan. Thanks to his intuitive
genius!

5. The geometry of distant parallelism

Let us now consider a special situation in which our »—dimensional manifold C” is
embedded isometrically in a flat n— dimensional (pseudo-)Euclidean space E" (with
coordinates v™) spanned by the constant basis e, whose dual is denoted by s”. This

embedding allows us to globally cover the manifold C” in the sense that its geometric
structure can be parametrized by the Euclidean basis e, satisfying

Nom = <em , eﬁ> = diag (i Lt1,..,+ 1)

It is important to note that this situation is different from the one presented in Section 1,
in which case we may refer the structural equations of C” to the locally flat tangent
space T, (M). The results of the latter situation (i.e., the localized structural equations)

should not always be regarded as globally valid since the tangent space T (M), though

ubiquitous in the sense that it can be defined everywhere (at any point) in C”, cannot

cover the whole structure of the curved manifold C”* without changing orientation from
point to point.

One can construct geometries with special connections that will give rise to what we call
geometries with parallelism. Among others, the geometry of distant parallelism 1s a
famous case. Indeed, A. Einstein adopted this geometry in one of his attempts to
geometrize physics, and especially to unify gravity and electromagnetism. In its
application to physical situations, the resulting field equations of a unified field theory
based on distant parallelism, for instance, are quite remarkable in that the so-called
energy-momentum tensor appears to be geometrized via the torsion tensor. We will
therefore dedicate this section to a brief presentation of the geometry of distant
parallelism in the language of Riemann-Cartan geometry.

In this geometry, it is possible to orient vectors such that their directions remain invariant
after being displaced from a point to some distant point in the manifold. This situation is
made possible by the vanishing of the curvature tensor, which is given by the
integrability condition

R, =et(0,0,-0,0,)e" =0

abc m c c

where the connection is now given by

13



c _ ¢ m
rab _eri abea

where €' =0,&" and e =0 x“.

However, while the curvature tensor vanishes, one still has the torsion tensor given by

I = % e, (ac e, -0, ecm)

with the e” acting as the components of a spin “potential”. Thus the torsion can now be

considered as the primary geometric object in the manifold C,; endowed with distant

parallelism.

Also, in general, the Riemann-Christoffel curvature tensor is non-vanishing as

d 9 d - d e d e d
B abe Vc Kab - Vb Kac + Kab Kec - Kac Keb

Let us now consider some facts. Taking the covariant derivative of the tetrad e” with

respect to the Christoffel symbols alone, we have

W i Woad W pc
Vbea _abea _ed Aab _ec Kab
ie.,
¢ _ ¢ ¥ mo_ _ m -
K, =e.-V,e' =—¢e" V, e

In the above sense, the components of the contorsion tensor give the so-called Ricci
rotation coefficients. Then from

it is elementary to show that

Likewise, we have

o~ _ m m d _ _m c

Vb e, = 8b e, —¢€ Kab =e, Aab
c _ ¢ mo__m 7 c

ANy =ez Vye, =—e, Vyeq

A

(

Vc Vb _@bvc’)ez_7 :ecr;_ B‘ilbc

c

A

V.V,e =ér (@CK‘J + K, Kedc)

ab

A A

14



where now V denotes covariant differentiation with respect to the Ricci rotation
coefficients alone. Then from

V.V, e =er (VA7 + A, A7)

a

we get

(V. 9, -¥,V.)er = e (B, -2 A%, Tjy - &Y K&+ &, KY — K5 AL + K, AL )

c abc ab

In this situation, one sees, with respect to the coframe basis 6 = e.. s™  that
do* :—l"b“/\ﬁ” =T
ie.,

a _ 1Ta b c
T =T}, 6" N\@

Thus the torsion two-forms of this geometry are now given by 7“ (instead of 7 of the
preceding section). We then realize that

DO =0
Next, we see that

d*0* =dT* =—dry \N6" + T Nd6"
= (ary + T AT NG
=— R4 NGO

But, as always, d°0“ = 0, and therefore we have

"RYNG" =0
Note that in this case, "R # 0 as
*Rabcd =2 r[ed] Ly,

will not vanish in general. We therefore see immediately that

*pa *na *Da
Rbcd+ Rcdb+ Rdbc

=0

15



giving the integrability condition
Do) Do + Ty Toe + T T =0
Meanwhile, the condition

dT* =0
gives the integrability condition

8d F[Zc] + 8b F[fd] + OC F[Zb] = 0
Contracting, we find
8c F[Zb] = 0

Itis a curious fact that the last two relations somehow remind us of the algebraic structure
of the components of the electromagnetic field tensor in physics.

Finally, from the contraction of the components B¢, of the Riemann-Christoffel
curvature tensor (the Ricci tensor), one defines the regular Einstein tensor by

1
GbEBab_EgabBEkEab

where k is a physical coupling constant and £, are the components of the so-called
energy-momentum tensor. We therefore see that

1 (- , A
Eab - E (Vb K;c - Vc Kacb + ch K;b _Kjb K;C)

1

cd & e ce d f ced cd f e
~ 25 e (2 g V. I+ 8% Ty Ty + Koo K =2 g% Ty F[cf])

In addition, the following two conditions are satisfied:

Ef) =0

V,E® =0
We have now seen that, in this approach, the energy-momentum tensor (matter field) is
fully geometrized. This way, gravity arises from torsional (spin) interaction (possibly on

the microscopic scales) and is therefore an emergent phenomenon rather than a
fundamental one. This seems rather speculative. However, it has profound consequences.

16



6. Spin frames

A spin frame is described by the anti-symmetric tensor product

o=l 0'®0" - 0"®0 |)=6'N0" ==1|0',6"
2

1
2
In general, then, for arbitrary vector field fields 4 and B, we can form the commutator
[4,B]= A®B - B® 4
Introducing another vector field C, we have the so-called Jacobi identity
[4,[B,C] + [B.[C. 4] + [C.[4.B]| =0

With respect to the local coordinate basis elements E, = 0, of the tangent space T, (M),

we see that, astonishingly enough, the anti-symmetric product [A,B] is what defines the
Lie (exterior) derivative of B with respectto 4 :

0

k

L,B=[4,B]=(4'0,B" - B' 6,4") -

(Note that L, A =[4,4]=0.) The terms in the round brackets are just the components
of our Lie derivative which can be used to define a diffeomorphism invariant (i.e., by
taking A'=¢&° where & represents the displacement field in a neighborhood of
coordinate points).

Furthermore, for a vector field U and a tensor field 7, both arbitrary, we have (in
component notation) the following:

LU Ti/'...s — am Tij....s Um + sz& ak Um + Tij...sh a[Um + .+ T;g,;, ar Um

kl...r kl..r ml...r km...r

-1y 0,U =T 9,U) —.. =Ty 0,U’

It is not immediately apparent whether these transform as components of a tensor field or
not. However, with the help of the torsion tensor and the relation

o,U =V, U ~T\, U"=V, U~ -2T},)U"

we can write

17



Ly T3 =V, T U + T ViU + T VU + e+ T, V, U

ml...r km...r
- T:’crln/r6 Vm Ui - T;cllm: Vrn Uj e T Tkl;:n Vm US
+ 2T, T U7 + 2T, T U + e+ 200, Ty U7
-2 F[Tp] T,:L]]Sr U’ -2 F[Z] Tkzsr ur —..-2 F[Z;] Tkl]]ns1 U’

Hence, noting that the components of the torsion tensor, namely, I}, indeed transform

as components of a tensor field, it is seen that the L, T]* do transform as components of

a tensor field. Apparently, the beautiful property of the Lie derivative (applied to an
arbitrary tensor field) is that it is connection-independent even in a curved manifold.

If we now apply the commutator to the frame basis of the base manifold C” itself, we
see that (for simplicity, we again refer to the coordinate basis of the tangent space
T, (M))

0

[wme:@aXiQGWXk—@Aﬁ@ﬁaXﬁan

Again, writing the tetrads simplyas e, =0, X', ¢/ =0, x*, we have

~

o

[a)a’a)b]z (801 ezf -0, ef)m

Le.,
[wa ’a)b] =-2I7, o.

Therefore, in the present formalism, the components of the torsion tensor are by
themselves proportional to the so-called structure constants ‘¥, of our rotation group:

Y, =-2 r[fzb] =—¢ (aa e, =0, e;)
As before, here the tetrad represents a spin potential.
Also note that
Wiy Wi + Wi Wi, + W WG, =0
We therefore observe that, as a consequence of the present formalism of differential

geometry, spin fields (objects of anholonomicity) in the manifold C” are generated
directly by the torsion tensor.
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7. A semi-symmetric connection based on a semi-simple transitive rotation group

Let us now work in four dimensions (since this number of dimensions is most relevant to
physics). For a semi-simple transitive rotation group, we can show that

[a)a ’a)b] == 7/ Eabcd ¢C gd

where €, = 4/det (g) € .q are the components of the completely anti-symmetric four-
dimensional Levi-Civita permutation tensor and ¢ is a vector field normal to a three-
dimensional space (hypersurface) Z(l) defined as the time section ¢ = const. of C* with

local coordinates z* in C”. It satisfies ¢, p° =y = =1 and s given by

1
?, :g V Cabed e ﬂf; Ay ﬁ“(é
where
A=0,x", A =0,z
Ky di=6-r o, 0
A48 =57
More specifically,

_ a b c
€.i5c Pu = €wea a As Ac
from which we find
_ A 2B 2C
€aved =€asc Ly Ay Ae Pa + N

where

e

Aabcd = 7/ (eebcd wa + Eaeca’ (Db + eabed (Dc)(0

Noting that A, , ¢* =0, we can define a completely anti-symmetric, three-index, four-
dimensional “permutation” tensor by

D = € ' =y € 48 /1;1 /15 ﬂcc

abc
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Obviously, the hypersurface Z(t) can be thought of as representing the position of a
material body at any time #. As such, it acts as a boundary of the so-called world tube of
the world lines covering an arbitrary four-dimensional region in C”.

Meanwhile, in the most general four-dimensional case, the torsion tensor can be
decomposed according to

c 1 c c 1 c s 7i c
F[ab] = 5 (5b r[‘id] -0, F[Zd])+ g € wa Edpqr g” g” r[ft] + g Qi
Qabc + cha + Qcab = O
Qaab = Qaba = O

In our special case, the torsion tensor becomes completely anti-symmetric (in its three
indices) as

C

C 1 e
F[ah] == E V& Cabe ¢d
from which we can write
1 anc
P =-3¢€ S

e

where, as usual, I, = g, I},- Therefore, at this point, the full connection is given by
(with the Christoffel symbols written explicitly)

cd

c 1 l c
Lo =5g (abgda -0, 8w +aagbd)_57/€abd §0d

We shall call this special connection “semi-symmetric”. This gives the following simple
conditions:

c c 1 Ci
F(ab) =A, = E g ‘ (ab 84— 0,84 +0, gbd)
K, = 1—1[2;;]
Ty =0

I, =T, =0, (indet(g))

Furthermore, we can extract a projective metric tensor @ from the torsion (via the
structure constants) as follows:
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@y = Q=7 Pu P =2 Ty T
In three dimensions, the above relation gives the so-called Cartan metric.

Finally, we are especially interested in how the torsion tensor affects a coordinate frame
spanned by the elements of the basis one-form @, and its dual 6° in a geometry
endowed with distant parallelism. Taking the four-dimensional curl of the coframe basis
6", we see that

v.o¢]=2d0° =271

1

1/detig )

the tetrad (with respect to the basis of E”), namely, V, e” =0, we have

where V=0"V, =s" 0. and € = £ . From the metricity condition of

mo c nm
ab ea _rab ec

n o m _ __np b mo o m c nb
0'e, =n" e; 0,e, =e, I', e

a c a

It is also worthwhile to note that from an equivalent metricity condition, namely,
V, ek =0, one finds

0y ey == Tp b e
Thus we find
V.60 ]= 7 & T 94 o,
In other words,
T=d0" =- % y [ 94 @,
For the frame basis, we have

[V’a)a] == 7/ edee Fa[bc] wd 2

At this point it becomes clear that the presence of torsion in C” rotates the frame and
coframe bases themselves. The basics presented here constitute the reality of the so-
called spinning frames.
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Suggested general references

In writing this article, I have had to rely on my own intuition (mental construct),
understanding, and memory alone without any particular attachment to just one or two of
the well-known works. As for references or further reading, there’s a number of widely
appreciated books and articles on differential geometry. I myself have come across some
of them. Their in-depth presentation of the subject provides excellent educational
material. Also, I feel that it is important to get a sense of history and so reading the
writings of the founding fathers of (modern) differential geometry (especially Cartan’s
writings) is essential. One may compare the present work to the following general
references (most of them, especially the later ones, are more advanced):

C.F. Gauss, Collected Works, Princeton (translation), 1902.
T. Levi-Civita, The Absolute Differential Calculus, Blackie, Glasgow and London, 1927.

O. Veblen, Invariants of Quadratic Differential Forms, Cambridge Univ. Press, London
and New York, 1927.

E. Cartan, Les systémes différentials extérieurs et leurs applications géométriques,
Actualités scientifiques 994, Paris, 1945.

B. Riemann, Collected Works, Dover, New York, 1953.

H. Rund, The Differential Geometry of Finsler Spaces, Springer, Berlin-Copenhagen-
Heidelberg, 1959.

H. Cartan, Formes différentielles, Hermann, Paris, 1967.

W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature and Cohomology, Vol.

I, Academic Press, New York, 1972.
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