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ABSTRACT

The metric compatibility condition of Riemann geometry and the tetrad postulate
of differential geometry are cornerstones of general relativity in respectively its Einstein
Hilbert and Palatini variations. In the latter the tetrad tensor is the fundamental ﬁeld, in the
former the metric tensor is the fundamental field. In the Evans unified field theory the tetrad
becomes the fundamental field for all types of matter and radiation, and the tetrad postulate
leads to the Evans Lemma, the Evans wave equation, and to all the fundamental wave
equations of physics in various well defined limits. The tetrad postulate is a fundamental
requirement of differential geometry, and this is proven in this paper in\d/seven ways. For
centrally directed gravitation therefore both the metric compatibility condition and the tetrad

postulate are accurate experimentally to one part in one hundred thousand.
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1. INTRODUCTION

The theory of general relativity was formulated originally in 1915 by Einstein
and independently by Hilbert. It was developed for centrally directed gravitation, and was
first verified by the Eddington experiment {1}. Recently {2} the precision of the Eddington
experiment has been improved to one part in one hundred thousand. Therefére the basic
geometrical assumptions used by Einstein and Hilbert have also been verified experimentally
to one part in one hundred thousand. One of these is the metric compatibility condition {3-5}
of Riemann geometry, a condition which asserts that the covariant derivative of the metric
tensor vanishes. The metric tensor is the fundamental field in the Einstein Hilbert variation of
general relativity. It is defined by:
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where ‘\//A is the tetrad {3-5}, a mixed index rank two tensor. The Latin superscript of the

tetrad tensor refers to the spacetime of the tangent bundle at a point P of the base manifold

indexed by the Greek subscript of the tetrad. In eqn. (1) l\ \ is the Minkowski metric:
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The metric compatibility condition is then {3-5}, for any spacetime:
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Using the Leibnitz Theorem {3-5}Eq. (1) and (3) imply:
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one possible solution of which is:
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Eq. ( S ) is the tetrad postulate of the Palatini variation {3-8} of general &:la?ivity. In
Section 2 it will be shown in various complementary ways that Eq. ( g ) is the unique
solution of Eq. ( \Jr ). It follows that for central gravitation, the tetrad postulate has been
verified experimentally {2} to one part in one hundred thousand.

In Section 3 a brief discussion is given of the physical meaning of the metric
compatibility condition used by Einstein and Hilbert in 1915 to describe centrally directed
gravitation. In 1915 the original metric compatibility condition was supplemented by the

additional assumption that the spacetime of gravitational general relativity is free of torsion:
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where \ = is the torsion tensor and where r s is the Christoffel symbol. The latter is

symmetric in its lower two indices and is also known as the Levi-Civita or Riemann
connection {3-5}. For the centrally directed gravitation of the sun these assumptions hold to
one part in one hundred thousand {2}. However, the Evans unified field theory {9-15} has
recently recognised that electromagnetism is the torsion form of differential geometry {3-5},
gravitation being the Riemann form, and has shown how electromagnetism interacts with
gravitation in a spacetime in which the torsion tensor is not in general zero. Therefore in
Section 3 we discuss the implications for the metric compatibility condition of the .1 915
theory, and summarize the conditions needed for the interaction of gravitation and

electromagnetism.



2. SEVEN PROOFS OF THE TETRAD POSTULATE.
It has been shown in the introduction that for any spacetime (whether torsion
free or not) the tetrad postulate is a possible solution of the metric compatibility condition. In

this section it is shown in seven ways that it is the unique solution.

1) Proof from Fundamental Matrix Invertibility.

Consider the following basic properties of the tetrad tensor {3-5}:
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where S., and S\, are Kronecker delta functions. Differentiate Eqs. ( | )to ( 10 )

covariantly with the Leibnitz Theorem:
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Rearranging dummy indicesinEq( \\ )( & >\ Y ):
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Rearranging dummy indices in Eq. ( \ ) ( /4.,\ Sy~ )

‘\,’LDKN; x Nf‘}wl =0, — (v



Multiply Eq. ( \S )by &y -
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Multiply Eq. ( \b ) by \//‘\ : o
[ L G ~ v — (?)
It is seen that Eq. ( \"{ ) is of the form:
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and Eq. ( \ g ) is of the form:
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The only possible solution is:
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This gives the tetrad postulate, Q.E.D.:
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which is therefore the unique solution of Eq. ( \—\— ). Note the tetrad postulate is true for

any connection, whether torsion free or not.



2) Proof from Coordinate Independence of Tensors.

A tensor of any kind is independent of the way it is written {3-5}. Consider the

covariant derivative of any tensor X in two different bases 1 and 2. It follows that:

In the coordinate basis {3}:

In the mixed basis:
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where we have used the commutation rule for tensors. Now switch dummy indices O to /«

and use:
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to obtain:
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Now compare Eq. ( @5)and Eq. ( 28 ) to give:
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Multiply both sides of Eq. ( JA)by & :
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to obtain the tetrad postulate, Q. E. D.:

3) Proof from Basic Definition.

[+ 3
For any vector V. {3}:

and using the Leibnitz Theorem:
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Using the result:
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obtained in proofs (1) and (2), it is proven here that Eqs. (3) and ( 3\\-) imply:
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From Eqgs. ( 33 )and(l\\-):
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From Eq. ( 3Q):
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Comparing Eqgs. ( BL ) and ( 14 ):
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and switching dumrriy indices ~ = >\ , we obtain:
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This equation has been obtained from the assumption ( 3\-\- ), so it follows that:
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Q.E.D.

4) Proof from the First Cartan Structure Equation {  }.

This proof has been given in all detail in ref. { A } and is summarized here for
convenience. Similarly for Proofs (5) to (7). The first Cartan structure equation {3-8} is a
fundamental equation of differential geometry first derived by Cartan. It defines the torsion

form as the covariant exterior derivative of the tetrad form:



