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Abstract

It is shown that orbits of all kinds are determined in ECE theory by a well
defined ratio of scalar torsion (T) to scalar curvature (R). Non-relativistic and
relativistic circular orbits are considered as examples. The orbit of a binary
pulsar is reproduced by using the complete theory with T/R as a parameter.
It is shown that the precessing ellipse with decreasing orbital radius can be
explained in ECE theory without assuming gravitational radiation. The latter
is a flawed concept based on the geometrically incorrect Einstein Hilbert (EH)
equation. In general orbits cannot be described by the EH theory, but must be
described by the geometrically self-consistent ECE theory. Several examples
of non-EH orbits are now known, such as binary pulsars and the various
Pioneer/Cassini anomalies. These are explained straightforwardly with ECE
theory, which also gives a simple explanation for the equivalence principle.

Keywords: Non- EH orbits, ECE theory of orbits, equivalence principle.
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15.1 Introduction

It has been shown recently in this series of papers on ECE theory [1–10]
that the Einstein Hilbert (EH) field equation is geometrically self-inconsistent
because of its neglect of the Cartan torsion. Therefore conclusions based on
the EH theory must be discarded and the theory of orbits developed with the
geometrically self-consistent ECE theory, a generally covariant unified field
theory rigorously based on Cartan geometry [11]. In order to demonstrate
the ability of ECE theory to explain orbits straightforwardly, we consider in
this paper the various examples of orbits now known not to be describable
by the EH theory. Many criticisms of the latter have been made down the
years [12] and it is well known to be a deeply flawed theory. It was finally dis-
carded when it was shown using computer algebra [1–10] that the Christoffel
connection is incompatible with the fundamental Bianchi identity as given by
Cartan [1–11].

In Section 15.2 the general ECE orbital theory is developed in terms of
a well defined ratio [1–10] of scalar torsion (denoted T) to scalar curvature
(denoted R). This ratio is used as a parameter with which to describe non - EH
orbits such as those of binary pulsars, or those observed in the Pioneer/Cassini
anomalies. The limit of non-relativistic and relativistic circular orbits is con-
sidered as an example. In Section 15.3 the equivalence principle is explained
straightforwardly with ECE orbital theory, and in Section 15.4 a perturbatin
model of the binary pulsar orbits is developed. Graphical results and discus-
sion are given in section 15.5 for non - EH orbits in binary pulsars and in the
solar system, where non-EH orbits are now known from Pioneer and Cassini
data. In section 15.6 the Hulse-Taylor binary pulsar is discussed.

15.2 General ECE Orbital Theory

In S.I. units and for a planar orbit, ECE orbital theory is based on the line
element:

−c2dτ2 = −
(
1 − rS

r

)
c2dt2 +

(
1 − rS

r

)−1

dr2 + r2dφ2 (15.1)

in spherical polar coordinates. Here [1–10]:

rS = −T

R
, |rS | =

T

R
, (15.2)

where T/R is a parameter determined by the data. An excellent description
of the great majority of orbits is found in the limit:

rS → 2MG

c2
(15.3)
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where G is Newton’s constant, and where a mass m is attracted to a gravitat-
ing mass M. In the solar system M is the mass of the Sun. In general however
Eq. (15.3) does not apply. Examples of observed orbits in which Eq. (15.3)
does not apply are those of binary pulsars and the Pioneer/Cassini anoma-
lies. The standard model attempts to explain these orbits must be discarded
because they are based on the geometrically incorrect Einstein Hilbert (EH)
theory [1–12]. From Eq. (15.1):

−ε = −c2

(
dτ

dλ

)2

= −
(
1 − rS

r

)
c2

(
dt

dλ

)2

+
(
1 − rS

r

)−1
(

dr

dλ

)2

+ r2

(
dφ

dλ

)2
(15.4)

where ε is a constant of motion[13, 14]. From Killing vector analysis
[11, 13, 14] the following are also constants of motion for all gravitational
fields:

Er =
(
1 − rS

r

)( dt

dλ

)
, Lr = r2

(
dφ

dλ

)
(15.5)

These constants of motion remain so under all conditions, including
the conditions of a binary pulsar. Therefore the first type of ECE orbital
equation is:

1
2

(
dr

dλ

)2

+ Vr(r) =
1
2
E2

r . (15.6)

This equation has the units of energy if:

λ = τ (15.7)

where τ is the proper time [11, 13, 14] and if both sides of Eq. (15.6) are in
S.I. units of joules. This is achieved by multiplying both sides by m to obtain:

1
2
m

(
dr

dτ

)2

+ V = E =
1
2
mc2E2

r . (15.8)

The potential energy of the system in joules is:

V = mVr =
1
2
m

(
ε − ε

rS

r
+

L2

r2
− rSL2

r3

)2

(15.9)
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and the ECE orbital equation of type one, in S.I. units of joules is:

1
2
m

(
dr

dτ

)2

= E − V (15.10)

with:

ε = c2. (15.11)

Therefore the potential energy in joules is:

V =
1
2
m
(
1 − rS

r

)(
c2 +

L

r2

)
(15.12)

with the constant of motion:

L = r2 dφ

dτ
. (15.13)

Various types of orbits can be found by integrating Eq. (15.10) numeri-
cally. In the standard model the radius rS is always assumed to be:

rS =
2MG

c2
(15.14)

and is incorrectly attributed [1–10] to Schwarzschild. This attribution is due
to poor scholarship, Schwarzchild in 1916 produced a parameter α which was
not identified with Eq. (15.14). The identification of α with the so called
Schwarzschild radius is in fact arbitrary, as shown by Crothers [1–10]. The
identification follows the data, and does not predict the data as claimed in
the standard model. The observational fact is that there are orbits which do
not obey Eq. (15.14). This is now understood [1–10] to be due to the fact that
the EH equation is geometrically self-inconsistent for reasons carefully devel-
oped recently [1–10] in a series of proofs and arguments, and using computer
algebra.

In a binary pulsar [11] for example the mean distance between the
two component stars is decreasing per revolution. This decrease cannot be
described by Eq.(15.14). In ECE theory the observed decrease per revolution
is explained by using the fact that in general:

|rS | =
T

R
(r, θ, φ). (15.15)
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A simple and well known [11] example of orbital theory is the limit of
circular orbits:

∂V

∂r
= 0. (15.16)

From Eqs. (15.12) and (15.16):

r =
1

c2rS

(
L2 ± L

(
L2 − 12c2r2

S

) 1
2
)

. (15.17)

In the Newtonian limit:

rS → 0 (15.18)

and:

r → L2

c2rS
. (15.19)

Therefore:

r → L2

c2

R

T
. (15.20)

In the Newtonian limit:

L → rv (15.21)

where v is the orbital velocity, so:

R

T
→
( c

v

)2 1
r
. (15.22)

In the Newtonian limit it is known from observation that:

R

T
=

c2

2GM
(15.23)

to an excellent approximation, so:

rv2 = GM. (15.24)

Therefore in the Earth to Sun system for example these Newtonian limits
apply. Some numerical results and discussion on the self-consistency of this
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analysis are given in Section 15.6. It is shown there that for a large enough
T/R the orbital radius will decrease to zero, without assuming gravitational
radiation. In a binary pulsar the orbit is elliptical, the masses of the two stars
are about equal, and the ecliptic precesses a great deal every revolution. On
top of this the distance between the two stars decreases. All these features
are described by Eq. (15.10) and other types of ECE orbital equation, given
the fact that T/R is in general a function of the spherical polar coordinates,
and not a constant. This conclusion is also shown by the Pioneer/Cassini
anomalies.

The binary pulsar is a two particle problem in dynamics, governed by:

r = r1 − r2 (15.25)

and

r1 =
m2

m1 + m2
r, r2 = − m1

m1 + m2
r, (15.26)

where m1 and m2 are the masses of the two stars and where r1 and r2 are the
distances between each star and the center of mass of the two star system. If
the reduced mass is defined by:

µ =
m1m2

m1 + m2
(15.27)

the lagrangian [13] is:

L =
1
2
µ
(
ṙ2 + r2φ̇2

)
− U(r) (15.28)

in spherical polar coordinates. The following is a constant of motion:

l = µr2φ̇ (15.29)

and this is Kepler’s second law as is well known. The total energy of the
system is constant:

E = T + U (15.30)

and so the orbital law may be described by:

φ(r) =
∫

l

r2

(
2µ

(
E − U − l2

2µr2

))−1/2

dr. (15.31)
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This law may be rewritten [13] in terms of the force:

F (r) = −∂U

∂r
(15.32)

as

d2u

dr2
+ u = − µ

l2
1
u2

F (u) (15.33)

where

u =
1
r
. (15.34)

The centrifugal force is identified as [13]:

Fc = −∂Uc

∂r
=

l2

µr3
= µrφ̇2 (15.35)

and the effective potential is:

V (r) = U(r) +
l2

2µr2
. (15.36)

In Newtonian dynamics:

F (r) = −mMG

r2
(15.37)

so:

U(r) = −
∫

F (r)dr = −mMG

r
. (15.38)

In Newtonian dynamics therefore:

V (r) = −mMG

r
+

l2

2µr2
. (15.39)

Eq. (15.33) may be integrated to give:

α

r
= 1 + ε cos(θ) (15.40)
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where:

α =
l2

µk
, ε =

(
1 +

2El2

µk2

) 1
2

, (15.41)

and

k = mMG. (15.42)

The quantity ε is known as the eccentricity of the orbit.
From these equation it is inferred that a Newtonian orbit is an exactly

closed ellipse whose perihelion does not advance, i.e. in a Newtonian orbit:

d2u

dφ2
+ u =

Gm2M

l2
(15.43)

which is the orbit of a mass m attracted by a mass M through Newton’s
inverse square law. In the standard model the relativistic orbital equation
becomes [13]:

d2u

dφ2
+ u =

Gm2M

l2
+ 3

GM

c2
u2 (15.44)

i.e.

d2u

dφ2
+ u =

1
α

+ δu2 (15.45)

using the notation:

1
α

=
Gm2M

l2
, δ = 3

GM

c2
. (15.46)

In ECE theory the orbital equation is Eq. (15.45) with:

GM =
c2

2

∣∣∣∣TR
∣∣∣∣ = c2

2
rS . (15.47)

Therefore orbits may also be described by numerically integrating the type
two ECE orbital equation (15.45). The orbit of a binary pulsar is therefore
described by finding u from Eq. (15.45) and using Eqs. (15.25) and (15.26)
to find the individual orbits of the stars of the binary pulsar as a function of
T/R. The latter is adjusted to fit the observed perihelion advance of 4o per
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revolution in the Hulse Taylor binary pulsar for example, and the observed
decrease of 3.1 mm a revolution in the inter-star separation r1 + r2.

A third type of ECE orbital equation may be found by using:

dr

dφ
=

dr

dτ

dτ

dφ
=

r2

L

dr

dτ
(15.48)

so:

dr

dφ
=

r2

L

(
2
m

(E − V )
) 1

2

(15.49)

and:

φ =
∫

L

r2

(
2
m

(E − V )
)− 1

2

dr. (15.50)

This equation may be integrated numerically as a function of T/R to give
such effects as light bending by gravitation as a function of T/R. So in general
the light bending is not precisely twice the Newtonian value - this is an ECE
prediction that can be looked for experimentally in for example the Joddrell
Bank binary pulsar in which the two stars are each pulsars.

15.3 The Equivalence Principle

The inertial mass is that mass that determines the acceleration of a particle
under the action of a given force [13]. The gravitational mass is that mass
that determines the gravitational force between two particles. The two types
of mass are the same within one part in 1012. This is known as the equivalence
principle. Thus:

F = mg = −mMG

r2
(15.51)

and there exists an acceleration due to gravity that is independent of m. Thus
two objects of different m fall to the surface of the Earth of mass M at the
same time for a given r. This fact is usually attributed to Galileo but was
known to the ancients, for example John Philoponus in the sixth century. The
gravitational potential defines g as follows:

g = −∇Φ (15.52)
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where:

Φ = −GM

r
(15.53)

and the potential energy in joules is:

U = mΦ. (15.54)

In ECE the equivalence principle is a consequence of Cartan geometry, as
might be expected. In ECE theory [1–10]:

g = Tc2 (15.55)

and: ∣∣∣∣TR
∣∣∣∣→ 2MG

c2
. (15.56)

Therefore Eq. (15.51) follows from Eqs. (15.55) and (15.56) if:

Tc2 =
c2

2

∣∣∣∣TR
∣∣∣∣ 1
r2

(15.57)

i.e.:

R =
1

2r2
. (15.58)

Now use: ∣∣∣∣TR
∣∣∣∣ = rS =

2MG

c2
(15.59)

so from Eqs. (15.58) and (15.59):

|T | =
rS

2r2
. (15.60)

Therefore the fundamental geometrical reason why m should be the same
on both sides of Eq. (15.51) is that the curvature and torsion are given by
Eqs. (15.58) and (15.60). The Pioneer/Cassini anomalies and the orbits of
binary pulsars are due to the fact that rS deviates from 2MG/c2, but the
equivalence principle in ECE is always true, as for any theory of relativity.
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15.4 Perturbation Theory of the Orbit of a Binary
Pulsar System

In the simplest instance it is shown in this section that the main features of
the orbit of a binary pulsar system can be explained with:

rS = −T

R
=

2MG

c2
+

a

r
(15.61)

where a is a parameter of the system. Therefore the potential energy of the
binary pulsar is given by:

V =
1
2
m
(
1 − rS

r

)(
c2 +

L2

r2

)
(15.62)

with rS defined as in Eq. (15.61). The latter produces an additional force of
attraction:

∆F = −∂∆V

∂r
= −2am

r3

(
c2 +

2L2

r2

)
. (15.63)

It may be shown straightforwardly using Eq. (15.33) that this additional
force of attraction results in a logarithmic spiral orbit of the type:

r = k
1
3 exp

(α

3
φ
)

(15.64)

so that the complete orbit of the binary pulsar is a precessing ellipse superim-
posed on a logarithmic spiral. This result has been confirmed using computer
simulation and is illustrated in Fig. (15.12). It can be seen that the observed
decrease in orbital radius of 3.1 mm a revolution in a binary pulsar such as
the Hulse Taylor binary pulsar can be reproduced by the simple assumption
of Eq. (15.61). The ratio of torsion to curvature is assumed therefore to be
of the form (15.61), in which a can be considered to be a small perturbation.
In the solar system it is responsible for the Pioneer/Cassini anomalies, which
is a small but finite extra gravitational attraction not given by the Einstein
Hilbert theory. Therefore Eq. (15.61) gives a simple and consistent explana-
tion of non EH orbits of all kinds without the assumption of gravitational
radiation and by self consistently incorporating the Cartan torsion missing
in the EH equation. The total potential of the binary pulsar system may be
expressed as:

V = V0 + ∆V (15.65)
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where ∆V is an extra attractive potential due to Eq. (15.61). In an initially
circular orbit:

∂V0

∂r
= 0 (15.66)

and it is clear that the extra force of attraction due to ∆V will cause the
orbit to spiral inwards on a logarithmic spiral trajectory of type (15.64). In
the earth to sun system in the solar system the extra ∆V is very small, as can
be seen from the Pioneer/Cassini anomaly, and the earth’s orbit is essentially
circular and non-relativistic. The advance of the perihelion for earth is very
small per orbital revolution of one year. However in a binary pulsar the extra
force of attraction causes the orbit to spiral inwards on a logarithmic spiral
trajectory by an average of 3.1 mm a revolution. The orbit of the Hulse Taylor
binary pulsar for example is very elliptical, and its perihelion advances by 4o

per revolution. The advance of the perihelion can be described by V0 alone,
but the decrease of the orbit needs for its explanation the additional ∆V .
All binary pulsar systems currently catalogued can be described in this way,
without the need to assume gravitational radiation.

One of the major discoveries of ECE theory [1–10] is that the EH equation
is self inconsistent because of its neglect of torsion. Therefore all the physical
predictions of the EH equation must be re-explained anew using ECE theory,
in which the torsion is correctly incorporated. These include light deflection
due to gravitation, perihelion advance, the orbits of binary pulsars, the Pio-
neer/Cassini anomalies, frame dragging, the Shapiro delay, and in general
all the precision tests of relativity. Concepts such as Big Bang, dark matter
theory, black hole theory, and so on must be rejected because they are based
on a self-inconsistent geometry, Riemann geometry without torsion. Careful
scholarship [1–10] has revealed that the Schwarzschild vacuum solutions of
1916 do not contain the parameter 2MG/c2, but a parameter α. Therefore α
in Eq. (15.61) is modeled to give the experimentally observed orbits. In ECE
theory the α parameter is recognized as the ratio of −T/R. The orbit of a
binary pulsar has been described without assuming gravitational radiation.
The latter is again a false concept based on the flawed EH equation, and grav-
itational radiation has never been directly observed. It is merely assumed to
exist because EH theory cannot describe the decrease in the orbital radius of
a binary pulsar. In ECE theory [1–10], gravitational radiation exists in prin-
ciple from the ECE wave equation based on the tetrad postulate of Cartan
geometry. However gravitational radiation is exceedingly difficult to observe,
and has not yet been observed in a quarter century of effort. Therefore the
exact solutions of the EH equation are obsolete because they are solutions of
an inconsistent geometry. It has been shown in paper 93 onwards of ECE the-
ory [1–10] that the Christoffel or symmetric connection is inconsistent with
the Bianchi identiy as developed by Cartan. All exact solutions of the EH
equation are based on the Christoffel symbol and so must be rejected. During
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the course of development of ECE theory, new and self consistent methods of
relativity theory have been devised.

In order to calculate non Einstein Hilbert orbits self-consistently the
dependence of rS on r and on the constants of motion is needed. Consider
the potential energy of the relativistic Kepler problem using the notation of
section 15.1:

V (r) =
1
2

m
(
1 − rs

r

) (
c2 +

L2

r2

)
(15.67)

It is found that:

∂V

∂rS
= −

m
(

L2

r2 + c2
)

2 r
(15.68)

The rate of change of V with r is:

∂V

∂r
=

mrS

2 r2

(
L2

r2
+ c2

)
− mL2

r3

(
1 − rS

r

)
(15.69)

Now use:

∂V

∂rS
=

∂V

∂r

∂r

∂rS
(15.70)

to find:

∂rS

∂r
= −3 rS L2 − 2 r L2 + c2 r2 rS

r (L2 + c2 r2)
(15.71)

and

∂r

∂rS
= − r

(
L2 + c2 r2

)
3 rS L2 − 2 r L2 + c2 r2 rS

(15.72)

Therefore by integration, the required dependence of rS on r and L is found:

rS =
∫

−3 rS L2 − 2 r L2 + c2 r2 rS

r (L2 + c2 r2)
dr (15.73)

Conversely, the dependence of r on rS is found by the following integration:

r =
∫

− r
(
L2 + c2 r2

)
3 rS L2 − 2 r L2 + c2 r2 rS

drS . (15.74)
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The integral of Eq. (15.73) can be worked out analytically:

rS(r) =

(
L2 + c2 r2

)
r3

(
2L2

(
log
(
L2 + c2 r2

)
2 c4

+
L2

2 c4 L2 + 2 c6 r2

)
+ b

)
(15.75)

while the integral of Eq. (15.74) is not solvable analytically. Solution (15.75)
contains the integration constant b which leads to a threefold classification
of the results:

rS →
⎧⎨⎩

+∞
−∞
0

for r → 0.

Examples of the first two classes are graphed in Section 5.2. Self-
consistency of the perturbation model is shown there by deriving an
expression for the perturbation parameter a which is compatible with the r
dependence of rS .

In Section 15.6 a review of known binary pulsar systems is given from a
recent observational survey. These orbits are all likely to be non EH orbits
and in future work they will be catalogued using Eq. (15.61), so that each can
be assigned an a parameter. Furthermore, orbits of all kinds can be described
by Eq. (15.61), for example the equation shows that the earth’s orbit will very
slowly spiral into the sun due to the non EH attractive force discovered by
both the Pioneer and Cassini spacecraft as they escape the solar system. This
is equivalent to a g of order 10−12ms−2. So Eq. (15.61) is a suggestion for a
self consistent cosmology, one that explains all orbits without gravitational
radiation, and one which correctly takes account of the Cartan torsion in
relativity theory.

15.5 Graphical Results and Discussion

15.5.1 Schwarzschild Radius and Potential

The results of the analytical and numerical calcualtions are presented in this
section. First the effect of a variable Schwarzschild radius rS was studied. A
parametric form

rS = γ rS0 (15.76)

was used where rS0 is the value from standard theory:

rS0 =
2GM

c2
(15.77)
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Table 15.1 Simulation parameters (in SI units).

Earth/Sun Hulse-Taylor

m1 5.9742 · 1024kg 2.86629 · 1030kg

m2 1.9891 · 1030kg 2.75888 · 1030kg

r1 1.4960 · 1011m 3.15357 · 109m

L 4.4580 · 1015m2/s 3.4 · 1014m2/s

and γ is an adjustable parameter. In the Newtonian limit the orbital radius r
depends inversely linear on rS , see Eq. (15.19). This is graphed in Fig. (15.1)
for the earth radius in the solar system. For γ = 1 it takes the standard value
of about 1.5 ·1011m but falls hyperbolically to zero for a largely increased rS .

In Fig. (15.2) the Newtonian limit of Eq. (15.19) is compared with the
relativistic case described by Eq. (15.17). With the parameters of the solar
system (Table (15.1)) both approaches lead to indistinguishable values with
exception of a very large rS where the relativistic curve drops to a verti-
cal tangent. Beyond this range, the square root expression of Eq. (15.17) is
imaginary. It can be seen that both equations are self-consistent because they
result in the same curve over a wide range of rS .

Next the relativistic potential of Eq. (15.12) is described and graphed
by some examples. In the Newtonian case the term proportional to 1/r3 is
absent, i.e. rS is effectively set to zero for this part. From Fig. (15.3) the
principle difference between the Newtonian and relativistic case can be seen
(the term 1/2mc2 has been omitted). In the Newtonian case the potential
goes to plus inifinity for small radii, while it falls to minus inifinity in the
relativistic case. This does not change significantly if parameters are altered.
For example in Fig. (15.4) we have increased the mass of the earth artificially
to that of the sun. Theoretically the relativistic curve could have a local
maximum, but this does not show up in the parameter range considered here.
The behaviour of the Newtonian potential changes if the angular momentum
of the earth would be considerably lower as indicated in Fig. (15.5). However,
all this would happen inside the radius of the sun and therefore is beyond
reality.

The change in the potential for a varying rS can be studied from Fig.
(15.6). For increasing rS , there is no visible change in the Newtonian potential,
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Fig. 15.2. Orbital radius of Earth in dependence of variable Schwarzschild
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but a tendency to an earlier dropping in the relativistic case. The behaviour
of the Newtonian potential is different for a reduced angular momentum (Fig.
(15.7)). Increasing the Schwarzschild radius leads to a significant lowering of
the potential near to the center.

15.5.2 Self-Consistency of Schwarzschild Radius Calculations

According to the results of section 15.4, rS can be obtained as a function of the
radius by integration (Eqs. 15.73, 15.75). The solution (15.75) contains the
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Fig. 15.3. Potential of Sun for Earth, rS = 2954 km, m = m(Earth), L =
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Fig. 15.5. Potential of Sun for enhanced earth mass, rS = 2954 km,
m=m(Sun), lowered angular momentum: L = 6 · 1010m2/s (reduced).
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integration constant b which leads to a threefold classification of the results:
rS → +∞,−∞, 0. Examples of the first two classes are graphed in Fig. (15.8).
The third class of solutions is defined by rS(r) hitting the coordinate origin:

rS(0) = 0.

This is the type of solution which is physical because it has the right
asymptotic behaviour

rS → 0 for r → 0.

This is a bound solution while the other two classes are unbound solutions.
Setting

rS(r) = 0 (15.78)

defines the constant b for which this condition is met, in dependence of r:

b = −
(
L4 + c2 r2 L2

)
log
(
L2 + c2 r2

)
+ L4

c4 L2 + c6 r2
. (15.79)

We obtain the desired value of the constant by setting r = 0:

b = −L2 (2 log(L) + 1)
c4

. (15.80)
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This expression depends sensitively on the constant of motion L. By con-
struction, rS should have the known value of 2954m for the earth orbit.
For L(Earth) we obtain the upper curve in Fig. (15.9) which does not meet
this condition properly. Therefore we have adopted the value of L to L =
1.42 · 1015m2/s so that the curve goes through the point

rS(1.49 · 1011m) ≈ rS0 = 2954m.

This leads to the lower curve in Fig. (15.9). The numerical analysis shows
that the formula for rS depends sensitively on the value of b. Since we are
operating with very large numbers here (up to 1060) the numerical stability
is not very high even in evaluating analytical formulae. This point has to be
further investigated in subsequent work, perhaps by switching to astronomical
units. Here we restrict to showing up the basic properties of a variable rS(r).

To circumvent this problem we try another approach for model 3. The
integration constant b is defined now by the condition

rS(rEarth) = rS0.

This gives the result graphed in Fig. (15.10). rS takes a maximum at the
earth radius. This approach is not sufficient since rS takes negative values for
small r.

As a last point in this subsection we inspect the behaviour of the per-
turbation model Eq. (15.61) in section 15.4. For reasons of self-consistency,
the parameter a must be a function of r so that both models can coincide.
Therefore we have, with Eq. (15.75):

rS0 +
a

r
=

(
L2 + c2 r2

)
r3

(
2L2

(
log
(
L2 + c2 r2

)
2 c4

+
L2

2 c4 L2 + 2 c6 r2

)
+ b

)
.

(15.81)

and after resolving for a:

a =

(
L4 + c2 r2 L2

)
log
(
L2 + c2 r2

)
+ L4 + b c4 L2 − c4 r3 rs0 + b c6 r2

c4 r2
.

(15.82)

Using the three models of Figs. (15.9) and (15.10) we obtain three distinct
values for b and therefore three different solutions for Eq. (15.81), graphed
in Fig. (15.11). Models 1 and 3 have a maximum at the earth orbit. Models
2 and 3 lead to a = 0 at the earth orbit by construction. It can be seen from
the graphs that this condition is fulfilled. Model 3 gives negative values for
a and therefore seems to be the worst one. Model 2 is the only model with
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increasing, non-negative a for r < r(Earth) and seems to be most compatible
with the perturbation model.

We can conclude that the self-consistent calculation of rS is in principle
compatible with the perturbation model, but it is quite difficult to find the
“physical” integration constant because the results depend sensitively on it.
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15.5.3 Simulations of Orbits

The computation of orbits is based on Eqs. (15.44–15.46). Since these are not
soluble analytically, a simulation program was written on base of the Runge-
Kutta algorithm. With this method, coupled ordinary differential equations
of first order can be solved in 4th order precision. The set of equations is

du

dφ
= w, (15.83)
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dw

dφ
=

1
α

+ δu2 − u (15.84)

with

1
α

=
Gµ2m2

l2
=

µ2

l2
c2

2
rS , (15.85)

δ =
3Gm2

c2
=

3
2
r2
S , (15.86)

µ being the reduced mass, l = Lµ2 the angular momentum and w an auxiliary
variable (inverse radial velocity). Without the δu2 term, the orbits r(φ) =
1/u(φ) have the form of ellipses. The effect of the relativistic δu2 is to pre-
vent the elliptic orbits from being closed curves, there is an advance of the
perihelion per revolution. With a constant rS the minimum and maximum
radius would not change, but they do if rS depends on the radius. Both effects
(relativistic term and a variable rS) are inlcuded in the results shown in Fig.
(15.12) where they can be observed nicely. The shrinking of radius is made
more visisble in Fig. (15.13). One sees that the outer radius shrinks faster
than the inner radius, thus stabilizing the orbit for a long time. Correspond-
ingly, the inverse orbital velocities, described by the function w(φ), shrink in
the same way (Fig. (15.14)) so that the total energy remains constant.
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Fig. 15.12. Orbit r(φ) for a relativistic potential with Schwarzschild radius
perturbation a/r.
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For the more complicated models of rS(r) other types of orbits are to be
expected. Applying the model of Fig. (15.9), there is a maximum of rS(r)
which leads to two stable orbital radii and the mass body oscillates between
both (Fig. (15.15)). This is in accordance with orbits of periodic central fields
as described in [13].

15.6 Pulsars and Double Star Systems

15.6.1 History of Discovery

Sir Arthur Eddington famously led an expedition to observe the total eclipse
of the Sun in 1919 to see if light grazing the Sun was deflected by gravity
according to the Einstein-Hilbert equation of general relativity. The conclu-
sion that the Einstein-Hilbert equation described the bending of light better
that Newtons work, led to Einstein becoming the world’s first global super-
star scientist and introduced the public to Einstein’s concept of gravity as
the curvature of space by massive objects. Here, mass tells space how to bend
and space tells masses how to move!

Looking further into space than the Sun astronomers have sought to locate
objects in the space with much greater gravitational fields than the Sun in
order to improve the accuracy of the Edddington experiment, which was
carried out close to the limit of experimental accuracy. The objects which
are frequently studied for this purpose are white dwarfs, neutron stars and
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pulsars. The intense beam of light from pulsars make them particularly suited
to testing out general relativity.

The first pulsar to be discovered was by the postgraduate student Jocelyn
Bell Burnell at Cambridge University in the nineteen sixties. Pulsars are stars
that have lived their lives, gone supernova and collaped to produce neutron
stars which have most of the mass of the original star, but concentrated into
a much smaller volume. The concentration of the mass increases the gravity
of the collapsed star in its neighborhood and this leads to a much greater
curving of space, as predicted by Einstein’s theory of general relativity.

In 1974 the first binary double star to have a pulsar as one of the com-
ponents was discovered by Hulse and Taylor 21,000 light years away in the
constellation of Hercules using the Arecibo radio antenna. The binary pulsar
is in orbit with another star, with both components having a mass 1.4 times
that of the Sun and the binary nature of the pulsar being given away by the
7.75 hour periodic variations in the arrival times of the radio pulses due to the
pulsar approaching and receeding, which corresponds with the time taken for
the system to complete one orbit. The Hulse Taylor binary pulsar was widely
studied as a test bed for general relativity and gave its discoverers the 1993
Nobel Prize for Physics. About one hundred double pulsars have been found
so far, giving researchers a range of orbits to and masses to study. However,
the disovery of a binary double star in which both components were pulsars
and in which both pulsar beams were reaching Erth would be not just an
amazing stoke of luck, but would also be the system of choice to use to study
general relativity!

The first and only double pulsar system ever found is called PSR J0737-
3039A, B and was discovered by the Jodrell Bank radio-observatory in Manch-
ester in January 2004.

The PSR prefix stands for pulsar and the letters A and B refer to the two
component pulsars that are trapped by the immense gravitational field into
mutually orbiting one another as a binary double star. Binary double stars
are common, but for one of the components of a double star to be a pulsar is
rare, because pulsars are comparatively rare and for both components to be
a pulsar is a godsend, one of the greatest discoveries in all of science.

15.6.2 Numerical Results for the Hulse Taylor Double Star System

The doubls star system was simulated as described in section 5.3. The orbit
of both masses is depicted in Fig. (15.16). Both stars move on ellipses with a
common focal point. The relations between the geometric parameters are

e =
√

a2 − b2, (15.87)

ε =
e

a
=

√
a2 − b2

a
, (15.88)
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Fig. 15.16. Hulse-Taylor pulsar double star system, orbit and parameters.

b = a
√

1 − ε2 (15.89)

with excentricity ε. The angular momentum parameter L can be determined
in a simple way at the aphelion and perihelion points where the orbital veloc-
ity v is perpendicular to the radius, i.e. its radial component vanishes:

L = (a + e)v1 = (a − e)v2. (15.90)

The kinetic, potential and total energy can be derived from the computed
variables u and w in the following way. For w we have

w =
du

dφ
=

du

dr

dr

dφ
= − 1

r2

dr

dφ
(15.91)

or

dr

dφ
= −wr2. (15.92)

With this equation we have

ṙ =
dr

dφ

l

µr2
= −wl

µ
. (15.93)

Therefore the kinetic energy becomes

T =
1
2

(
µṙ2 +

l2

µr2

)
=

l2

2µ

(
w2 + u2

)
. (15.94)
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Note that the centrifugal potential belongs to the kinetic energy. The
potential energy is

U =
1
2
µ

(
c2 − rS

r
c2 − rS

l2

µ2r3

)
(15.95)

and the total energy

Etot = T + U. (15.96)

These energies have been plotted in Fig. (15.17). It can be seen that
the total energy is conserved throughout the orbit. Kinetic and potential
energy are highest in the region of maximal closeness of the stars, i.e. in the
perihelion.

The relativistic part of the potential is compared to the Newtonian part
(see Eq. (15.12)) in Fig. (15.18). The distance of the stars, even being closer
than the sun-earth system, is large enough to make the relativistic effects
small compared to the Newtonian part of the potential. It can nicely be seen
that relativistic effects are highest in the perihelion, while they tend to zero
in the aphelion.

Finally the effect of the parameter a of the perturbation model of the
Schwarzschild radius is shown (Fig. (15.19)). The decrease in radius per rev-
olution, ∆r, is graphed against a. Obviously the dependence is linear over a
range of several orders of magnitude. The physical value of ∆r is some mil-
limeters per revolution, so a has to be chosen in the range of 10−4m2. The
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Fig. 15.17. Hulse-Taylor pulsar double star system, energy.
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exact value is beyond the precision of the calculation. Although the Runge-
Kutta scheme is precise to the order 4, the computed orbit was not stable
enough to account for such small differences compared to the ellipse radius.
We leave the exact determination of a to later numerical studies.
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