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Disintegration of Einsteinian general relativity,

towards a new ECE cosmology

M. W. Evans∗

Civil List and A.I.A.S.

and

H. Eckardt†

A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
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Abstract

Keywords:

1 Introduction

2 Mathematcs in place of dogma

3 Numerical analysis with Maxima

We give some examples for the nature of the function m(r) in various contexts
showing that inconsistencies for this function arise. There is no transition from
Einsteinian theory to Newtonian mechanics.

The angular change or radius for an orbiting body is in Einsteinian as well
as ECE theory given by

dr

dθ
= r2

(
1

b2
−m(r)

(
1

a2
+

1

r2

))1/2

(64)

where the functions m(r) are given by

m(r) = 1− r0
r

(65)

in Einsteinian and
m(r) = 2− exp

(
2 exp(− r

R
)
)

(66)

∗email: emyrone@aol.com
†email: horsteck@aol.com
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in ECE theory with constants of motion

a =
L

m c
, b =

L c

E
, (67)

see Eqs. (11), (12), (17) and (24). The simplest transition to Newtonian theory
would be

m(r)→ 1. (68)

Then Eq. (65) becomes

dr

dθ
→ r2

(
1

b2
− 1

a2
− 1

r2

)1/2

. (69)

Because of (68) it is
a

b
=

E

m c2
. (70)

Since E consists of the rest energy plus kinetic energy we have

E > mc2, (71)

hence

a > b and
1

a2
<

1

b2
(72)

but the di�erence is small because of the huge rest energy of a celestial body.
Consequently the condition from (69) for obtaining a real value of the square
root,

1

b2
≥ 1

a2
+

1

r2
, (73)

can barely be ful�lled for a ≈ b. The condition is much easier to ful�ll for
m(r) < 1, which is guaranteed for all values of r. This can be seen from the
graphs of Fig. 1 and 2. In Fig. 1 there are bound states for the m functions of
Einsteinian and ECE theory which are compatible with elliptic orbits. However,
in order to obtain a non-negative square root argument for m = 1, one has to
choose a >> b. This is typical for the non-relativistic case. In other words,
the function m = 1 can only be used in the non-relativistic case where the
r-dependent m function is de�ned for total energies with exclusion of the rest
energy. This is one reason why both types of theory do not pass into one another.
In Fig. 2 there is no bound state for m(Einstein) and two distinct regions, one
bound and one unbound, for m(ECE). Both cases do not describe ellipses.

If it is assumed that dr/dθ describes an orbits of a precessing ellipse, the
general form of orbit has to be equated by dr/dθ of elliptic orbits which has been
done in Eq. (21). As a result, a particular form of function m(r) is obtained,
see (22). The radial part of this function is graphed in Fig. 3 for three values
of eccentricity ε. It can be seen that these curves di�er only in the region very
near to the centre (note that we have set r0 = 1 throughout our calculations).
However these curves di�er signi�cantly from the general form of m presented
in Eq. (66). This may be the reason why it was very di�cult to �nd bound
elliptic orbits in Figs. 1 and 2.

The angular dependence of m is shown in Fig. 4 in a polar diagram. For
small radii, there is a signi�cant angular variation. For radii larger than r0
this di�erences become indistinguishable as can also be seen from Fig. 3. This

2



Figure 1: Bound states of dr/dθ, for functions m(Einstein) and m(ECE). Pa-
rameters were a = b = 10, R = 1, r0 = 1. For comparison: m = 1 with
a = 10, b = 1.

Figure 2: Unbound states of dr/dθ, for functions m = 1, m(Einstein) and
m(ECE). Parameters were a = 2.5, b = 2, R = 1, r0 = 1.
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Figure 3: m(r) of Eq. (22) for a = b = x = 1, θ = π/2, in compar�son with
m(r) from Eq. (24).

Figure 4: Angular dependence of m(r) from Eq. (22) for three radius values,
ε = 0.2.
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behaviour is to be expected for a spherical spacetime, there should be no angular
variance, otherwise the geometry would not be spherical. The behaviour near
to the center probably plays no practical role since this is inside a star where
additional laws of physics are valid.

In section 2 an expression for the radial velocity of an orbiting body was
derived (Eq. (15)). In the non-relativistic approximation this expression should
shade into the Newtonian expression given in Eq. (26). From equating both
velocity expressions (Eq. (46)), one should obtain the function m which repre-
sents the Newtonian theory. Due to the di�erent energy de�nitions we do not
expect a result of m = 1. Squaring Eq. (46) gives

c2b2m2(r)

(
1

b2
−m(r)

(
1

a2
+

1

r2

))
=

2E

m
+

2MG

r
− L2

m2r2
. (74)

This is a cubic equation in m(r) of the form

c1m
3(r) + c2m

2(r) + c3 = 0 (75)

with constants

c1 = −c2b2
(

1

a2
+

1

r2

)
, (76)

c2 = c2, (77)

c3 = −2E

m
− 2MG

r
+

L2

m2r2
. (78)

For consistency reasons, we write the constants L and E in terms of a and b as
obtained from Eq. (67):

L = amc, E =
a

b
mc2. (79)

Eq. (75) can be solved, giving two complex and one real solution. The real
solution is

m(r) =

(√
c3 (27 c21 c3 + 4 c32)

2 3
3
2 c21

− 27 c21 c3 + 2 c32
54 c31

) 1
3

+
c22

9 c21

(√
c3 (27 c21 c3+4 c32)

2 3
3
2 c21

− 27 c21 c3+2 c32
54 c31

) 1
3

− c2
3 c1

. (80)

Graphing this highly complicated expression yields the results shown in Fig. 5.
All tested parameter combinations give qualitatively the same curve type. The
limit of m for large r is negative and not +1 as it should be. In particular
this is not the function used by Einstein theory. This result makes evident that
Newtonian and Einstein theory are not compatible.

Finally we investigated the form of m(r) for a whirlpool galaxy. Equating
both terms for dr/dθ as before, Eqs. (12) and (52), we obtain

r2
(

1

b2
−m(r)

(
1

a2
+

1

r2

))1/2

= αr (81)
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Figure 5: Newtonian limit of m(r) for tow a,b parameters, other parameters
being c = 1,m = 1,M = 100, G = 1.

or

m(r) =
a2

r2 + b2

(
r2

b2
− α2

)
(82)

which has been graphed in Fig. 6. The curve is similar to the general m
function, Eq. (66), for values of α between 2.5 and 3. The far �eld limit is unity
as required but convergence behaviour is slightly di�erent for all three curves.
Compared to Fig. 3, this indicates that descibing spiral galaxies by ECE theory
may even be simpler than describing elliptical orbits, a surprising result when
taking into account that dark matter had to be assumed to bring Einstein theory
in agreement with the experimental velocity curve. In total we have shown by
numerical methods that Einstein theory is inconsistent and untenable.
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Figure 6: m(r) for a spiral galaxy, with parameters a = 1, b = 1.
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