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A Comprehensive Evaluation of the Differential Geometry of 

Cartan Connections with Metric Structure 
 

By Daniel L. Indranu 

 

Introduction 
 

The splendid, profound, and highly intuitive interpretation of differential geometry by E. 
Cartan, which was first applied to Riemann spaces, has resulted in a highly systematic 

description of a vast range of geometric and topological properties of differentiable 
manifolds. Although it possesses a somewhat abstract analytical foundation, to my 

knowledge there is no instance where Riemann-Cartan geometry, cast in the language of 

differential forms (i.e., exterior calculus), gives a description that is in conflict with the 
classical tensor analysis as formalized, e.g., by T. Levi-Civita. Given all its successes, 

one might expect that any physical theory, which relies on the concept of a field, can be 
elegantly built on its rigorous foundation. Therefore, as long as the reality of metric 

structure (i.e., metric compatibility) is assumed, it appears that a substantial modified 

geometry is not needed to supersede Riemann-Cartan geometry.  
 

A common overriding theme in both mathematics and theoretical physics is that of 

unification. And as long as physics can be thought of as geometry, the geometric objects 

within Riemann-Cartan geometry (such as curvature for gravity and torsion for intrinsic 

spin) certainly help us visualize and conceptualize the essence of unity in physics. 
Because of its intrinsic unity and its breadth of numerous successful applications, it might 

be possible for nearly all the laws governing physical phenomena to be combined and 
written down in compact form via the structural equations. By the intrinsic unity of 

Riemann-Cartan geometry, I simply refer to its tight interlock between algebra, analysis, 

group representation theory, and geometry. At least in mathematics alone, this is just as 
close as one can get to a “final” unified description of things. I believe that the unifying 

power of this beautiful piece of mathematics extends further still.  
 

I’m afraid the title I’ve given to this work has a somewhat narrow meaning, unlike the 

way it sounds. In writing this article, my primary goal has been to present Riemann-

Cartan geometry in a somewhat simpler, more concise, and therefore more efficient form 

than others dealing with the same subject have done before. I have therefore had to drop 
whatever mathematical elements or representations that might seem somewhat highly 

counterintuitive at first. After all, not everyone, unless perhaps he or she is a 

mathematician, is familiar with abstract concepts from algebra, analysis, and topology, 
just to name a few. Nor is he or she expected to understand these things. But one thing 

remains essential, namely, one’s ability to catch at least a glimpse of the beauty of the 
presented subject via deep, often simple, real understanding of its basics. As a non-

mathematician (or simply a “dabbler” in pure mathematics), I do think that pure 

mathematics as a whole has grown extraordinarily “strange”, if not complex (the weight 
of any complexity is really relative of course), with a myriad of seemingly separate 

branches, each of which might only be understood at a certain level of depth by the pure 
mathematicians specializing in that particular branch themselves. As such, a comparable 
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complexity may also have occurred in the case of theoretical physics itself as it 

necessarily feeds on the latest formalism of the relevant mathematics each time. 
Whatever may be the case, the real catch is in the essential understanding of the basics. I 

believe simplicity alone will reveal it without necessarily having to diminish one’s 
perspectives at the same time. After all, this little work is intended for beginners. 

 

 

1.  A brief elementary introduction to the Cartan(-Hausdorff) manifold ∞C  

 

Let i

i

aia

i

a EXE
x

X
∂=

∂

∂
=ω  (summation convention employed throughout this article) 

be the covariant (frame) basis spanning the −n dimensional base manifold ∞C  with local 

coordinates ( )kaa Xxx = . The contravariant (coframe) basis bθ  is then given via the 

orthogonal projection b

aa

b δωθ =, , where b

aδ  are the components of the Kronecker 

delta (whose value is unity if the indices coincide or null otherwise).  Now the set of 

linearly independent local directional derivatives iii
X

E ∂=
∂

∂
=  gives the coordinate 

basis of the locally flat tangent space )(MTx  at a point 
∞∈Cx . Here M  denotes the 

topological space of the so-called −n tuples ( ) ( )nxxhxh ...,,1=  such that relative to a 

given chart ( )( )xhU ,  on a neighborhood U  of a local coordinate point x , our 

−∞C differentiable manifold itself is a topological space. The dual basis to iE  spanning 

the locally flat cotangent space )(* MTx  will then be given by the differential elements 

kdX  via the relation k

ii

kdX δ=∂, . In fact and in general, the one-forms kdX  indeed 

act as a linear map IRMTx →)(  when applied to an arbitrary vector field )(MTF x∈  of 

the explicit form 
a

a

i

i

x
f

X
FF

∂

∂
=

∂

∂
= . Then it is easy to see that 

ii XFF =  and 

aa xFf = , from which we obtain the usual transformation laws for the contravariant 

components of a vector field, i.e., ai

a

i fXF ∂=  and ia

i

i Fxf ∂= , relating the 

localized components of F  to the general ones and vice versa. In addition, we also see 

that kkk FXFFdX ==, . 

 

The components of the metric tensor ba

abgg θθ ⊗=  of the base manifold ∞C  are 

readily given by  
 

baabg ωω ,=  

 

The components of the metric tensor ( ) ki

ikN dXdXxg ⊗= η  describing the locally flat 

tangent space )(MTx  of  rigid frames at a point ( )aNN xxx =  are given by 
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( )1,...,1,1, ±±±== diagEE kiikη  

 
In four dimensions, the above may be taken to be the components of the Minkowski 

metric tensor, i.e., ( )1,1,1,1, −−−== diagEE kiikη .  

 
Then we have the expression 

 
k

b

i

aikab XXg ∂∂= η  

 
satisfying 

 
b

a

bc

ac gg δ=  

 

where baabg θθ ,= . 

 

The manifold ∞C  is a metric space whose line-element in this formalism of a 

differentiable manifold is directly given by the metric tensor itself, i.e.,  
 

( ) kib

k

a

iab dXdXxxggds ⊗∂∂==2
 

 

where the coframe basis is given by the one-forms ia

i

a dXx∂=θ .  

 

 

2.  Exterior calculus in n dimensions 
 

As we know, an arbitrary tensor field ∞∈CT  of rank ),( qp  is the object  

 
p

q

q

p

jjj

iii

iii

jjjTT θθθωωω ⊗⊗⊗⊗⊗⊗⊗= ...... 21

21

21

21

...

...  

 

Given the existence of a local coordinate transformation via ( )αxxx ii =  in ∞C , the 

components of ∞∈CT  transform according to 

 
ηνµ

λβα
λαβ

ηµν xxxxxxTT rlk

sjisij

rkl ∂∂∂∂∂∂= .........

...

...

...  

 

Taking a local coordinate basis 
ii dx=θ , a Pfaffian −p form ω  is the completely anti-

symmetric tensor field  

 
p

p

iii

iii dxdxdx /\.../\/\ 21

21 ...ωω =  
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where 

 

pp

p

p jjjiii

jjj

iii dxdxdx
p

dxdxdx ⊗⊗⊗≡ ...
!

1
/\.../\/\ 2121

21

21
...

...
δ  

 

In the above, the p

p

iii

jjj

...

...
21

21
δ  are the components of the generalized Kronecker delta. They 

are given by 

 





















=∈∈=

p

ppp

p

p

p

p

p

p

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

i

j

ii

jjj

iii

jjj

δδδ

δδδ

δδδ

δ

...

............

...

...

det

21

2

2

2

1

2

1

2

1

1

1

1

21

21

21

...

...

...

...  

 

where ( )
pp jjjjjj g ...... 2121

det ε=∈  and 
( )

pp iiiiii

g

...... 2121

det

1
ε=∈  are the covariant and 

contravariant components of the completely anti-symmetric Levi-Civita permutation 

tensor, respectively, with the ordinary permutation symbols being given as usual by 

qjjj ...21
ε  and piii ...21ε .  

 

We can now write 

 

p

p

p

p

jjj

iii

iii

jjj dxdxdx
p

/\.../\/\
!

1
21

21

21

21 ...

...

... ωδω =  

 

such that for a null −p form 0=ω  its components satisfy the relation 

0...

...

... 21

21

21
=

p

p

p iii

iii

jjj ωδ . 

 

By meticulously moving the 
idx  from one position to another, we see that  

 

pqp

qpp

ijjjiiip

jjjiiii

dxdxdxdxdxdxdx

dxdxdxdxdxdxdx

/\/\.../\/\/\/\.../\/\)1(

/\.../\/\/\/\/\.../\/\

21121

21121

−

−

−=
 

 

and 

 

pq

qp

iiijjjpq

jjjiii

dxdxdxdxdxdx

dxdxdxdxdxdx

/\.../\/\/\/\.../\/\)1(

/\.../\/\/\/\.../\/\

2121

2121

−=
 

 

Let ω  and π  be a −p form and a −q form, respectively. Then, in general, we have the 

following relations: 
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( )
( ) ( ) πωπωπω

πωπω

πωωππω

ddd

ddd

dxdxdxdxdxdx

p

jjjpii

jjjiii

pq q

qp

/\1/\/\

/\.../\/\/\/\.../\/\/\)1(/\ 2121

2121 ......

−+=

+=+

=−=

 

 

Note that the mapping ωω dd =:  is a ( )−+1p form. Explicitly, we have 

 

121

1

2121

21
/\/\.../\/\

)!1(

)1( ......

...

+

+∂

∂

+
−

= pp

p

pp

p

ijjj

i

iiiiii

jjj

p

dxdxdxdx
xp

d
ω

δω  

 

For instance, given a (continuous) function f , the one-form 
i

i dxfdf ∂=  satisfies 

0/\2 =∂∂=≡ ik

ik dxdxfddffd . Likewise, for the one-form 
i

i dxAA = , we have 
ik

ik dxdxAdA /\∂=  and therefore 0/\/\2 =∂∂= ikl

ikl dxdxdxAAd , i.e., 

0=∂∂ ikl

ikl

rst Aδ  or 0=∂∂+∂∂+∂∂ klilikikl AAA . Obviously, the last result holds 

for arbitrary −p forms 
sij

rkl

...

...Π , i.e.,  

 

0...

...

2 =Π sij

rkld  

 
Let us now consider a simple two-dimensional case. From the transformation law 

α
α xdxdx ii ∂= , we have, upon employing a positive definite Jacobian, i.e., 

( )
( ) 0

,

,
>

∂

∂
βα xx

xx
ji

, the following: 

 

( )
( )

βα
βα

βα
βα xdxd

xx

xx
xdxdxxdxdx

ji
jiji

/\
,

,

2

1
/\/\

∂

∂
=∂∂=  

 

It is easy to see that  

 

( )
( )

21

21

21
21

/\
,

,
/\ xdxd

xx

xx
dxdx

∂

∂
=  

 

which gives the correct transformation law of a surface element.  

 

We can now elaborate on the so-called Stokes theorem. Given an arbitrary function f , 

the integration in a domain D  in the manifold 
∞

C  is such that 
 

( ) ( )( ) ( )
( )

21

21

21
21

,

,
/\ xdxd

xx

xx
xxfdxdxxf

D D

ii∫∫ ∫∫ ∂

∂
= α
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Generalizing to n dimensions, for any ( )kii xψψ =  we have 

 

( )
( )

n

n

n
n

dxdxdx
xxx

ddd /\.../\/\
...,,,

...,,,
/\.../\/\

21

21

21
21

∂

∂
=

ψψψ
ψψψ  

 
Therefore (in a particular domain) 

 

( ) ( )
( )

n

n

n
in

dxdxdx
xxx

xfdddf /\.../\/\
,...,,

,...,,
.../\.../\/\...

21

21

21
21∫ ∫∫∫∫∫ ∂

∂
=

ψψψ
ψψψ  

 

Obviously, the value of this integral is independent of the choice of the coordinate 

system. Under the coordinate transformation given by ( )αxxx ii = , the Jacobian can be 

expressed as 
 

( )
( )

( )
( )

( )
( )n

n

n

n

n

n

xxx

xxx

xxxxxx ,...,,

,,...,

,...,,

,...,,

,...,,

...,,,
21

21

21

21

21

21

∂

∂

∂

∂
=

∂

∂ ψψψψψψ
 

 

If we consider a ( )−−mn dimensional subspace (hypersurface) ∞∈CS  whose local 

coordinates Au  parametrize the coordinates ix , we have 

 

( )( ) ( )( ) ( )( ) ( )( )( )
( )

mn

mn

AinAiAi
Ai

n

dududu
uuu

uxuxux
uxf

dddf

−
−∫ ∫∫

∫ ∫ ∫

∂
∂

= ...
,...,,

,...,,
...

/\.../\/\...

21

21

21

21

ψψψ

ψψψ

 

 

 

3.  Geometric properties of a curved manifold 
 

Let us recall a few concepts from conventional tensor analysis for a while. Introducing a 

generally asymmetric connection Γ  via the covariant derivative  

 

c

c

abab ωω Γ=∂  

 
i.e., 

 

( ) [ ]
c

ab

c

abab

cc

ab Γ+Γ=∂=Γ ωθ ,  

 

where the round index brackets indicate symmetrization and the square ones indicate 
anti-symmetrization, we have, by means of the local coordinate transformation given by 

( )αxxx aa =  in  ∞C  
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λβα
βλ

αα
bac

c

abab eeee Γ−Γ=∂  

 

where the tetrads of the moving frames are given by αα xe aa ∂=  and aa xe αα ∂= . They 

satisfy a

bb

a ee δα
α =  and α

ββ
α δ=a

a ee . In addition, it can also be verified that 

 

ca

cbb

aa

b

cba

bc

aa

eeee

eeee

α
βλ

αβλα

βαλ
λ

αβαβ

Γ−Γ=∂

Γ−Γ=∂
 

 

From conventional tensor analysis, we know that Γ  is a non-tensorial object, since its 
components transform as 

 
λβα

βλα
α

α ba

c

ab

cc

ab eeeee Γ+∂=Γ  

 
However, it can be described as a kind of displacement field since it is what makes 

possible a comparison of vectors from point to point in ∞C . In fact the relation 

c

c

abab ωω Γ=∂  defines the so-called metricity condition, i.e., the change (during a 

displacement) in the basis can be measured by the basis itself. This immediately 
translates into  

 

0=∇ abc g  

 
where we have just applied the notion of a covariant derivative to an arbitrary tensor field 

T :  

 

sij

plm

p

rk

sij

rlp

p

mk

sij

rpm

p

lk

pij

rlm

s

pk

sip

rlm

j

pk

spj

rlm

i

pk

sij

rlmk

sij

rlmk

TTT

TTTTT

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

Γ−−Γ−Γ−

Γ++Γ+Γ+∂=∇
 

 

such that ( ) sij

rlmk

sij

rlmk TT ...

...

...

...
∇=∂ .   

 

The condition 0=∇ abc g  can be solved to give 

 

( ) [ ] [ ] [ ]( )e

dabe

e

dbae

cdc

abbdaabddab

cdc

ab ggggggg Γ+Γ−Γ+∂+∂−∂=Γ
2

1
 

 
from which it is customary to define 

 

( )bdaabddab

cdc

ab gggg ∂+∂−∂=∆
2

1
 

 
as the Christoffel symbols (symmetric in their two lower indices) and 
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[ ] [ ] [ ]( )e

dabe

e

dbae

cdc

ab

c

ab gggK Γ+Γ−Γ=  

 

as the components of the so-called contorsion tensor (anti-symmetric in the first two 
mixed indices).  

 
Note that the components of the torsion tensor are given by 

 

[ ] ( )α
β

βα
β

βαα
α bccbcbbc

aa

bc eeeee Γ−Γ+∂−∂=Γ
2

1
 

 

where we have set λα
βλ

α
β cc eΓ≡Γ . 

 

The components of the curvature tensor R  of ∞C  are then given via the relation 
 

( )

[ ]
sab

rcdw

w

pq

s

wpq

wab

rcd

b

wpq

saw

rcd

a

wpq

swb

rcd

w

rpq

sab

wcd

w

dpq

sab

rcw

w

cpq

sab

rwd

sab

rcdqppq

T

RTRTRT

RTRTRTT

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

2

...

...

∇Γ−

−−−−

+++=∇∇−∇∇

 

 

where  

 

( ) d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abc

d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abc

KKKKKKB

R

−+∇−∇+∆=

ΓΓ−ΓΓ+Γ∂−Γ∂=

ˆˆ
 

 

where ∇̂  denotes covariant differentiation with respect to the Christoffel symbols alone, 
and where  
 

( ) d

ec

e

ab

d

eb

e

ac

d

abc

d

acb

d

abcB ∆∆−∆∆+∆∂−∆∂=∆  

 

are the components of the Riemann-Christoffel curvature tensor of ∞C .  

 

From the components of the curvature tensor, namely, 
d

abcR , we have (using the metric 

tensor to raise and lower indices) 

 

( ) [ ] [ ] [ ]

( ) [ ] [ ] [ ] [ ]
c

ad

d

cb

abacb

abc

d

cd

b

ab

acc

bca

aba

a

c

ad

d

cb

d

cd

c

ab

c

acb

d

cb

c

ad

c

abcab

c

acbab

gKKggBRR

KKKKBRR

ΓΓ+−ΓΓ−Γ∇−∆=≡

ΓΓ+Γ+Γ∇−−∇+∆=≡

2ˆ2

2ˆˆ
 

 

where ( ) ( )∆≡∆ c

acbab BB  are the components of the symmetric Ricci tensor and 

( ) ( )∆≡∆ a

aBB  is the Ricci scalar. Note that 
d

bcadabc KgK ≡  and 
a

de

becdacb KggK ≡ . 
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Now since  

 

( )( )
( )( ) [ ]

b

aba

b

ab

a

b

ab

b

ba

b

ba

g

g

Γ+∂=Γ

∂=∆=∆=Γ

2detln

detln
 

 
we see that for a continuous metric determinant, the so-called homothetic curvature 
vanishes: 

 

0=Γ∂−Γ∂=≡ c

cab

c

cba

c

cabab RH  

 

Introducing the traceless Weyl tensor C , we have the following decomposition theorem: 

 

( )

( ) ( )
( ) Rgg

nn

RgRRgR
n

CR

ac

d

bab

d

c

d

cabab

d

c

d

bacac

d

b

d

abc

d

abc

δδ

δδ

−
−−

+

−−+
−

+=

21

1

2

1

 

 

which is valid for 2>n . For 2=n , we have 

 

( )ab

d

cac

d

bG

d

abc ggKR δδ −=  

 
where  

 

RKG
2

1
=  

 
is the Gaussian curvature of the surface. Note that (in this case) the Weyl tensor vanishes. 

 

A −n dimensional manifold (for which 1>n ) with constant sectional curvature R  and 

vanishing torsion is called an Einstein space. It is described by 
 

( )

Rg
n

R

Rgg
nn

R

abab

ab

d

cac

d

b

d

abc

1

)1(

1

=

−
−

= δδ
 

 

In the above, we note especially that 
 

( )
( )

( )∆=

∆=

∆=

BR

BR

BR

abab

d

abc

d

abc
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Furthermore, after some elaborate (if not tedious) algebra, we obtain, in general, the 
following generalized Bianchi identities: 

 

[ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ]( )

[ ] [ ]
cda

b

b

cd

d

c

c

da

ababab

a

a

bfd

f

ec

a

bfc

f

de

a

bfe

f

cd

a

becd

a

bdec

a

bcde

e

bc

a

ed

e

db

a

ec

e

cd

a

eb

a

dbc

a

cdb

a

bcd

a

dbc

a

cdb

a

bcd

RRgRgR

RRRRRR

RRR

Γ+Γ=







−∇

Γ+Γ+Γ=∇+∇+∇

ΓΓ+ΓΓ+ΓΓ+Γ∂+Γ∂+Γ∂−=++

2
2

1

2

2

 

 

for any metric-compatible manifold endowed with both curvature and torsion. 

 
In the last of the above set of equations, we have introduced the generalized Einstein 

tensor, i.e., 
 

RgRG ababab
2

1
−≡  

 

In particular, we also have the following specialized identities, i.e., the regular Bianchi 
identities: 

 

0
2

1ˆ

0ˆˆˆ

0

=







−∇

=∇+∇+∇

=++

BgB

BBB

BBB

abab

a

a

becd

a

bdec

a

bcde

a

dbc

a

cdb

a

bcd

 

 

In general, these hold in the case of a symmetric, metric-compatible connection. 

 
 

4.  The structural equations 
 

The results of the preceding section can be expressed in the language of exterior calculus 

in a somewhat more compact form.  
 

In general, we can construct arbitrary −p forms eab

fcd

...

...ω  through arbitrary ( )1−p  forms 

eab

fcd

...

...α , i.e., 

 

h

h

eab

fcdeab

fcd

eab

fcd dx
x

d /\

...

......

...

...

... ∂

∂
==

α
αω  

 

The covariant exterior derivative is then given by 
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heab

fcdh

eab

fcd dxD /\...

...

...

... ωω ∇=  

 

i.e., 
 

( ) (
)hfeab

hcd

h

d

eab

fch

h

c

eab

fhd

e

h

hab

fcd

b

h

eah

fcd

a

h

ehb

fcd

peab

fcd

eab

fcd dD

Γ−−Γ−Γ−

Γ++Γ+Γ−+=

/\.../\/\

/\.../\/\1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

ωωω

ωωωωω
 

 
where we have defined the connection one-forms by 

 
ca

bc

a

b θΓ≡Γ  

 

with respect to the coframe basis aθ .   

 

Now we write the torsion two-forms 
aτ  as 

 
ba

b

aaa dD θθθτ /\Γ+==  

 

This gives the first structural equation. With respect to another local coordinate system 

(with coordinates 
αx ) in 

∞C  spanned by the basis 
a

ae θε αα = , we see that 

 

[ ]
λβα

βλα εετ /\Γ−= aa e  

 

We shall again proceed to define the curvature tensor. For a triad of arbitrary vectors 

wvu ,, , we may define the following relations with respect to the frame basis aω : 

 

( )
[ ] ( )b

c

cb

c

ca

bvu

a

a

b

b

c

c

vu

uvvuww

wvuw

∇−∇∇≡∇

∇∇≡∇∇

,

ω
 

 

where u∇  and v∇  denote covariant differentiation in the direction of u  and of v , 

respectively. 

 

Then we have 
 

( ) a

dcba

bcduvvu vuwRw ω*=∇∇−∇∇  

 

Note that 
 

[ ]

[ ]
a

be

e

cd

a

bcd

a

be

e

cd

a

ed

e

bc

a

ec

e

bd

a

bcd

a

bdc

a

bcd

R

R

ΓΓ+=

ΓΓ+ΓΓ−ΓΓ+Γ∂−Γ∂=

2

2*
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are the components of the extended curvature tensor R* .  

 

Define the curvature two-forms by 
 

dca

bcd

a

b RR θθ /\
2

1 ** ≡  

 
The second structural equation is then 
 

c

b

a

c

a

b

a

b dR ΓΓ+Γ= /\*  

 
The third structural equation is given by 

 
a

b

c

b

a

c

c

b

a

c

a

b

a

b RDRRRdd ****2 /\/\ =Γ+Γ−=Γ  

 
which is equivalent to the generalized Bianchi identities given in the preceding section.  

 
In fact the second and third structural equations above can be directly verified using the 

properties of exterior differentiation given in Section 2. 

 

Now, as we have seen, the covariant exterior derivative of arbitrary one-forms aφ  is 

given by ba

b

aa dD φφφ /\Γ+= . Then 

 

( )
( ) ( )

( ) bc

b

a

c

a

b

cb

c

a

b

ba

b

dc

d

ca

c

ba

b

a

ba

b

aa

d

d

ddd

DDdDD

φ

φφ

φφφφ

φφφ

/\/\

/\/\/\

/\/\/\

/\

ΓΓ+Γ=

ΓΓ−Γ=

Γ+Γ+Γ+=

Γ+=

 

 

where we have used the fact that the aDφ  are two-forms. Therefore, from the second 

structural equation, we have 

 
ba

b

a RDD φφ /\*=  

 

Finally, taking 
aa θφ = , we give the fourth structural equation as 

 
ba

b

aa RDDD θτθ /\*==  

 
or, 

 
ba

b

ba

b

a Rd τθτ /\/\* Γ−=  
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Remarkably, this is equivalent to the first generalized Bianchi identity given in the 

preceding section.  
 

The elegant results in this section are especially due to E. Cartan. Thanks to his intuitive 
genius! 

 

 

5.  The geometry of distant parallelism 

 

Let us now consider a special situation in which our −n dimensional manifold ∞C  is 

embedded isometrically in a flat −n dimensional (pseudo-)Euclidean space 
nE  (with 

coordinates 
mv ) spanned by the constant basis me  whose dual is denoted by 

ns . This 

embedding allows us to globally cover the manifold 
∞C  in the sense that its geometric 

structure can be parametrized by the Euclidean basis me  satisfying 

 

( )1,...,1,1, ±±±== diagee nmnmη  

 

It is important to note that this situation is different from the one presented in Section 1, 

in which case we may refer the structural equations of ∞C  to the locally flat tangent 

space )(MTx . The results of the latter situation (i.e., the localized structural equations) 

should not always be regarded as globally valid since the tangent space )(MTx , though 

ubiquitous in the sense that it can be defined everywhere (at any point) in ∞C , cannot 

cover the whole structure of the curved manifold 
∞C  without changing orientation from 

point to point.  

 
One can construct geometries with special connections that will give rise to what we call 

geometries with parallelism. Among others, the geometry of distant parallelism is a 

famous case. Indeed, A. Einstein adopted this geometry in one of his attempts to 
geometrize physics, and especially to unify gravity and electromagnetism. In its 

application to physical situations, the resulting field equations of a unified field theory 
based on distant parallelism, for instance, are quite remarkable in that the so-called 

energy-momentum tensor appears to be geometrized via the torsion tensor. We will 

therefore dedicate this section to a brief presentation of the geometry of distant 
parallelism in the language of Riemann-Cartan geometry. 

 

In this geometry, it is possible to orient vectors such that their directions remain invariant 

after being displaced from a point to some distant point in the manifold. This situation is 

made possible by the vanishing of the curvature tensor, which is given by the 
integrability condition 

 

( ) 0=∂∂−∂∂= m

abccb

d

m

d

abc eeR  

 

where the connection is now given by 
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m

ab

c

m

c

ab ee ∂=Γ  

 

where 
m

a

m

ae ξ∂=  and 
a

m

a

m xe ∂= .  

 

However, while the curvature tensor vanishes, one still has the torsion tensor given by 
 

[ ] ( )m

cb

m

bc

a

m

a

bc eee ∂−∂=Γ
2

1
 

 

with the 
m

ae  acting as the components of a spin “potential”. Thus the torsion can now be 

considered as the primary geometric object in the manifold 
∞
pC  endowed with distant 

parallelism.  
 

Also, in general, the Riemann-Christoffel curvature tensor is non-vanishing as  

 
d

eb

e

ac

d

ec

e

ab

d

acb

d

abc

d

abc KKKKKKB −+∇−∇= ˆˆ  

 

Let us now consider some facts. Taking the covariant derivative of the tetrad 
m

ae  with 

respect to the Christoffel symbols alone, we have  
 

c

ab

m

c

d

ab

m

d

m

ab

m

ab Keeee =∆−∂=∇̂  

 
i.e., 

 
c

mb

m

a

m

ab

c

m

c

ab eeeeK ∇−=∇= ˆˆ  

 
In the above sense, the components of the contorsion tensor give the so-called Ricci 

rotation coefficients. Then from  
 

( )d

ec

e

ab

d

abc

m

d

m

abc KKKee +∇=∇∇ ˆˆˆ  

 

it is elementary to show that 
 

( ) d

abc

m

d

m

acbbc Bee =∇∇−∇∇ ˆˆˆˆ  

 
Likewise, we have 

 

c

mb

m

a

m

ab

c

m

c

ab

c

ab

m

c

d

ab

m

d

m

ab

m

ab

eeee

eKeee

∇−=∇=∆

∆=−∂=∇
~~

~
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where now ∇
~
 denotes covariant differentiation with respect to the Ricci rotation 

coefficients alone. Then from 

 

( )d

ec

e

ab

d

abc

m

d

m

abc ee ∆∆+∆∇=∇∇
~~~

 

 

we get 
 

( ) [ ]( )d

eb

e

ac

d

ec

e

ab

d

eb

e

ac

d

ec

e

ab

e

bc

d

ae

d

abc

m

d

m

acbbc KKKKBee ∆+∆−∆+∆−Γ∆−−=∇∇−∇∇ 2
~~~~

 

In this situation, one sees, with respect to the coframe basis ma

m

a se=θ , that 

 
aba

b

a Td ≡Γ−= θθ /\  

 

i.e.,  
 

[ ]
cba

bc

aT θθ /\Γ=  

 

Thus the torsion two-forms of this geometry are now given by aT  (instead of aτ  of the 

preceding section). We then realize that  
 

0=aDθ  

 
Next, we see that 

 

( )
ba

b

bc

b

a

c

a

b

ba

b

ba

b

aa

R

d

dddTd

θ

θ

θθθ

/\

/\/\

/\/\

*

2

−=

ΓΓ+Γ−=

Γ+Γ−==

 

 

But, as always, 02 =ad θ , and therefore we have  

 

0/\* =ba

bR θ  

 

Note that in this case, 0* ≠a
bR  as 

 

[ ]
a

be

e

cd

a

bcdR ΓΓ= 2*  

 
will not vanish in general. We therefore see immediately that 

 

0*** =++ a

dbc

a

cdb

a

bcd RRR  
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giving the integrability condition 

 

[ ] [ ] [ ] 0=ΓΓ+ΓΓ+ΓΓ a

de

e

bc

a

ce

e

db

a

be

e

cd  

 
Meanwhile, the condition 
 

0=adT  

gives the integrability condition 

 

[ ] [ ] [ ] 0=Γ∂+Γ∂+Γ∂ a

dbc

a

cdb

a

bcd  

 
Contracting, we find 
 

[ ] 0=Γ∂ c

abc  

 

It is a curious fact that the last two relations somehow remind us of the algebraic structure 
of the components of the electromagnetic field tensor in physics. 

 

Finally, from the contraction of the components d

abcB  of the Riemann-Christoffel 

curvature tensor (the Ricci tensor), one defines the regular Einstein tensor by 

 

abababab EkBgBG ≡−≡
2

1ˆ  

 

where k  is a physical coupling constant and abE  are the components of the so-called 

energy-momentum tensor. We therefore see that 

 

( )

[ ] [ ] [ ] [ ] [ ]( )e

cf

f

ed

cdced

cde

f

ef

d

cd

cee

dec

cd

ab

c

dc

d

ab

c

db

d

ac

c

abc

c

acbab

gKKggg
k

KKKKKK
k

E

ΓΓ−+ΓΓ+Γ∇−

−+∇−∇=

2ˆ2
2

1

ˆˆ1

 

 

In addition, the following two conditions are satisfied: 

 

[ ]

0ˆ

0

=∇

=
ab

a

ab

E

E
 

 

We have now seen that, in this approach, the energy-momentum tensor (matter field) is 
fully geometrized. This way, gravity arises from torsional (spin) interaction (possibly on 

the microscopic scales) and is therefore an emergent phenomenon rather than a 

fundamental one. This seems rather speculative. However, it has profound consequences. 
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6.  Spin frames 
 

A spin frame is described by the anti-symmetric tensor product 
 

( ) [ ]kikikkiik θθθθθθθθ ,
2

1
/\

2

1
≡=⊗−⊗=Ω  

 

In general, then, for arbitrary vector field fields A  and B , we can form the commutator 
 

[ ] ABBABA ⊗−⊗=,  

 

Introducing another vector field C , we have the so-called Jacobi identity 

 

[ ][ ] [ ][ ] [ ][ ] 0,,,,,, =++ BACACBCBA  

 

With respect to the local coordinate basis elements iiE ∂=  of the tangent space )(MTx , 

we see that, astonishingly enough, the anti-symmetric product [ ]BA,  is what defines the 

Lie (exterior) derivative of B  with respect to A : 

 

[ ] ( )
k

k

i

ik

i

i

A
X

ABBABABL
∂

∂
∂−∂=≡ ,  

 

(Note that [ ] 0, == AAALA .) The terms in the round brackets are just the components 

of our Lie derivative which can be used to define a diffeomorphism invariant (i.e., by 

taking 
iiA ξ=  where ξ  represents the displacement field in a neighborhood of 

coordinate points).  

 

Furthermore, for a vector field U  and a tensor field T , both arbitrary, we have (in 
component notation) the following: 

 

s

m

mij

rkl

j

m

sim

rkl

i

m

smj

rkl

m

r

sij

mkl

m

l

sij

rkm

m

k

sij

rml

msij

rklm

sij

rklU

UTUTUT

UTUTUTUTTL

∂−−∂−∂−

∂++∂+∂+∂=
...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...
 

 

It is not immediately apparent whether these transform as components of a tensor field or 
not. However, with the help of the torsion tensor and the relation 

 

[ ]( ) mi

km

i

km

i

k

mi

mk

i

k

i

k UUUUU Γ−Γ−∇=Γ−∇=∂ 2  

 
we can write 
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[ ] [ ] [ ]

[ ] [ ] [ ]
psij

mkl

m

rp

psij

rkm

m

lp

psij

rml

m

kp

pmij

rkl

s

mp

psim

rkl

j

mp

psmj

rkl

i

mp

s

m

mij

rkl

j

m

sim

rkl

i

m

smj

rkl

m

r

sij

mkl

m

l

sij

rkm

m

k

sij

rml

msij

rklm

sij

rklU

UTUTUT

UTUTUT

UTUTUT

UTUTUTUTTL

...

...

...

...

..

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

2...22

2...22

...

...

Γ−−Γ−Γ−

Γ++Γ+Γ+

∇−−∇−∇−

∇++∇+∇+∇=

 

 

Hence, noting that the components of the torsion tensor, namely, [ ]
i

klΓ , indeed transform 

as components of a tensor field, it is seen that the 
sij

rklU TL
...

...  do transform as components of 

a tensor field. Apparently, the beautiful property of the Lie derivative (applied to an 

arbitrary tensor field) is that it is connection-independent even in a curved manifold. 

 

If we now apply the commutator to the frame basis of the base manifold 
∞C  itself, we 

see that (for simplicity, we again refer to the coordinate basis of the tangent space 

)(MTx ) 

 

[ ] ( )
k

k

ai

i

b

k

bi

i

aba
X

XXXX
∂

∂
∂∂∂−∂∂∂=ωω ,  

 

Again, writing the tetrads simply as a

i

a

i

i

a

i

a xeXe ∂=∂= , , we have 

 

[ ] ( )
k

k

ab

k

baba
X

ee
∂

∂
∂−∂=ωω ,  

i.e.,  
 

[ ] [ ] c

c

abba ωωω Γ−= 2,  

 
Therefore, in the present formalism, the components of the torsion tensor are by 

themselves proportional to the so-called structure constants 
c

abΨ  of our rotation group: 

 

[ ] ( )iab

i

ba

c

i

c

ab

c

ab eee ∂−∂−=Γ−=Ψ 2  

 
As before, here the tetrad represents a spin potential. 

 
Also note that  

 

0=ΨΨ+ΨΨ+ΨΨ e

db

d

ca

e

da

d

bc

e

dc

d

ab  

 
We therefore observe that, as a consequence of the present formalism of differential 

geometry, spin fields (objects of anholonomicity) in the manifold ∞C  are generated 
directly by the torsion tensor.  
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7.  A semi-symmetric connection based on a semi-simple transitive rotation group 
 

Let us now work in four dimensions (since this number of dimensions is most relevant to 
physics). For a semi-simple transitive rotation group, we can show that 

 

[ ] dc

abcdba θϕγωω ∈−=,  

 

where ( ) abcdabcd g εdet=∈  are the components of the completely anti-symmetric four-

dimensional Levi-Civita permutation tensor and ϕ  is a vector field normal to a three-

dimensional space (hypersurface) ( )t∑  defined as the time section .constt =  of ∞C  with 

local coordinates Az  in ∞C . It satisfies 1±== γϕϕ a

a  and is given by 

 

d

C

c

B

b

A

ABC

abcda λλλγϕ ∈∈=
6

1
 

 

where 
 

B

A

B

a

a

A

b

a

b

a

A

a

b

A

A

a

A

a

a

A

a

A zx

δλλ

ϕϕγδλλ

λλ

=

−=

∂≡∂≡ ,

 

 

More specifically, 
 

c

C

b

B

a

AabcddABC λλλϕ ∈=∈  

 
from which we find 

 

abcdd

C

c

B

b

A

aABCabcd Λ+∈=∈ ϕλλλ  

 
where 

 

( ) e

cabedbaecdaebcdabcd ϕϕϕϕγ ∈+∈+∈=Λ  

 

Noting that 0=Λ d

abcd ϕ , we can define a completely anti-symmetric, three-index, four-

dimensional “permutation” tensor by 

 
C

c

B

b

A

aABC

d

abcdabc λλλγϕ ∈=∈≡Φ  
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Obviously, the hypersurface ( )t∑  can be thought of as representing the position of a 

material body at any time t . As such, it acts as a boundary of the so-called world tube of 

the world lines covering an arbitrary four-dimensional region in 
∞C . 

 

Meanwhile, in the most general four-dimensional case, the torsion tensor can be 

decomposed according to 

 

[ ] [ ] [ ]( ) [ ]

0

0

6

1

3

1

==

=++

+Γ∈∈+Γ−Γ=Γ

a

ba

a

ab

cabbcaabc

dab

cdp

st

rtqsd

pqr

c

abd

d

bd

c

a

d

ad

c

b

c

ab

QQ

QQQ

Qgggδδ

 

 
In our special case, the torsion tensor becomes completely anti-symmetric (in its three 

indices) as  

 

[ ]
d

abed

cec

ab g ϕγ ∈−=Γ
2

1
 

  

from which we can write 

 

[ ]cdb

abcda Γ∈−=
3

1
ϕ  

 

where, as usual, [ ] [ ]
e

cdbecdb g Γ=Γ . Therefore, at this point, the full connection is given by 

(with the Christoffel symbols written explicitly) 
 

( ) dc

abdbdaabddab

cdc

ab gggg ϕγ ∈−∂+∂−∂=Γ
2

1

2

1
 

 
We shall call this special connection “semi-symmetric”. This gives the following simple 

conditions: 

 

( ) ( )

[ ]

[ ]

( )( )g

K

gggg

a

b

ba

b

ab

b

ab

c

ab

c

ab

bdaabddab

cdc

ab

c

ab

detln

0

2

1

∂=Γ=Γ

=Γ

Γ=

∂+∂−∂=∆=Γ

 

 

Furthermore, we can extract a projective metric tensor ϖ  from the torsion (via the 
structure constants) as follows: 
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[ ] [ ]
d

cb

c

adbaabab g ΓΓ=−= 2ϕϕγϖ  

 

In three dimensions, the above relation gives the so-called Cartan metric. 

 
Finally, we are especially interested in how the torsion tensor affects a coordinate frame 

spanned by the elements of the basis one-form aω  and its dual bθ  in a geometry 

endowed with distant parallelism. Taking the four-dimensional curl of the coframe basis 
bθ , we see that 

 

[ ]
( ) qp

a

nm

qpnm

aaa

ee

Td

ϕγ

θθ

∂∈−=

==∇ 22,
 

 

where m

m

b

b s ∂=∇=∇ θ  and 
( )

abcdabcd

g
ε

det

1
=∈ . From the metricity condition of 

the tetrad (with respect to the basis of 
n

E ), namely, 0=∇ m

ab e , we have 

 

bnc

ab

m

c

m

ab

b

p

pnm

a

n

m

c

c

ab

m

ab

eeeee

ee

Γ=∂=∂

Γ=∂

η
 

 
It is also worthwhile to note that from an equivalent metricity condition, namely, 

0=∇ b

ma e , one finds 

 
c

n

b

m

a

bc

a

mn eee Γ−=∂  

 

Thus we find 

 

[ ] [ ] ed
a
bc

bcdea ωϕγθ Γ∈−=∇ ,  

 

In other words, 

 

[ ] ed

a

bc

bcdeaa
dT ωϕγθ Γ∈−==

2

1
 

 

For the frame basis, we have 
 

[ ] [ ] edbca

bcde

a ωϕγω Γ∈−=∇ ,  

 

At this point it becomes clear that the presence of torsion in 
∞C  rotates the frame and 

coframe bases themselves. The basics presented here constitute the reality of the so-
called spinning frames. 
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references (most of them, especially the later ones, are more advanced): 
 

C. F.  Gauss, Collected Works, Princeton (translation), 1902. 

T.  Levi-Civita, The Absolute Differential Calculus, Blackie, Glasgow and London, 1927. 

O.  Veblen, Invariants of Quadratic Differential Forms, Cambridge Univ. Press, London      

and New York, 1927.  
E. Cartan, Les systémes différentials extérieurs et leurs applications géométriques, 
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