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We consider a new four-dimensional formulation of semi-classical quantum general 
relativity in which the classical space-time manifold, whose intrinsic geometric 

properties give rise to the effects of gravitation, is allowed to evolve microscopically by 

means of a conformal function which is assumed to depend on some quantum mechanical 
wave function. As a result, the theory presented here produces a unified field theory of 

gravitation and (microscopic) electromagnetism in a somewhat simple, effective manner. 
In the process, it is seen that electromagnetism is actually an emergent quantum field 

originating in some kind of stochastic smooth extension (evolution) of the gravitational 

field in the general theory of relativity. 
 

 

 

1. Introduction 

 
We shall show that the introduction of an external parameter, the Planck displacement 

vector field, that deforms ("maps") the standard general relativistic space-time 1S  into an 

evolved space-time 2S  yields a theory of general relativity whose space-time structure 

obeys the semi-classical quantum mechanical law of evolution. In addition, an "already 
quantized" electromagnetic field arises from our schematic evolution process and 

automatically appears as an intrinsic geometric object in the space-time 2S . In the 

process of evolution, it is seen that from the point of view of the classical space-time 1S   

alone, an external deformation takes place, since, by definition, the Planck constant does 

not belong to its structure. In other words, relative to 1S , the Planck constant is an 

external parameter. However from the global point of view of the universal (enveloping) 

evolution space 4M , the Planck constant is intrinsic to itself and therefore defines the 

dynamical evolution of 1S  into 2S . In this sense, a point in 4M  is not strictly single-

valued. Rather, a point in 4M  has a "dimension" depending on the Planck length. 

Therefore, it belongs to both the space-time 1S  and the space-time 2S . 

 
 

2. Construction of a Four-Dimensional Metric-Compatible Evolution Manifold 4M  

 

We first consider the notion of a four-dimensional, universal enveloping manifold 4M  

with coordinates 
µx  endowed with a microscopic deformation structure represented by 
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an exterior vector field ( )µφ x  which maps the enveloped space-time manifold 41 MS ∈  at 

a certain initial point 0P  onto a new enveloped space-time manifold 42 MS ∈  at a certain 

point 1P  through the diffeomorphism 

 

( ) ( ) µµµ ξlPxPx += 01  

 

where cm
c

G
l

33

3
10

−≈=
h

 is the Planck length expressed in terms of the Newtonian 

gravitational constant G , the Dirac-Planck constant h , and the speed of light in vacuum 

c , in such a way that 
 

0lim
0

=

=

→
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From its diffeomorphic structure, we therefore see that 4M  is a kind of strain space. In 

general, the space-time 2S  evolves from the space-time 1S  through the non-linear 

mapping 

 

( ) 21: SSP →φ  

 

Note that the exterior vector field φ  can be expressed as µ
µ

µ
µ φφφ gh ==  (the 

Einstein’s summation convention employed throughout this work) where µh  and µg  are 

the sets of basis vectors of the space-times 1S  and 2S , respectively. (Likewise for ξ .) 
We remark that 1S  and 2S  are both endowed with metricity through their immersion in 

4M , which we shall now call the evolution manifold. Then, the two sets of basis vectors 

are related by  

 

( ) ν
ν

µ
ν
µµ ξδ hlg ∇+=  

 

or, alternatively, by 
 

( ) ν
ν

µµµ ξ glhg ∇+=  

 

where ν
µδ  are the components of the Kronecker delta.  

 

At this point, we have defined the two covariant derivatives with respect to the 

connections ω  of 1S  and Γ  of 2S  as follows: 
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β
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and 
 

...... ...

...

...

...

...

...

...

...

...

...

...

... −Γ−Γ−+Γ+Γ+∂=∇ αβ
µσ

σ
νλ

αβ
σν

σ
µλ

ασ
µν

β
σλ

σβ
µν

α
σλ

αβ
µνλ

αβ
µνλ BBBBBB  

 

for arbitrary tensor fields A  and B , respectively. Here µ
µ x∂∂=∂ , as usual. The two 

covariant derivatives above are equal only in the limit 0→h . 

 

Furthermore, we assume that the connections ω  and Γ  are generally asymmetric, and 

can be decomposed into their symmetric and anti-symmetric parts, respectively, as 
 

( ) ( ) [ ]
λ
µν

λ
µνµ

λλ
µν ωωω +=∂= hh v,  

 

and 

 

( ) ( ) [ ]
λ
µν

λ
µνµ

λλ
µν Γ+Γ=∂=Γ gg v,  

 

Here, by ( )ba ,  we shall mean the inner product between the arbitrary vector fields a  and 

b .  

 

Furthermore, by direct calculation we obtain the relation 

 

( ) ( )( ) λ
λ

µν
λ
σν

σ
µ

λ
µνµν ξωξω hllg ∇∂+∇+=∂  

 
Hence, setting 

 

( ) ( )( )
( ) ( )( )λ

σµ
σ

ν
λ
σµν

σλ
µν

λ
σν

σ
µ

λ
µν

λ
µν

λ
σν

σ
µ

λ
µν

λ
µν

ωξωξξωξω

ξωξω

∂+∂+∂∂+∇+=

∇∂+∇+=

l

lF
 

 

we may simply write 

 

λ
λ
µνµν hFg =∂  

 

Meanwhile, we also have the following inverse relation: 
 

( ) ν
ν

µ
ν
µµ ξδ glh ∇−=  

 

Hence we obtain 
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( ( ) ( )
( ) ( )

( ) ( ) ) λ
λ

σ
σ
ρµ

ρ
ν

λ
σ

σ
ρµν

ρ

λ
σ

σ
µ

λ
σ

σ
ρν

ρ
µ

λ
σ

σ
µν

λ
σµ

σ
ν

λ
σµν

σλ
µν

λ
σν

σ
µ

λ
µνµν

ξωξξωξ

ξξξωξξω

ωξωξξωξω

gll

lll

llllg

v

∇∂−∇∂−

∇∂∂−∇∇−∇−

∂+∂+∂∂+∇+=∂

 

 

Using the relation λ
λ
µνµν gg Γ=∂  (similarly, λ

λ
µνµν ω hh =∂ ), we obtain the relation 

between the two connections  Γ  and ω  as follows: 
 

( ) ( )(
( ) ( ) ( )
( ) )λσ

σ
ρµ

ρ
ν

λ
σ

σ
ρµν

ρλ
σ

σ
µν

λ
σ

σ
ρν

ρ
µ

λ
σ

σ
µν

λ
σµ

σ
ν

λ
σµν

σλ
µν

λ
σν

σ
µ

λ
µν

λ
µν

ξωξ

ξωξξξξωξ

ξωωξωξξωξω

∇∂−

∇∂−∇∂∂−∇∇−

∇−∂+∂+∂∂+∇+=Γ l

 

 
which is a general non-linear relation in the components of the exterior displacement 

field ξ . We may now write 

 
λ
µν

λ
µν

λ
µν GF +=Γ  

 

where, recalling the previous definition of λ
µνF , it can be rewritten as 

 

( ) ( ) ( )( )λ
σµ

σ
ν

λ
σν

σ
µ

λ
µν

σλ
ρν

ρ
µσ

λ
σµν

λ
µν

λ
µν ωξωξξξωωωω ∂+∂+∂∂++∂+= lF  

 

and where 

 

( ) ( )( )( ) λ
σ

σ
ρµ

ρ
ν

σ
ρµν

ρσ
µν

σ
ρν

ρ
µ

σ
µν

λ
µν ξωξωξξωξω ∇∂+∂+∂∂+∇+−= llG  

 

At this point, the intrinsic curvature tensors of the space-times 1S  and 2S  are respectively 

given by 

 

( ) σ
λν

λ
ρµ

σ
λµ

λ
ρν

σ
ρµν

σ
ρνµρνµ

σσ
ρµν ωωωωωω −+∂−∂=∂∂= hhK ][,2  

 

and 

 

( ) σ
λν

λ
ρµ

σ
λµ

λ
ρν

σ
ρµν

σ
ρνµρνµ

σσ
ρµν ΓΓ−ΓΓ+Γ∂−Γ∂=∂∂= ggR ][,2  

 

We may also define the following quantities built from the connections λ
µνω  and λ

µνΓ : 

 
σ
λν

λ
ρµ

σ
λµ

λ
ρν

σ
ρµν

σ
ρνµ

σ
ρµν ωωωωωω ++∂+∂=D  

 
and 
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σ
λν

λ
ρµ

σ
λµ

λ
ρν

σ
ρµν

σ
ρνµ

σ
ρµν ΓΓ+ΓΓ+Γ∂+Γ∂=E  

 

from which we may define two additional “curvatures” X  and P  by  
 

( ) ( ) σ
λµ

λ
ρν

σ
ρνµ

σ
ρµν

σ
ρµνρνµ

σσ
ρµν ωωω +∂=+=∂∂= DKhhX

2

1
,  

 

and 

 

( ) ( ) σ
λµ

λ
ρν

σ
ρνµ

σ
ρµν

σ
ρµνρνµ

σσ
ρµν ΓΓ+Γ∂=+=∂∂= ERggP

2

1
,  

 

such that [ ]
σ

µνρ
σ
ρµν XK 2=  and [ ]

σ
µνρ

σ
ρµν PR 2= . 

 

Now, we see that 
 

( ) ( ) ( ) ( ) 






 ∂+∂+∂∂++= λ
σµ

σ
ν

λ
σν

σ
µ

λ
µν

σλ
σµν

λ
µν

λ
µν ωξωξξξω DlF

2

1
 

 

and 

 

[ ] [ ]
σλ

σµν
λ
µν

λ
µν ξω KlF

2

1
+=  

 
In addition, we also have 

 

( ) ( ) ( ) ( ) λ
σ

σ
ρµ

ρ
ν

σ
ρν

ρ
µ

σ
µν

ρσ
ρµν

σ
µν

λ
µν ξωξωξξξω ∇















 ∂+∂+∂∂++= DllG
2

1
 

 
and 

 

[ ] [ ]
λ

σ
ρσ

ρµν
σ
µν

λ
µν ξξω ∇







 −= KllG
2

1
 

 

Now, the metric tensor g  of the space-time 1S  and the metric tensor h  of the space-time 

2S  are respectively given by 

 

( )νµµν hhh ,=  

 
and  

 

( )νµµν ggg ,=  
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where the following relations hold: 
 

ν
µ

νσ
µσ

ν
µ

νσ
µσ

δ

δ

=

=

gg

hh
 

 

In general, the two conditions ν
µ

νσ
µσ δ≠gh  and ν

µ
νσ

µσ δ≠hg  must be fulfilled unless 

0=l  (in the limit 0→h ). Furthermore, we have the metricity conditions 

 

0=∇ µνλ h  

 

and 

 

0=∇ µνλ g  

 

However, note that in general, 0≠∇ µνλ h  and 0≠∇ µνλ g .  

 

Hence, it is straightforward to see that in general, the metric tensor g  is related to the 

metric tensor h  by 
 

λν
λ

µνµµνµν ξξξ ∇∇+∇+= 2

)(2 llhg  

 
which in the linear approximation reads  

 

)(2 νµµνµν ξ∇+= lhg  

 
The formal structure of our underlying geometric framework clearly implies that the 

same structure holds in n  dimensions as well. 
 

 

3. The Conformal Theory 

 
We are now in the position to extract a physical theory of quantum gravity from the 
geometric framework in the preceding section by considering the following linear 

conformal mapping: 

 

µ
ϕ

µ heg =  

 

where the continuously differentiable scalar function ( )µϕ x  is the generator of the 

quantum displacement field in the evolution space 4M  and therefore connects the two 

space-times 1S  and 2S .  
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Now, for reasons that will be apparent soon, we shall define the generator ϕ  in terms of 

the canonical quantum mechanical wave function ( )µψ x  as 

 

( )2
1

1ln ψϕ M+=  

 
where  

 
2

0

2

1








±=

h

cm
ilM  

 

Here 0m  is the rest mass of the electron.  Note that the sign ±  signifies the signature of 
the space-time used. 

 
Now, we also have the following relations: 

 

( ) ( )
( )
( ) ν

µ
ϕν

µ

ν
µ

ϕν
µ

ν
µ

ν
µ

ν
µ

µϕµ

µ
ϕ

µ

µϕµ

δ

δ

δ

2

2

,

,

,,

−

−

−

=

=

==

=

=

=

egh

ehg

hhgg

geh

geh

heg

 

 

as well as the conformal transformation 
 

µν
ϕ

µν heg 2=  

 

Hence 

 
µνϕµν heg 2−=  

 
We immediately see that 

 

ν
µ

ϕνσ
µσ

ν
µ

ϕνσ
µσ

δ

δ
2

2

−=

=

egh

ehg
 

 

At this point, we see that the world-line of the space-time 2S , ∫= νµ
µν dxdxgs , is 

connected to that of the space-time 1S , ∫= νµ
µνσ dxdxh , through  
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σϕ deds 2=  

 
Furthermore, from the relation 

 

( ) µ
ϕ

ν
ν

µ
ν
µµ ξδ hehlg =∇+=  

 

we obtain the important relation 

 

( ) µν
ϕ

µν ξ hel 1−=∇  

 

which means that 
 

νµµνµν ξ Φ=∇=Φ l  

 

i.e., the quantum displacement gradient tensor field Φ  is symmetric. Hence we may 
simply call Φ  the quantum strain tensor field. We also see that the components of the 

quantum displacement field, µµ ξφ l= , can now be described by the wave function  ψ  

as  
 

ψφ µµ ∂= l  

 

i.e., 
 

∫+= µ
µφψψ dx

l

1
0  

 

for an arbitrary initial value 0ψ  (which, most conveniently, can be chosen to be 0 ). 

 

Furthermore, we note that the integrability condition νµµν Φ=Φ  means that the space-

time 1S  must now possess a symmetric, linear connection, i.e., 

 

( )νσµµνσσµν
σλλ

νµ
λ
µν ωω hhhh ∂+∂−∂==

2

1
 

 

which are just the Christoffel symbols 








µν
λ

 in the space-time 1S . Hence ω  is now none 

other than the symmetric Levi-Civita (Riemannian) connection. Using the metricity 

condition νµλµνλµνλ Γ+Γ=∂ g , i.e., 

 

( ) ( )νµλµνλλµνµνλ ωωψψ +++∂=∂ MhMg 1  
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we obtain the mixed form 
 

( ) ( )

( ) ( )ψψψψ

ψω

νλµµνλλµν

λµννλµµνλλµν

∂+∂−∂+−

∂+∂−∂+=

−

−

hhhMM

gggM

1

1

1
2

1

1
2

1

 

 
i.e., 

 

( ) ( )

( ) ( )ψψδψδψ

ψω

ρ
λρ

µνµ
λ
νν

λ
µ

ρµννρµµνρ
λρλ

µν

∂−∂+∂+−

∂+∂−∂+=

−

−

hhMM

ggghM

1

1

1
2

1

1
2

1

 

 

It may be noted that we have used the customary convention in which 
ρ
µνλρλµν Γ=Γ g  

and 
ρ
µνλρλµν ωω h= . 

 

Now we shall see why we have made the particular choice ( )2
1

1ln ψϕ M+= . In order to 

explicitly show that it now possess a stochastic part, let us rewrite the components of the 

metric tensor of the space-time 2S  as 

 

( ) µνµν ψ hMg += 1  

 

Combining this relation with the linearized relation )(2 νµµνµν ξ∇+= lhg  and 

contracting the resulting relation, we obtain 

 

( ) ψψ ϕ MeDl 212 22 =−=  

 

where we have defined the differential operator νµ
µν ∇∇= hD 2

 such that 

 

( )ψωψψ ρ
ρ
µννµ

µν ∂−∂∂= hD 2  

 

Expressing M  explicitly, we obtain ψψ
2

02 







=

h
m

cm
D , i.e., 

 

0

2

02 =




















± ψ
h

cm
D  

 

which is precisely the Klein-Gordon equation in the presence of gravitation. 
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We may note that, had we combined the relation ( ) µνµν ψ hMg += 1 with the fully non-

linear relation λν
λ

µνµµνµν ξξξ ∇∇+∇+= 2

)(2 llhg , we would have obtained the 

following non-linear Klein-Gordon equation: 
 

( ) ( )ψψψ νσµρ
µνρσ ∇∇∇∇=





















± hhl

cm
D

2

2

02

h
 

 

Now, from the general relation between the connections Γ  and ω  given in Section 2, we 

obtain the following important relation: 
 

[ ] ( ) ρσ
ρµν

λ
σ

λ
σ

λ
µν ξξδ Kll ∇−−=Γ

2

1
 

 

which not only connects the torsion of the space-time 2S  with the curvature of the space-

time 1S , but also describes the torsion as an intrinsic (geometric) quantum phenomenon. 

Note that 
 

















−
















+








∂−








∂=
λν
σ

ρµ
λ

λµ
σ

ρν
λ

ρµ
σ

ρν
σ

νµ
σ
ρµνK  

 
are now the components of the Riemann-Christoffel curvature tensor describing the 

curvature of space-time in the standard general relativity theory.  

 

Furthermore, using the relation between the two sets of basis vectors µg  and µh , it is 

easy to see that the connection Γ  is semi-symmetric as 

 

ϕδω ν
λ
µ

λ
µν

λ
µν ∂+=Γ  

 

or, written somewhat more explicitly, 

 

( ) ( )( )ψδ ν
λ
µνσµµνσσµν

σλλ
µν Mhhhh +∂+∂+∂−∂=Γ 1ln

2

1

2

1
 

 

We immediately obtain 
 

( ) ( )ϕδϕδω µ
λ
νν

λ
µ

λ
µν

λ
µν ∂+∂+=Γ

2

1
 

 

and 
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[ ] ( )ϕδϕδ µ
λ
νν

λ
µ

λ
µν ∂−∂=Γ

2

1
 

 

Additionally, using the relation  
 

( )( ) ( )( )( ) ( )( ) ϕωω µµ
ϕ

µµ
ν
µν

ν
νµ ∂−∂=∂=∂== − ggeh detlndetlndetln  

 

we may now define two semi-vectors by the following contractions: 

 

( )( )
( )( ) ϕ

ϕ

µµ
ν
µνµ

µµ
ν
νµµ

∂+∂=Γ=∆

∂+∂=Γ=Γ

h

h

detln

4detln
 

 
or, written somewhat more explicitly,  

 

( ) ( )( )
( )( )ψ

ψ

µµ

µµ

Mh

Mh

++∂=∆

++∂=Γ

1lndetln

1lndetln
2

 

 

We now define the torsion vector by 

 

[ ] ϕτ µ
ν
νµµ ∂=Γ=

2

3
 

 

In other words,  
 

( )
ψ

ψ
τ µµ ∂

+
=

M

M

14

3
 

 

Furthermore, it is easy to show that the curvature tensors of our two space-times 1S  and 

2S  are now identical: 

 
σ
ρµν

σ
ρµν KR =  

 

which is another way of saying that the conformal transformation µ
ϕ

µ heg =  leaves the 

curvature tensor of the space-time 1S  invariant. As an immediate consequence, we obtain 

the ordinary expression 
 

( ) ( )β
σν

α
ρµ

β
σµ

α
ρναβσνρµρµσνσµρνρνσµρσµν ωωωω −+∂∂−∂∂−∂∂+∂∂= hhhhhR

2

1
 

 

Hence the following cyclic symmetry in Riemannian geometry: 
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0=++ ρνσµρµνσρσµν RRR  

 

is preserved in the presence of torsion. In addition, besides the obvious symmetry 

ρσνµρσµν RR −= , we also have the symmetry 

 

σρµνρσµν RR −=  

 

which is due to the metricity condition of the space-times 1S  and 2S . This implies the 

vanishing of the so-called Homothetic curvature as 

 

0== σ
σµνµν RH  

 
The Weyl tensor is given in the usual manner by 

 

( ) ( ) RhhhhRhRhRhRhRC σνρµσµρνρνσµσµρνρµσνσνρµρσµνρσµν −−−−+−=
6

1

2

1
 

 

where 
σ
µσνµν RR =  are the components of the symmetric Ricci tensor and 

µ
µRR =  is the 

Ricci scalar.  

 

Now, by means of the conformal relation µν
ϕ

µν heg 2=  we obtain the expression 

 

( ( )
( ) ( )
( ) ( )

( )
( ) ( )( ))α

ρµ
β
σνν

β
σµ

β
σµ

α
ρνν

α
ρµαβ

νσρµµρσνσµρννρσµ

ρνµσσµρνσνρµρµσν

νσµρρµσµρνσσνρ

σρνµρµνρσµνσνµ

β
σν

α
ρµ

β
σµ

α
ρναβσνρµρµσνσµρνρνσµ

ϕ
ρσµν

δϕϕδϕϕ

ϕϕϕϕϕϕϕϕ

ϕϕϕϕ

ϕϕ

ϕϕ

∂Γ−∂Γ−∂Γ−∂Γ+

∂∂−∂∂−∂∂+∂∂+

∂∂−∂∂−∂∂+∂∂+

∂∂−∂+∂∂−∂+

∂∂−∂+∂∂−∂+

ΓΓ−ΓΓ+∂∂−∂∂−∂∂+∂∂= −

g

gggg

gggg

gggg

gggg

gggggeR

2

2

 

Note that despite the fact that the curvature tensor of the space-time 2S  is identical to that 

of the space-time 1S  and that both curvature tensors share common algebraic symmetries, 

the Bianchi identity in 2S  is not the same as the ordinary Bianchi identity in the torsion-

free space-time 1S . Instead, we have the following generalized Bianchi identity: 

 

[ ] [ ] [ ]( )ρσην
η
λµρσηµ

η
νλρσηλ

η
µνρσλµνρσνλµρσµνλ RRRRRR Γ+Γ+Γ=∇+∇+∇ 2  

 

Contracting the above relation, we obtain 
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[ ] [ ]
ρσν

λ
λ
ρσ

λ
σ

σ
λρ

ρνµνµν
µ RRgRgR Γ+Γ=







 −∇ 2
2

1
 

 

Combining the two generalized Bianchi identities above with the relation 

[ ] ( )ϕδϕδ µ
λ
νν

λ
µ

λ
µν ∂−∂=Γ

2

1
, as well as recalling the definition of the torsion vector, 

and taking into account the symmetry of the Ricci tensor, we obtain  

 

( )ϕϕϕ νρσλµµρσνλλρσµνρσλµνρσνλµρσµνλ ∂+∂+∂=∇+∇+∇ RRRRRR 2  

 

and 

 

ϕν
µνµνµνµν

ν ∂






 −−=






 −∇ RgRRgR
2

1
2

2

1
 

 

which, upon recalling the definition of the torsion vector, may be expressed as 
 

ν
µνµνµνµν

ν τ






 −−=






 −∇ RgRRgR
2

1

3

4

2

1
 

 

Apart from the above generalized identities, we may also give the ordinary Bianchi 
identities as 

 

0=∇+∇+∇ ρσλµνρσνλµρσµνλ RRR  

 

and 

 

0
2

1
=







 −∇ RhR
µνµν

ν  

 

 

4. The Electromagnetic Sector of the Conformal Theory. The Fundamental 

Equations of Motion 
 

Based on the results obtained in the preceding section, let us now take the generator ϕ  as 

describing the (quantum) electromagnetic field. Then, consequently, the space-time 1S  is 

understood as being devoid of electromagnetic interaction. As we will see, in our present 

theory, it is the quantum evolution of the gravitational field that gives rise to 

electromagnetism. In this sense, the electromagnetic field is but an emergent quantum 

phenomenon in the evolution space 4M . 

 

Whereas the space-time 1S  is purely gravitational, the evolved space-time 2S  does 

contain an electromagnetic field. In our present theory, for reasons that will be clear soon, 
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we shall define the electromagnetic field 42 MSF ∈∈  in terms of the torsion of the space-

time 2S  by 

 

[ ] λ
λ
µνµν u

e

cm
F Γ=

2

02  

 

where e  is the (elementary) charge of the electron and  

 

ds

dx
he

ds

dx
gu

ν

µν
ϕ

ν

µνµ
2==  

 

are the covariant components of the tangent velocity vector field satisfying 1=µ
µ uu .  

 

We have seen that the space-time 2S  possesses a manifest quantum structure through its 

evolution from the purely gravitational space-time 1S . This means that e  may be defined 

in terms of the fundamental Planck charge ê  as follows: 
 

cNeNe h04ˆ επ==  

 

where N  is a positive constant and 0ε  is the permitivity of free space. Further 

investigation shows that α=N  where 1371 ≈−α  is the conventional fine structure 

constant.  
 

Let us now proceed to show that the geodesic equation of motion in the space-time 2S  

gives the (generalized) Lorentz equation of motion for the electron. The result of parallel-

transferring the velocity vector field u  along the world-line (in the direction of motion of 

the electron) yields 
 

( ) 0=∇= νµ
ν

µ

uu
ds

uD
 

 

i.e., 
 

0=Γ+ σρµ
ρσ

µ

uu
ds

du
 

 
where, in general, 

 

( ) [ ] [ ] [ ]( )σ
ρµνσ

σ
ρνµσ

λρλ
µννσµµνσσµν

σλλ
µν Γ+Γ−Γ+∂+∂−∂=Γ ggggggg

2

1
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Recalling our expression for the components of the torsion tensor in the preceding 

section, we obtain 
 

( ) ϕδϕ µ
λ
νσ

λσ
µννσµµνσσµν

σλλ
µν ∂−∂+∂+∂−∂=Γ gggggg

2

1
 

 

which is completely equivalent to the previously obtained relation ϕδω ν
λ
µ

λ
µν

λ
µν ∂+=Γ . 

Note that 

 

( )νσµµνσσµν
σλλ

µν gggg ∂+∂−∂=∆
2

1
 

 

are the Christoffel symbols in the space-time 2S . These are not to be confused with the 

Christoffel symbols in the space-time 1S  given by λ
µνω .  

 

Furthermore, we have 
 

[ ]
σ

λ
λ
ρσ

µρσρµ
ρσ

µ

uuguu
ds

du
Γ=∆+ 2  

 

Now, since we have set [ ] λ
λ
µνµν u

e

cm
F Γ=

2

02 , we obtain the equation of motion 

 

νµ
ν

σρµ
ρσ

µ

uFeuu
ds

du
cm =








∆+2

0  

 

which is none other than the Lorentz equation of motion for the electron in the presence 
of gravitation. Hence, it turns out that the electromagnetic field, which is non-existent in 

the space-time 1S , is an intrinsic geometric object in the space-time 2S . In other words, 

the space-time structure of 2S  inherently contains both gravitation and electromagnetism. 

 

Now, we see that  
 

( )ϕϕ µννµµν ∂−∂= uu
e

cm
F

2

0  

 
In other words, 

 








 ∂−= ϕ
ϕ

ν
µνµνµ

ν g
ds

d
ucmuFe

2

0  

 

Consequently, we can rewrite the electron’s equation of motion as 
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ϕ
ϕ

ν
µνµσρµ

ρσ

µ

∂−=∆+ g
ds

d
uuu

ds

du
 

 
We may therefore define an asymmetric fundamental tensor of the gravoelectromagnetic 

manifold 2S  by 

 

µνµνµν

ϕ
F

cm

e

ds

d
gg

2

0

~ −=  

 

satisfying 

 

ϕµ
ν

µν ∂=ug~  

 

It follows immediately that 
 

ϕ
ϕ

δ ν
µννµ

ν
µ
ν ∂=








− guF

cm

e

ds

d
2

0

 

 

which, when expressed in terms of the wave function ψ , gives the Schrödinger-like 

equation 

 

ψϕ
ψ ν

µνµµ 







+∂= uF

cm

e

Mds

d
u

2

0

1
 

 

We may now proceed to show that the electromagnetic current density given by the 
covariant expression 

 

µν
ν

µ

π
F

c
j ∇−=

4
 

 
is conserved in the present theory.  

 
Let us first call the following expression for the covariant components of the 

electromagnetic field tensor in terms of the covariant components of the canonical 

electromagnetic four-potential A : 
 

νµµνµν AAF ∇−∇=  

 

such that ϕνµµν ∂=∇ ucmAe 2

0 , i.e., 
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νµ
ν

µ ϕ Auecm ∇=∂2

0  

 

which directly gives the equation of motion  
 

νµ
νµϕ

Auue
ds

d
cm ∇=2

0  

 

Hence, we obtain the following equation of state: 

 

( )
νµ

νµψψ
Auu

M

M
e

ds

d
cm ∇

+
=

1
2

2

0  

 

Another alternative expression for the electromagnetic field tensor is given by 

 

[ ]

ϕϕ νµµννµµν

λ
λ
µννµµνµν

∂−∂+∂−∂=

Γ−∂−∂=

AAAA

AAAF 2
 

 

In the particular case in which the field-lines of the electromagnetic four-potential 

propagate in the direction of the electron’s motion, we have 
 

( )νµµνµν
β

uu

c

e
F ∂−∂









−

Λ=

2

2

1

 

 

where Λ  is a proportionality constant and 
om

e
Λ

±=β . Then, we may define a 

vortical velocity field, i.e., a spin field, through the vorticity tensor which is given by  

 

( )νµµνµνω uu ∂−∂=
2

1
 

 
and hence 

 

µνµν ω
β









−

Λ=

2

2

1

2

c

e
F  

 

which describes an electrically charged spinning region in the space-time continuum 2S . 

 

Furthermore, we have the following generalized identity for the electromagnetic field 
tensor: 
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[ ] [ ] [ ]( )σν
σ
λµσµ

σ
νλσλ

σ
µνλµννλµµνλ FFFFFF Γ+Γ+Γ=∇+∇+∇ 2  

 

which, in the present theory, takes the particular form 
 

( )ϕϕϕ νλµµνλλµνλµννλµµνλ ∂+∂+∂=∇+∇+∇ FFFFFF 2  

 
Contracting, we have 

 

[ ]( )ρσµ
ρσµ

µ
µ π

F
c

j Γ∇−=∇
4

 

 
We therefore expect that the expression in the brackets indeed vanishes. For this purpose, 

we may set 
 

[ ]
ρσµ

ρσ
µ

π
F

c
j Γ−=

4
 

 

and hence, again, using the relation [ ] ( )ϕδϕδ µ
λ
νν

λ
µ

λ
µν ∂−∂=Γ

2

1
, we immediately see 

that 

 

[ ]( )( )

[ ] ϕ
π

ϕ

ϕϕϕ
π

λ
µνλ

µνµ
µ

λ
λ
µνµν

µνµν
µν

µ
µ

∂Γ−∂−=

∂Γ−∂∂+∇∂−=∇

F
c

j

FF
c

j

4

4
 

 
i.e.,  

 

0=∇ µ
µ j  

 

At this point, we may note the following: the fact that our theory employs torsion, from 

which the electromagnetic field is extracted, and at the same time guarantees 
electromagnetic charge conservation (in the form of the above continuity equation) in a 

natural manner is a remarkable property. 
 

Now, let us call the relation  

 

[ ] ( ) ρσ
ρµν

λ
σ

λ
σ

λ
µν ξξδ Rll ∇−−=Γ

2

1
 

 

obtained in Section 3 of this work (in which 
σ
ρµν

σ
ρµν KR = ). This can simply be written 

as 
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[ ]
ρλ

ρµν
ϕλ

µν ξRel
−−=Γ

2

1
 

 
i.e., 

 

[ ] ψσ
ρσλ

ρµν
ϕλ

µν ∂−=Γ −
gRel

2

1
 

 

Hence, we obtain the elegant result 

 

ψσ
ρσ

λ
λ
ρµν

ϕ
µν ∂−= −

guRe
e

cm
lF

2

0  

 

i.e., 
 

ψ
ψ σ

ρσ
λ

λ
ρµνµν ∂

+
−= guR

M

cm

e

l
F

1

2

0  

 

or, in terms of the components of the (dimensionless) microscopic displacement field ξ , 
 

σ
ρσ

λ
λ
ρµν

ϕ
µν ξguRe

e

cm
lF −−=

2

0  

 
which further reveals how the electromagnetic field originates in the gravitational field in 

the space-time 2S  as a quantum field. Hence, at last, we see a complete picture of the 

electromagnetic field as an emergent phenomenon. This completes the long-cherished 
hypothesis that the electromagnetic field itself is caused by a massive charged particle, 

i.e., when 00 =m  neither gravity nor electromagnetism can exist. Finally, with this result 

at hand, we obtain the following equation of motion for the electron in the gravitational 

field: 

 

ν
σρ

ρσµ
ν

ϕσρµ
ρσ

µ

ξ uuReluu
ds

du −−=∆+  

 
i.e., 

 

ψ
ψ σ

ν
ρ

ρσµ
ν

σρµ
ρσ

µ

∂
+

−=∆+ uuR
M

l
uu

ds

du

1
 

 
In addition, we note that the torsion tensor is now seen to be given by 
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ν
µν

ϕ
µ ξτ Rel

−−=
2

1
 

 

or, alternatively, 
 

ψτ λ
νλ

µν
ϕ

µ ∂−= −
gRel

2

1
 

 
In other words, 

 

ψ
ψ

τ λ
νλ

µνµ ∂
+

−= gR
M

l

12

1
 

 

Hence, the second generalized Bianchi identity finally takes the somewhat more 

transparent form 
 

ψσ
ρσµ

ρνρ
µνϕµνµν

ν ∂






 −−=






 −∇ −
gRRRRelRgR

2

1

3

2

2

1
 

 

i.e., 
 

ψ
ψ

σ
ρσµ

ρνρ
µνµνµν

ν ∂






 −
+

−=






 −∇ gRRRR
M

l
RgR

2

1

13

2

2

1
 

 
 

5. Final Remarks 

 
The present theory, in its present form, is still in an elementary state of development. 

However, as we have seen, the emergence of the electromagnetic field from the quantum 

evolution of the gravitational field is a remarkable achievement which deserves special 

attention. On another occasion, we shall expect to expound the structure of the 

generalized Einstein's equation in the present theory with a generally non-conservative 
energy-momentum tensor given by 

 








 −±= RgR
G

c
T µνµνµν π 2

1

8

4

 

 

which, like in the case of self-creation cosmology, seems to allow us to attribute the 

creation and annihilation of matter directly to the scalar generator of the quantum 
evolution process, and hence the wave function alone, as 

 

0
13

2
≠∂

+
−=∇ ψ

ψ
σ

ρσ
νρ

µνµν
ν gRT

M

l
T  



 21 

 

 

Some Related Readings 

 
Thiemann, T. Introduction to Modern Canonical Quantum General Relativity. arXiv: gr-

qc/0110034.  

 
Barber, G. A. The Principles of Self-Creation Cosmology and its Comparison with 

General Relativity. arXiv: gr-qc/0212111.   

 
Brans, C. H. Consistency of Field Equations in “Self-Creation” Cosmologies. Gen. Rel. 

Grav., 1987, v. 19, 949-952.  
 

 

 

 

 
 

 
 

  

 

 

 
 

 

 
 

 
  

 

 
 

 
 

 

 


