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Abstract

In this work, we attempt to describe the classical physical fields of gravity,
electromagnetism, and the so-called intrinsic spin (chirality) in terms of a set of fully
geometrized constitutive equations. In our formalism, we treat the four-dimensional
space-time continuum as a deformable medium and the classical fields as intrinsic stress
and spin fields generated by infinitesimal displacements and rotations in the space-time
continuum itself. In itself, the unifying continuum approach employed herein may
suggest a possible unified field theory of the known classical physical fields.

1. Introduction

Many attempts have been made to incorporate the so-called standard (Hookean) linear
elasticity theory into general relativity in the hope to describe the dynamics of material
bodies in a fully covariant four-dimensional manner. As we know, many of these
attempts have concentrated solely on the treatment of material bodies as linearly elastic
continua and not quite generally on the treatment of space-time itself as a linearly elastic,
deformable continuum. In the former case, taking into account the gravitational field as
the only intrinsic field in the space-time continuum, it is therefore true that the linearity
attributed to the material bodies means that the general consideration is limited to weakly
gravitating objects only. This is because the curvature tensor is in general quadratic in the
the so-called connection which can be said to represent the displacement field in the
space-time manifold. However, in most cases, it is enough to consider an infinitesimal
displacement field only such that the linear theory works perfectly well. However, for the
sake of generality, we need not assume only the linear behavior of the properly-stressed
space-time continuum (and material bodies) such that the possible limiting consequences
of the linear theory can be readily overcome whenever it becomes necessary. Therefore,
in the present work, we shall both consider both the linear and non-linear formulations in
terms of the response of the space-time geometry to infinitesimal deformations and
rotations with intrinsic generators.

A few past attempts at the full description of the elastic behavior of the space-time
geometry in the presence of physical fields in the language of general relativity have been
quite significant. However, as standard general relativity describes only the field of
gravity in a purely geometric fashion, these past attempts have generally never gone
beyond the simple reformulation of the classical laws of elasticity in the presence of
gravity which means that these classical laws of elasticity have merely been referred to
the general four-dimensional curvilinear coordinates of Riemannian geometry, nothing



more. As such, any possible interaction between the physical fields (e.g., the interaction
between gravity and electromagnetism) has not been investigated in detail.

In the present work, we develop a fully geometrized continuum theory of space-time and
the classical physical fields in which the actions of these physical fields contribute
directly to the dynamics of the space-time geometry itself. In this model, we therefore
assume that a physical field is directly associated with each and every point in the region
of space-time occupied by the field (or, a material body in the case of gravity). This
allows us to describe the dynamics of the space-time geometry solely in terms of the
translational and rotational behavior of points within the occupied region. Consequently,
the geometric quantities (objects) of the space-time continuum (e.g., curvature) are
directly describable in terms of purely kinematic variables such as displacement, spin,
velocity, acceleration, and the particle symmetries themselves.

As we have said above, at present, for the sake of simplicity, we shall assume the
inherently elastic behavior of the space-time continuum. This, I believe, is adequate
especially in most cosmological cases. Such an assumption is nothing but intuitive,
especially when considering the fact that we do not fully know the reality of the
constituents of the fabric of the Universe yet. As such, the possible limitations of the
present theory, if any, can be neglected considerably until we fully understand how the
fabric of the space-time continuum is actually formed and how the properties of
individual elementary particles might contribute to this formation.

2. The Fundamental Geometric Properties of a Curved M anifold

Let us present the fundamental geometric objects of an 7 —dimensional curved manifold.
oX'
Let o, =—
ox
throughout this work) be the covariant (frame) basis spanning the »n—dimensional base
manifold C* with local coordinates x“ = x* (X , ) The contravariant (coframe) basis 0"

E,=0,X" E, (the Einstein summation convention is assumed

is then given via the orthogonal projection <9b ,a)a> =" where 8" are the components

of the Kronecker delta (whose value is unity if the indices coincide or null otherwise).

The set of linearly independent local directional derivatives E, = % =0, gives the

coordinate basis of the locally flat tangent space 7. (M) at a point xeC”. Here M
denotes the topological space of the so-called n—tuples h(x) = h(xl,...,x”) such that
relative to a given chart (U ,h(x)) on a neighborhood U of a local coordinate point x,
our C” —differentiable manifold itself is a topological space. The dual basis to E,
spanning the locally flat cotangent space 7. (M) will then be given by the differential
elements dX* via the relation <dX .0 l.> = &' . In fact and in general, the one-forms dX*

indeed act as a linear map 7, (M) — IR when applied to an arbitrary vector field
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F'=F X" and f* = F x“, from which we obtain the usual transformation laws for the

FeT, (M) of the explicit form F = F' . Then it is easy to see that

contravariant components of a vector field, i.e., F' =0, X' f* and f' =0,x° F',
relating the localized components of F to the general ones and vice versa. In addition,
we also see that <dX",F> =FX"=F*,

The components of the symmetric metric tensor g = g, 0° ®0” of the base manifold

C” are readily given by

8w = <a)a’a)b>
satisfying

€ 8 =5,

where g* = <9a,9b>. It is to be understood that the covariant and contravariant

components of the metric tensor will be used to raise and the (component) indices of
vectors and tensors.

The components of the metric tensor g(x N) =7, dX' ®dX" describing the locally flat

tangent space 7. (M) ofrigid frames at a point x, = x, (x“) are given by
n, =(E,,E,) = diag (+1,%1,..,%1)

In four dimensions, the above may be taken to be the components of the Minkowski
metric tensor, i.e., 7, = (E,,E, ) = diag (1,-1,-1,-1).

Then we have the expression
g,=1n,0,X 0,X"
The line-element of C* is then given by
ds*=g=g, (8l.x” 0, xb)dXi®ka
where 6 =0, x* dX'.

-a

Given the existence of a local coordinate transformation via x' = x' (x ) in C”, the

components of an arbitrary tensor field 7€ C” ofrank (p,q) transform according to



ab..g _ mapf..i a b g —Hu Fvad =n
Tl =T 0,x" 0px” .0, x%0,x" 0,x" ...0, X

Let 5;11']22[2 be the components of the generalized Kronecker delta. They are given by

5, - i
sh S . 8y
1

where €. . =.[det(g) e, . and €™ = —— £"" are the covariant and
JJzJdp N2 p /det(g)

contravariant components of the completely anti-symmetric Levi-Civita permutation

tensor, respectively, with the ordinary permutation symbols being given as usual by
&, and g™ Again, if @ is an arbitrary tensor, then the object represented by

o L

p

1112“'1;1

NJ2-Jp J1J2-Jp Hipgelp

is completely anti-symmetric.
Introducing a generally asymmetric connection I" via the covariant derivative
ab a)a = 1—‘acb a)c

1e.,

Ly = <9€ .0, a)a> = F(Zb) + F[fzb]
where the round index brackets indicate symmetrization and the square ones indicate
anti-symmetrization, we have, by means of the local coordinate transformation given by
x* =x“ ()?“) in C”

c ™ A
0,e; =T, el — ﬂi ef €,
where the tetrads of the moving frames are given by e/ =0,x” and e, =0, x". They

satisfy e’ e, =0, and e’ e; = J; . In addition, it can also be verified that
yeé, 6 b a €p Y



a _ A a a b ¢
Ope, =L, e; —Ty. e, e
a _ _a T4 p _1a e
0,e, =€ Faﬂ e, —I, e,

We know that I" is a non-tensorial object, since its components transform as
c _ _c a ¢ T« B A
I, =e 0,e +e | A

However, it can be described as a kind of displacement field since it is what makes
possible a comparison of vectors from point to point in C*. In fact the relation
o,w, =TI, o. defines the so-called metricity condition, i.e., the change (during a

displacement) in the basis can be measured by the basis itself. This immediately
translates into

Vc gab :0

where we have just applied the notion of a covariant derivative to an arbitrary tensor field
T:

ab..g __ ab...g a pb..g b ap...g g ab...p
v T5:%&=0,T +Fpm T + Fpm T8 4+ ...+ Fpm T

m “cd..h cd...h cd...h
17 ab..g 1P ab..g _T°P ab...g
ch Tpd...h de T'Lph 1_‘hm Tcd...p

such that (0, T).,% =V, T5% .

m

The condition V, g, = 0 can be solved to give

c 1 Ca c Ca e e
L, = E 8 ‘ (ab 8w — 048w +0, gbd)+ r[ab] - & ‘ ( ae r[alb] * & r[da])
from which itis customary to define
A, =

ab

ng (ah i — 0,8 0, ghd)

N | —

as the Christoffel symbols (symmetric in their two lower indices) and
Ky =T —g“ (gae i) + &ee r[f}a])

as the components of the so-called contorsion tensor (anti-symmetric in the first two
mixed indices).

Note that the components of the torsion tensor are given by



a a a B T a p T a
ea(éceb—abec+eb I, —e. b)

T = 4

N | —

where we have set l:ﬁ”; = 1_“;; e’ , such that for an arbitrary scalar field ® we have
The components of the curvature tensor R of C” are then given via the relation

ab..s __ rrab..s w ab...s w ab...s w
(V,V, =V, V, )T = T8 R+ T RY 4.+ T9S R

cd..r wd...r cpq cw..r dpg cd..w
wh...s a aw...s b ab..w s
- T'ed“.r R wpq Tcd.“r R wpg ottt 71caﬁ..r R wpq
w ab...s
-2 F[pq] Vw 71cd4..r

where

d
R abc

=0,T, —0. Ty + 15 T —T;, T
= B¢

abc

(A)"' @b K:c _ﬁc Kadb + K;c KZ; - K;b Kd

ec

where V denotes covariant differentiation with respect to the Christoffel symbols alone,
and where

Bd

abc

(A) = ab Aa;c - ac A‘ib + Aeac Adeb - Aeab AZ‘C
are the components of the Riemann-Christoffel curvature tensor of C”.

From the components of the curvature tensor, namely, R?,., we have (using the metric

tensor to raise and lower indices)

R, =R, =B, (A) + ﬁc K, — Ky chb -2 ﬁb r[fzc] +2 K, r[id]
R=RY=B(A)-4g" V T -2g“ I}y Ty — Ko K

where B, (A) = B¢

ach

B(A)= B (A) is the Ricci scalar. Note that K, = g, K. and K** =g g” K& .

(A) are the components of the symmetric Ricci tensor and

Now since



7 =K, = A, =0, (Indet(g))
I, = 8, (indet(g))+ 2 17,

we see that for a continuous metric determinant, the so-called homothetic curvature
vanishes:

Hab E]eccab Za FC - 8brcil =0

a~cb

Introducing the traceless Weyl tensor W, we have the following decomposition theorem:

1
R, =W +
abc abc Vl—z
1

(5151 R, + &, szly - 5;1 R, — 8w Ri)
+ -1 (n-2) (5d 8 — O gac)R

which is valid for n > 2. For n =2, we have

Rdabc =K (51;1 8ae 55 gab)

where
=—R

is the Gaussian curvature of the surface. Note that (in this case) the Weyl tensor vanishes.

Any n—dimensional manifold (for which n >1) with constant sectional curvature R and

vanishing torsion is called an Einstein space. It is described by the following simple
relations:

1
Rdabc = (5bd gac - 5:1 gab)R
n(n—1)
1
Rab = gab R
n

In the above, we note especially that

Rdabc = Bdabc (A)
Rab = Bab (A)
R = B(A)



Furthermore, after some lengthy algebra, we obtain, in general, the following generalized
Bianchi identities:

Ry + Ry + Ry =— 2 (@z Ly + 0y Tjeay + 0 Ty + Ty Doy + Le T + L F[Zc])

VRS, + V. RYy +V, Ro =2 (T R, + Ty RY,. + T RY,)

bec

a

a 1 a ai c a Ci
VH(RI’—Egij=2ng[da]R‘f,+F[L,d]Rdb

for any metric-compatible manifold endowed with both curvature and torsion.

In the last of the above set of equations, we have introduced the generalized Einstein
tensor, 1.€.,

1
Gab ERab _Egab R

In particular, we also have the following specialized identities, i.e., the regular Bianchi
identities:
B”de

V,B% +V_B% +V,B% =0

bec
. 1
va(Bab -3 g” Bj =0

a a
+Bcdb+Bdbc:0

In general, these hold in the case of a symmetric, metric-compatible connection. Non-
metric differential geometry is beyond the scope of our present consideration.

We now define the so-called Lie derivative which can be used to define a

diffeomorphism invariant in C”. for a vector field U and a tensor field 7', both
arbitrary, the invariant derivative represented (in component notation) by

L, Ty =0, T s U + Tgh 0.U" + T, 0,U" + ..+ Ty 0,U"

cm...h cd...m

~ T30, U =Ty 0,U" — .= Ty 0,U*

defines the Lie derivative of 7' with respect to U . With the help of the torsion tensor and
the relation

0,U" =V, U ~T4 U =V,U" - (I} - 21, ) U

we can write



Ly Ty =V, Taf U + T s VU + T VU + o+ Ta8 v, U”

cm... cd..m
- Tctllbhg V/‘rt Ua - T;":imhg Vm Ub e T Z’thm vm Ué’
+ 20, Talsf U + 20 T UP + o+ 2T T U
2T T UP + 2T Tayf UP — = 2T T8 UY

Hence, noting that the components of the torsion tensor, namely, F[i,c,], indeed transform

as components of a tensor field, it is seen that the L, TJ* do transform as components of

a tensor field. Apparently, the beautiful property of the Lie derivative (applied to an
arbitrary tensor field) is that it is connection-independent even in a curved manifold.

We will need a few identities derived in this section later on.

3. The Generalized Four-Dimensional Linear Constitutive Field Equations

We shall now present a four-dimensional linear continuum theory of the classical
physical fields capable of describing microspin phenomena in addition to the
gravitational and electromagnetic fields. By microspin phenomena, we mean those
phenomena generated by rotation of points in the four-dimensional space-time manifold

(continuum) S* with local coordinates x* in the manner described by the so-called
Cosserat continuum theory.

We start with the following constitutive equation in four dimensions:

1 1
T,av — C,uv Dpo‘ - R,uv P /1% R
o K( 2° J

where now the Greek indices run from 0 to 3. In the above equation, 7*" are the
contravariant components of the generally asymmetric energy-momentum tensor, C**

are the mixed components of the generalized four-dimensional elasticity tensor, D”° are

the contravariant components of the four-dimensional displacement gradient tensor, R*"
are the contravariant components of the generalized (asymmetric) four-dimensional Ricci
curvature tensor, Kk = — 87 is the Einstein coupling constant (in geometrized units), and

R = R/, is the generalized Ricci four-dimensional curvature scalar.

Furthermore, we can decompose our four-dimensional elasticity tensor into its holonomic
and anholonomic parts as follows:

Hv _ uv uv
C pU—A pU+B P

where



wo _ guv) _ w
A/pa =AY (po) — APU/

v pluv] _ 7y
Bﬂpcr = BY [po] _chfl

such that
c*, =Cr

Therefore, we can express the fully covariant components of the generalized four-
dimensional elasticity tensor in terms of the covariant components of the symmetric

metric tensor g,, (satisfying, as before, g, " =9J) ) as

Corpo = X &€ oo T B &1y &o 7 Luo &
=a gyv gpo- + ﬂ’ (g/lp gVO' + g,uo‘ gvp)+ a)(g/lp gVO' - gya gvp)

where «,f3,7,4,and @ are constitutive invariants that are not necessarily constant. It is
therefore seen that

Appe =X &y &po + 4 (gyp S t &uo & )
B,uvpa =0 (g,up gvo’ - g,uo- gvp)

An infinitesimal displacement (diffeomorphism) in the space-time manifold S* from an
initial point P to a neighboring point Q is given as usual by

x* (Q) =x"(P)+&"

where &* are the components of the four-dimensional infinitesimal displacement field
vector. The generally asymmetric four-dimensional displacement gradient tensor is then
given by

D,uv = Vv é:,u

The decomposition D, =D+ D;,,) and the supplementary infinitesimal point-

(1]

displacement (“dilation”) tensor by

rotation condition T # =0 allow us to define the symmetric four-dimensional

1 1
q)/w = D(/W) = 5 (vﬂ s tV, gu): 5 Lé Euv

from which the “dilation” scalar is given by

10



1
=0 =D =g Lg, =V, ¢

as well as the anti-symmetric four-dimensional intrinsic spin (vorticity) tensor by

1
@, =Dy, = > (VV &, -V, fv)

Let us now decompose the four-dimensional infinitesimal displacement field vector as
follows:

EH=0"F +y*

Here the continuous scalar function F represents the integrable part of the four-
dimensional macroscopic displacement field vector while the remaining parts are given

by w* via
y* =oc" +¢" +2ep”

where o are the components of the non-integrable four-dimensional macroscopic
displacement field vector, ¢* are the components of the four-dimensional microscopic
(micropolar) intrinsic spin vector, e is a constant proportional to the electric charge, and
" are the components of the electromagnetic four-potential vector. We assume that in

general o“,¢”,and ¢* are linearly independent of each other.

The intrinsic four-dimensional macroscopic spin (“angular momentum”) tensor is then
given by

9 =%(VV0# -v,0,)

uv

Likewise, the intrinsic four-dimensional microscopic (micropolar) spin tensor is given by

1
Suv :E(Vv¢u _Vﬂ¢l’)

Note that this tensor vanishes when the points are not allowed to rotate such as in
conventional (standard) cases.

Meanwhile, the electromagnetic field tensor is given by

F,ul/ :Vv¢y_vy¢)

14

11



In this case, we especially note that, by means of the condition If;,; &* =0, the above
expression reduces to the usual Maxwellian relation

F/w :avgpy —6#(0‘,
We can now write the intrinsic spin tensor as
o, = va + SW + er
Hence the full electromagnetic content of the theory becomes visible. We also see that
our space-time continuum can be considered as a dynamically polarizable medium
possessing chirality. As such, the gravitational and electromagnetic fields, i.e., the

familiar classical fields, are intrinsic geometric objects in the theory.

Furthermore, from the contorsion tensor, let us define a geometric spin vector via

A, =K =21

[uo]

Now, in a somewhat restrictive case, in connection with the spin fields represented by
o’,¢",and @ , the selection

Aﬂ =q¢o, +cz¢# +2ec, P, =€y,

1e.,

o, tc,¢,+2ec;p,

o, + ¢# + ZE(p#

will directly attribute the contorsion tensor to the intrinsic spin fields of the theory.
However, we would in general expect the intrinsic spin fields to remain in the case of a

semi-symmetric connection, for which 4, = 0, and so we cannot carry this proposition
any further.

At this point, we see that the holonomic part of the generalized four-dimensional

elasticity tensor given by 4, . is responsible for (centrally symmetric) gravitational

phenomena while the anholonomic part given by B, ., owes its existence to the

(con)torsion tensor which is responsible for the existence of the intrinsic spin fields in our
consideration.

Furthermore, we see that the components of the energy-momentum tensor can now be
expressed as

12



T :agWCD+,6'DW+}/DW

uv

In other words,

Tuy= g, @+ (B+7)0,,
Ti,uv] = (ﬂ - 7/) a),uv

Alternatively,

1 . 1
Tiyv)zzagyv gﬁ ngaﬂ +E(ﬂ+7/)l’§gﬂv

T.=0B-7)Q, +S, +eF,)

We may note that, in a sense analogous to that of the ordinary mechanics of continuous
media, the generally asymmetric character of the energy-momentum tensor means that a
material object in motion is generally subject to distributed body couples.

We also have
-1
T=T!=@a+pB+y)®=-x"R

Let us briefly relate our description to the standard material description given by general
relativity. For this purpose, let us assume that the intrinsic spin fields other than the
electromagnetic field are negligible. If we denote the material density and the pressure by
p and p, respectively, then it can be directly verified that

__pP=h4p
da+ [ +y

is a solution to the ordinary expression

1 o 1 af
T(AIV):puﬂuv_pgﬂv_E(F/wFv _ZgﬂvFaﬂF J

where u, are the covariant components of the unit velocity vector. This is true whether

the electromagnetic field is present or not since the (symmetric) energy-momentum
tensor of the electromagnetic field given by

1 o l af
Jyvz_E(Fyo'E/ _ZgvaaﬂF j

13



is traceless.
At this point, however, we may note that the covariant divergence
uvo o uv uv vu uv vu
V,T" =g"V, (a®)+ BV, D" +yV,D* + D"V, B+D*V y
need not vanish in general since

v 1 v 1 LV 1 v i o
v,T* =;VH(R” ¢ Rj:;@g” TG RS + Ty R77)

In an isotropic, homogeneous Universe, for which the constitutive invariants
a,B,7,4,and @ are constant, the above expression reduces to

V" =ag"V,0+pV, D" +yV, D"

If we require the above divergence to vanish, however, we see that the motion described
by this condition is still more general than the pure geodesic motion for point-particles.

Still in the case of an isotropic, homogeneous Universe, possibly on large cosmological
scales, then our expression for the energy-momentum tensor relates the generalized Ricci
curvature scalar directly to the “dilation™ scalar. In general, we have

1 v
R=—K(4a+ﬂ+7/)(1)=—KA(I)=—5KAg” L.g,

Now, for the generalized Ricci curvature tensor, we obtain the following asymmetric
constitutive field equation:

where

In other words,

R(,uv) =K (0 8 v + w + 7/) q),uv)
R[#V] = K('B - 7) @,y

14



Inserting the value of x, we can alternatively write

1
R, =—-8x (‘9 - +§ (B+ V)ngﬂvj

R, =-87(8-7)Q, +5, +eF,)

Hence, the correspondence between the generalized Ricci curvature tensor and the
physical fields in our theory becomes complete. The present theory shows that in a
curved space-time with a particular spherical symmetry and in a flat Minkowski space-
time (both space-times are solutions to the equation ®,, =0, ie., L. g, =0) itis in
general still possible for the spin fields to exist. One possible geometry that complies
with such a space-time symmetry is the geometry of distant parallelism with vanishing
space-time curvature (but non-vanishing Riemann-Christoffel curvature) and non-
vanishing torsion.

Now let us recall that in four dimensions, with the help of the Weyl tensor W, we have
the decomposition

1 1
R#VPU = Wuvpo + E (g/lp R, + 8, R/zp ~ 8uo Rvp 8y R/w)+ g (g/w 8p ~ 8up gvo)R

: o1 - 1 _ 1 = 1
We obtain, upon setting o = 5/(9, p = EKﬂ’ ¥ =§K')/, and 4 = gKA

R,uvpo‘ :Wyvpa +2a (g/lp 8vo _g;m' gvp)—i_ﬂ_ (g,up Dvo‘ + 8o D,up - g/ta Dvp _gvp Dyo‘)
+7 (g, D,y + 20 D,y — 80 D, — 2, Do)+ 7 (2, 80 — 200 2,,) @

Therefore, in terms of the anholonomic part of the generalized elasticity tensor, we have

R =W +2 B,avpa—}_ﬂ_(g,up Dva+gvo' D,up_g,uo' Dvp_gvp D,ua)

uvpo Hvpo

QIR

+7 (84 Do + &0 Dy — €0 Dy — 8,y Do)+ 2 (8, €10 = 810 810) @

In the special case of a pure gravitational field, the torsion of the space-time continuum
vanishes. In this situation our intrinsic spin fields vanish and consequently, we are left
simply with

R/tvm = W#VPU +%(ﬂ_ +77)(g#p D, + g, Dﬂp ~ 8uo DVP 8y D#U)

+/T(gﬂp 8o ~ 8us gvp)q)

15



In standard general relativity, this gives the explicit form of the Riemann-Christoffel

curvature tensor in terms of the Lie derivative L,g, =2 ®, . For a space-time
satisfying the symmetry L. g,, =0, we simply have R, , =W, ., i.e., the space-time
is devoid of material sources or “empty”. This condition is relatively weaker than the
case of a space-time with constant sectional curvature, R = const. for which the Weyl

tensor vanishes.

4. The Generalized Four-Dimensional Non-Linear Constitutive Field Equations

In reference to the preceding section, let us now present, in a somewhat concise manner,
a non-linear extension of the formulation presented in the preceding section. The
resulting non-linear constitutive field equations will therefore not be limited to weak
fields only. In general, it can be shown that the full curvature tensor contains terms
quadratic in the displacement gradient tensor and this gives us the reason to express the
energy-momentum tensor which is quadratic in the displacement gradient tensor.

We start with the non-linear constitutive field equation

T* =C" D" + K"

poin

Dpa D/lﬂ :l(R,uv _lgﬂv Rj
K 2

where

K/tvpo‘ﬂf] = al gyv gpa g/lf] +a2 gyv gpi go‘n +a3 g,uv gp;] go—ﬂ +a4 ng gy}, gvr]
+ as gpa gyi] 47 + ag glr] g,up 8o + a; gﬂn gyo' gvp + ag gyﬂ gvp gm]
+ a9 g,ul gvo‘ gpn + alO g/m gvp go‘l + all g,u:; gvo‘ gp/l + a12 gvﬂ, g,up go‘n

+ (1]3 gvl g,ua gpr] + al4 gvz; g,up goﬂ + aIS ng g,ua gpﬂ
where the fifteen constitutive invariants a,,a,,...,a,s are not necessarily constant.

We shall set

uvpodn Kpo‘,uvh] - Kb],uvpo‘ - K,uvﬂ,l;po‘

Letting

K/JVpO'/lll = P,uvpo‘h] + Q,uvpo%n

Brporn = Buv)po)an)

Quporn = Qullpolian]

16



we have

P

HVPoAn

=P

POUVAN

=P

Anuvpo

=P

uvinpo

Q,uvpo%i] = onwvﬂn = Qﬂmzvpo = Q;zvﬂr]pa

Introducing the eleven constitutive invariants b,,b,,...,b,,, we can write

11°

K poin =01 € oo Lan + 03 8 (801 Gon + &y €02 )+ 55 € (€11 8o — &y 8)
+b, &, (gm &t &y g,,)+ by g0 (gm 8w ~ &un g.:)
+bs 2, (gﬂp 8o t &uo gvp)+ b, g4, (g;,p g~ &uo gvp)
b, 2, (8 8oy + L0 &)+ 0o 21 (2 €0y — 810 8,)
+ by 8., (g,up Bon t 8uo gprz)+ b, g, (g#p Eon ~ Euo gpn)

The energy-momentum tensor is therefore given by

T, =le®+b ® +2b, & +2b 0, ©)g, +BD, +7D,
+2(b, +b) DD, +2(bs+b,)P @, +2b, DS D, +2b, D/ o,
+2b, D/ @, +2b, D, @,

In other words,

Ty =(a®+b @ +2b, @ ©” +2b 0, 0”)g, +(B+7),,
2 (b, +b,)® @, + (b +by) (DS ®, +DS D, )+ (b +b,) (DS 0, +D’ w,)

Ti,av] :(ﬂ _7/) a),uv +2 (b4 +b6)q) a),uv + (bS +b10)(D,up q)vp _Dvp q),up)
+(b9 +b9)(D#” @, -Dy7 a)ﬂp)
We also have

T=p @+, ® + ®,, O +p, 0, o
where we have set

uy=4a+p+y

U, =4b, +2(b4 +b6)
uy =8b, +2(b8 +b10)
Hy =8, +2(b9_b11)

for the sake of simplicity.

17



For the generalized Ricci curvature tensor, we obtain
R, = K((c1 D +c, P+ O D7 t+c, w, a)"")gﬂv
tes D, +¢g D, +¢c, PP, +¢ Po,

p P P p
+¢, DS D, +cy D’ @, +¢, D’ D, +¢, DS w,)

where
1

01:_5(2a+:5+7)
¢, == (b +b, +b)
¢, =—(2b, + b+ by, )
Cyp =~ (2b3 + b, bn)
e =p
C =7
¢ :2(b4 +b6)
Cy :2(b5 +b7)
¢y =2b,
Cro = 2by
¢ =2b,
¢, =2b,

1€,

Ry =5 (e, @+c, @+, @, 07 ¢, 0, 0 )g,

t(es+¢) D, +c, ®D, + % (cy +c,)(Df @, +Df D)
+ % (c,, + clz)(D/f’ o, +D/ a)#p)J

Ry =xllcs —c) o, +c, ®aw, + % (co +¢c,)(Df @, -Ds D)
+ % (o + ) (D @, -Df a)ﬂp)j

The generalized Ricci curvature scalar is then

R=x(h ®+h, @ +h &, & +h, o, o)
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where

hy =4c +c5 +cq
h, =4c, + c;
hy =4c, + ¢, + ¢,

h, =4c, +c¢,, +c,
Finally, we obtain, for the curvature tensor, the following expression:

Rppe =W + (1@ + £, @ 4 fy 0, 07 4 f, 0, 0”)(g,, 2. ~ 2. 2.,)
+(B+ 1 0)(g, ., +g, @, g, D, g, ,)
B+ 1 0)g, 0, + 8, 0, -2 0, -8, ©,,)
+7 (¢4 Do + 810 Dy = €1 D — 8, D)
+ /1 (Dvi ®,g,+D ®,g,-D'®, g,-D O, gvp)
+ f5 (Dvi sy 81p +D,,i @Dy o ~ Dvi Dy &us _Dﬂl 25 gvp)
+f, (0} @, g,+D} @, g,-D D, g, D/ D, g,)
+ fio (Df o, &, + Dpﬂ @ & —Dpi D, &0 —D(f o, gvp)

where

fs=¢
Jo =¢
/7 =¢
Js=¢y
Jo = ¢y
Jio =€

At this point, the apparent main difficulty lies in the fact that there are too many
constitutive invariants that need to be exactly determined. As such, the linear theory is
comparatively preferable since it only contains three constitutive invariants. However, by
presenting the most general structure of the non-linear continuum theory in this section,
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we have acquired a quite general picture of the most general behavior of the space-time
continuum in the presence of the classical fields.

5. The Equations of Motion

Let us now investigate the local translational-rotational motion of points in the space-time

continuum S*. Consider an infinitesimal displacement in the manner described in the
preceding section. Keeping the initial position fixed, the unit velocity vector is given by

_dér dx”
ds ds
=g, u"u

uﬂ

such that, at any proper time given by the world-line s, the parametric representation
d&t =u” (x”’,s)ds

describes space-time curves whose tangents are everywhere directed along the direction
of a particle’s motion. As usual, the world-line can be parametrized by a scalar ¢ via

s=ac¢ +b,where a and b are constants of motion.

The local equations of motion along arbitrary curves in the space-time continuum S* can
be described by the quadruplet of unit space-time vectors (u,v, w,z) orthogonal to each
other where the first three unit vectors, or the triplet (u,v, w), may be defined as (a set of)
local tangent vectors in the (three-dimensional) hypersurface Z(t) such that the unit
vector z is normal to it. More explicitly, the hypersurface Z(t) is given as the time
section ¢ = x’ = const. of S*. This way, the equations of motion will be derived by

generalizing the ordinary Frenet equations of orientable points along an arbitrary curve in
three-dimensional Euclidean space, i.e., by recasting them in a four-dimensional manner.
Of course, we will also include effects of microspin generated by the torsion of space-
time.

i

. . . . a k
With respect to the anholonomic space-time basis @, = o, (x (X ))= e

’uﬁ, we can
write
_ M
u=1u C()ﬂ
— M
vV=yv a)#
—
w=w (0/1
_ U
zZ=2Z Cl)/l
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we obtain, in general, the following set of equations of motion of points, i.e., point-like

particles, along an arbitrary curve /¢ in the space-time continuum S*:

DDL;“ I
DD‘;” =7 w' —¢u"
DDv:" =tVvi+@z¥
DDf =ow

D . o
where the operator — =u" V represents the absolute covariant derivative. In the

Ds
above equations we have introduced the following invariants:

( Du* Du)'
Eur Ds Ds

¢

1/
Dz" Dz

, DV’
Ds

Ds Ds

z

2

o

2

In particular, we note that, the torsion scalar 7 measures the twist of the curve ¢ in S*

due to microspin.

At this point, we see that our equations of motion describe a “minimal” geodesic motion
(with intrinsic spin) when ¢ = 0. In other words, if

Du*

=0
Ds
DV
v =7 w!
Ds
D H
DW =7V +¢@z"
S
Dz

= w
Ds ¢
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However, in general, any material motion in S* will not follow the condition ¢ = 0. This
is true especially for the motion of a physical object with structure. In general, any
physical object can be regarded as a collection of points (with different orientations)
obeying our general equations of motion. It is therefore clear that ¢ # 0 for a moving

finite physical object (with structure) whose material points cannot be homogeneously
oriented.

Furthermore, it can be shown that the gradient of the unit velocity vector can be
decomposed according to

1 _
Vou,=a, +ﬂw+ghﬂv 0 +u, a,

where
h,uv zg,av_u,a uv
1 a 1 1 a 1.8 S = 1 a 1.8 Il
@ = 5 i 0 (V,u, +vﬁua)=zh# (. u, +vﬂua)—5h/, 1 K u,
1 a 1p 1 a 1.8 | - 1 a 1B o
B = b M (v, u, —Vﬂua)=zhﬂ 0V, u, —vﬁua)—zhﬂ B KQ
9_:Vﬂu"
Du
Ou = Dsﬂ
Note that
hﬂv u' =a, u =p,u =0
-g° ( T + €y Do)
K[aﬂ]:r[aﬁ]

Meanwhile, with the help of the identities

u’ V.V,u, =Vv(ul Viuﬂ)—(Vvul)(V’luﬂ)zvv a, —(Vvul)(Vluﬂ)
PV, VY, =V V ) u, =R, uut =215, 0t V,u,

we obtain

DO _g g v, u)(vV,u")- R

Ds u u ut + 210, u" V u

uv

for the “rate of shear” of a moving material object with respect to the world-line.
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6. The Variational Principle for the Theory
Let us now derive the field equations of the present theory by means of the variational

principle. Considering thermodynamic effects, in general, our theory can best be
described by the following Lagrangian density:

L=L+1L,+L,

where

1
L =—
K

Jaet(g) (R”V (v,& -D,)- % (@ - D“H)RJ
L, = Jdet(g) G c* D, D + % K* . D, D7 D —@® D*, AT]
L= Jdetlg) u (v,) (1 & - pu’)

where © is a thermal coefficient, AT is (the change in) the temperature, and f is a
generally varying scalar entity. Note that here we have only explicitly assumed that
b=V &“.

)

Alternatively, we can express L, as follows:

1 o1
L, zzw/detigi(R” —Eg” Rj (v, & -D,.)

Hence we have

Z = Vdet(g) (T#V (Vv gﬂ - D;W) + % C/Npo D;zv D + é Klwpcrb] Dﬂv D”? Dlm

—O DY AT +u" (v, &)(r & - pu’)

We then arrive at the following invariant integral:

v v l v (o8 1 Vv lon
/= j(T” Vi &y @, )+ T (V, & - a)w)+5 47, @, O + B, 0, o
54
1 v o A l v o A
+§P”pm7d)ﬂvd)p ®”+§Q”mﬁﬂwwa)’3 o™ =0 D" AT

sut (v, &) (f & - pur))dz
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where dX = ,/det(g) dx° dx' dx* dx’ is the proper four-dimensional differential volume.

Writing L = JJdet( g ) L and employing the variational principle, we then have

wor oD oo ov,¢)

51:][ OL spu  OL squ  OL sqm, 0L 5(V#§V)Jd2=0

Now

oL

N
o)

since the first term on the right-hand-side of the first line is an absolute differential that
can be transformed away on the boundary of integration by means of the divergence
theorem. Hence we have

s1=[| 2 s v Chsor 1+ Ch s —vﬂ[ oL Jsgv}zz:

W or™ oD* o 0" o(v,¢)

where each term in the integrand is independent of the others. We may also note that the
variations 0 T*",0 ®*",6 0" ,and 6 &, are arbitrary.

~

From = (0, we obtain

D, =V Sy
@, = Vi, &,

1.e., the covariant components of the “dilation” and intrinsic spin tensors, respectively.

~

oL

uv

From = 0, we obtain

rle 2 L (R(’”) - % g" Rj =A™ D7 4 PP O DY -0 g" AT

oA
K porn

1.e., the symmetric contravariant components of the energy-momentum tensor.
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~

oL = 0, we obtain
o™

From

1
T[/W] _ = R[w] _ B”Vpa 0™ + prgg,, 0™ o™
K

1.e., the anti-symmetric contravariant components of the energy-momentum tensor.

In other words,

rev =1 (Rw —%gﬂv Rj =C" D" +K" . D D" -@g" AT

oA
K POAN

Finally, we now show in detail that the fourth variation yields an important equation of
motion. We first see that

oL

F BRI

Hence

V”(a%)]:V”T’”+Vy(fu”)§v +futv, & —Vy(pu”)u" —-pu’V, u

Let us define the “extended” shear scalar and the mass current density vector,
respectively, via

1=v,(fu)
J* = pu”

We can now readily identify the acceleration vector and the body force per unit mass,
respectively, by

Du”
Ds

a“ =u"V a" =

b ==&+ 1=V, )u”)

1
P

In the conservative case, the condition V , J* = 0 gives
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Dp
L _pV u”
Ds PV

In the weak-field limit for which u” = (l,uA) where 4 =1,2,3, we obtain the ordinary
continuity equation,

(Sa—t+VA(puA)=0

Finally, we have

[V, 1+ pb —pa’)ss, az=0

S4
1.e., the equation of motion
v, T =pla-b)

or
V#(R”V —%g’” R) =xpla” -0")

If we restrict our attention to point-like particles, the body force vanishes since it cannot
act on a structureless (zero-dimensional) object. And since the motion is geodesic, i.e.,

a” =0, we have the conservation law
o g—
vV, 7" =0

In this case, this conservation law is true regardless of whether the energy-momentum
tensor is symmetric or not.

Let us now discuss the so-called couple stress, i.e., the couple per unit area which is also
known as the distributed moment. We denote the couple stress tensor by the second-rank

tensor field M . In analogy to the linear constitutive relations relating the energy-
momentum tensor to the displacement gradient tensor, we write

M® =g 7+ HY L7 LY

porAn

where
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J =F + F

uvpo Hvpo uvpo

H uvpodn = U,uvpovlq + V,avpo%r]
These are assumed to possess the same symmetry properties as C,, , and K, . .,
respectively, i.e., E, . have the same symmetry properties as 4, ., F,,, have the

U

have the same symmetry properties as Q

same symmetry properties as B have the same symmetry properties as

P and V

HVpodn > HVPOAN

Hvpo > HvpoAn

uvpoln
Likewise, the asymmetric tensor given by
L, = L(/N) + L[#V]

is comparable to the displacement gradient tensor.

Introducing a new infinitesimal spin potential via ¢@,, let the covariant dual form of the

intrinsic spin tensor be given by

1 1

w =5 Sapo ™ = 3 v, ¢, -V, 4,)

Let us now introduce a completely anti-symmetric third-rank spin tensor via

597 == (B-7)" g,

As a direct consequence, we see that
Vv, 8% = (/3 - 7/) "
In other words,

DAL 0 B g 1 (R0 p)
K

where
N* =2(b, + b)) ® 0" + (b, +b,) (D" @’ — D ®"p)+ (b, +b,) (D* ', ~ D" a)”p)

14 v 1 v V 1 4 4 vy {
A =c, D 0" +5(c9 +¢,) (D" @, ~ D CD”p)+§(clo +e,) (D7 @, - D* 0"

We can now form the second Lagrangian density of our theory as
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H = Jdet(g) (M* (v, ¢, - L, )+ % JY L, I+ % H" L, L' "
< (7.8,) 57wt vt (7,8) (97— 1 p57))

where /£ is a scalar function, / is the moment of inertia, and s" are the components of
the angular velocity vector.

Letting L, = X, and L, = Z,,, the corresponding action integral is

uv

J= j(Mf” (Vi — X, )+ M (Vb —Z,)+ % E™ X, X7+ % F& 7. 7%
S4

1 14 (o} oV
+3 u* . Z, 27 2" —e" (v, ¢,)5" u*

u' (v, 4,) (g —1 ps)ax

1
X, X7 X7+ 3 yH

poin

As before, writing H = JJdet( g ) H and performing the variation 6 J = 0, we have

5J=j[ O spgmr v O 5y, OH 52*”—@[ on J5¢VJdZ=O
S4

oM™ oX™ oz" o(v,4,)

with arbitrary variations d M “",0 X*",6 Z*",and 5 @, .

~

oH

From = 0, we obtain

X =V o)

Z,, =V,

H
From 6— = 0, we obtain
ox"

M ) :Euvm XPT L U bl &

poin

From G_H = (0, we obtain
oz"

Ml zFﬂVpa A 7 g po 7

YeleZ]

We therefore have the constitutive relation
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M =g L+ HY L LY

pPOAN

Let us investigate the last variation

oH

in detail.

Firstly,

Then we see that

OH
_ v _ Vv [ ] c _ _v A o v v
VH[T—MVMVJ_V#M” e T ue — ', SV w4V (hut)¢" +hu V¢

—IVﬂ(p u”)sv ~Ipu”V,s"

We now define the angular acceleration by

and the angular body force per unit mass by

/J_l_ Y D¢ﬂ_ v H
B _p[z¢ wh=S [(VVJ)SJ

where i:vﬂ (h u”).
We have

[@, e e (W ue v 57V, u" )+ p pr ~1pa*)sg, dE=0

S4

Hence we obtain the equation of motion
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v, M =g (T - N ue w590V ut )+ p (T e - )

Uupo
ie.,

V.M =€, (l (R - A% )u” + 5% v, u“j +p(la - p)
K

7. Final Remarks

We have seen that the classical fields of physics can be unified in a simple manner by
treating space-time itself as a four-dimensional finite (but unbounded) elastic medium
capable of undergoing extensions (dilations) and internal point-rotations in the presence
of material-energy fields. In addition, we must note that this apparent simplicity still
leaves the constitutive invariants undetermined. At the moment, we leave this aspect of
the theory to more specialized attempts. However, it can be said, in general, that we
expect the constitutive invariants of the theory to be functions of the known physical
properties of matter such as material density, energy density, compressibility, material
symmetry, etc. This way, we have successfully built a significant theoretical framework
that holds in all classical physical situations.
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