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Abstract

Keywords:

1 Introduction

2 The m function for the solar system, whirlpol

galaxies and binary pulsars

3 Computer analysis and orbital schematics

In this section the function m(r) is evaluated. In order to give physical mean-
ingful values, the limit

m(r →∞) = 1 (50)

has to be ful�lled in all cases. This means that there is an additional relation
between the parameters of m. We work this out for precessing orbits in the
form of ellipses, logarithmic spirals and ellipses with shrinking diameter.

3.1 m functions for the solar system

The general form of m(r) for precessing elliptic orbits was derived in Eq. (9) by
equating the angular derivative of radius (Eq. (5)) with the general form of this

∗email: emyrone@aol.com
†email: horsteck@aol.com
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expression (Eq. (6)) obtained from the in�nitesimal line element. The limit of
this function for r →∞ is

lim
r→∞

m(r) = −
a2
(
b2 ε2 x2 − b2 x2 − α2

)
α2 b2

. (51)

Setting this expression to 1, computer algebra gives the relation

ε =

√
a2 b2 x2 − α2 b2 + a2 α2

a b x
(52)

(actually we used the positive solution of a square root). This expression can
be inserted in Eq. (9):

m(r) = −
(
2 a2 r − a2 α

)
x2 − α r2

α r2 + a2 α
. (53)

This is a simpli�ed form of m where ε has been elimitated. Note that also the
parameter b does not occur anymore, giving a dependence only from a, α and
x. The curve is graphed in Fig. 1. The factor x determines the direction of
precession of the ellipse. x > 1 means in directon of θ, x < 1 gives a rotation
in the opposite direction. In the latter case, m remains in the positive range,
meaning that there are no singularities in the metric.

Alternatively, the parameter x can be elimitated from Eq. (9) by using the
limiting Eq. (51). This gives

x =
α
√
b2 − a2
a b

(54)

and the m function then takes the form

m(r) =

(
b2 ε2 − b2

)
r2 +

(
2α b2 − 2 a2 α

)
r − α2 b2 + a2 α2

(b2 ε2 − b2) r2 + a2 b2 ε2 − a2 b2
. (55)

as an alternative to (53). The graph of this function is shown in Fig. 2 for three
values of ε. It must be noted that this function looks di�erent compared to Fig.
1, it rises slightly beyond unity and approaches unity from above in the r limit.

3.2 m functions for whirlpool galaxies

The m function takes a simple form in case of logarithmic spirals. The calcula-
tion in section 2 leads to the m function of Eq. (39):

m(r) =

(
1

b2
− ζ2

r2

)(
1

a2
+

1

r2

)−1
. (56)

This has the simple limit

lim
r→∞

m(r) =
a2

b2
(57)

which means that
a ≈ b (58)

in the limit of large r, i.e. The kinetic energy plays no role compared to the
relativistic total energy. The function (56) has been plotted in Fig. 3 for three
"pitch" values ζ. There is no di�erence if ζ is positive or negative because it
appears in (39) in squared form only. In the case ζ = 0 the orbit is a circle
which has a purely positive m function.

2



3.3 m functions for binary pulsars

Massive cosmic objects in near distance to each other show a small permanent
decrease of their average orbital radius. This was attributed to gravitational
radiation losses prior to ECE theory. The orbits can be considered as a com-
bination of an inward spiral with a precessing ellipse. The corresponding m
function is given by Eq. (41). Applying the same limit calculation as before we
obtain

lim
r→∞

m(r) =
a2 e−2 θ ζ

(
α2 e2 θ ζ − b2 ε2 x2 + b2 x2

)
α2 b2

(59)

which is somewhat more complex than Eq. (51). Equating the limit to unity
gives

ε =

√
−α2 b2 e2 θ ζ + a2 α2 e2 θ ζ + a2 b2 x2

a b x
(60)

and inserting this in (41) leads to an even more complicated expression:

m(r) = − 1

α b (r2 + a2)
e−2 θ ζ (61)(

2 a r ζ eθ ζ
√
(a2 α2 − α2 b2) e2 θ ζ + a2 b2 x2

·

√
(α2 b2 − a2 α2) r2 e2 θ ζ + (a2 α2 b2 − 2 a2 α b2 r) x2

(α2 b2 − a2 α2) r2 e2 θ ζ − a2 b2 r2 x2

+
(
a2 α b ζ2 − α b r2

)
e2 θ ζ +

(
2 a2 b r − a2 α b

)
x2
)
.

This expression depends on θ and has been graphed in Fig. 4 for a representative
value of θ. The e�ect of the pitch is a signi�cant drop of the m function to
negative values. The limit for large r is unity again.

Alternatively we can solve the limiting equation (59) for x as before:

x =
α
√
b2 − a2 eθ ζ

a b
. (62)

Inserting this into (41) gives a highly complicated expression again:

m(r) = − 1

(b2 ε2 − b2) r2 + a2 b2 ε2 − a2 b2

((
a2 b2 ε2 − a2 b2

)
ζ2 (63)

+
(
2 a b ε2 − 2 a b

) √
−b

2 − a2
ε2 − 1

√
(ε2 − 1) r2 + 2α r − α2 ζ

+
(
b2 − b2 ε2

)
r2 +

(
2 a2 α− 2α b2

)
r + α2 b2 − a2 α2

)
.

This expression has the bene�t of not to dependent on θ. However, the values
are complex in a certain range of r. In that range no real values of m exist, as
can be seen from Fig. 5. Occurence of complex values can easily be seen from
Eq. (62) where the condition a > b leads to a negative argument of the square
root. Nevertheless the m functions looks more regular in overall than in Fig. 4.
The same result can be drawn for the precessing ellipse of the solar system, see
section 3.1, leading to a certain consistency of the results.
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Figure 1: m(r) for precessing ellipses with parameters a = 1, α = 1.

Figure 2: m(r) for precessing ellipses with parameters a = 1.05, b = 1, alpha = 3.
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Figure 3: m(r) for logarithmic spirals with parameters a = b = 1.

Figure 4: m(r) for shrinking precessing ellipses with parameters a = 1.01, b =
1, α = 1, ζ = −1, θ = π/4.
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Figure 5: m(r) for shrinking precessing ellipses with parameters a = 1.01, b =
1, α = 1, ε = 0.3.

3.4 Graphical demonstration of elliptic orbits

Fig. 6: The Static Newtonian Elliptical Orbit describes an ellipse that, although
non deviant, has a spiral connection in that all quadrants of the ellipse trace
are almost exactly logarithmically spiral.

Fig. 7: The Precessing Elliptical Orbit trace can appear to produce spiralling
"arms" from its rotating perihelion in both directions. Its rotation has slightly
opened or closed the Newtonian, 360 degree, elliptical symmetry and so is now
in spiralling elliptical orbit. The rotation of the orbit must depict a reduction or
increase in the 360 degrees of the Newtonian Static ellipse's symmetry. So, more
than 360 degrees of elliptical orbit gives a clockwise precession or vice versa if
less than that (assuming a clockwise elliptical orbit).

Fig. 8: The Shrinking Precessing Elliptical Orbit trace is now seen to also
spiral inward. There are many periods of orbit as there are precession rates.
Therefore any one of these Figures shown may take up to millions of years to
complete in reality.

Fig. 9: The Shrinking orbit continues toward M, its focus, possibly increas-
ing in velocity, leading eventually to collision, diversion, or other uncertainty. A
spiralling Galaxy can be depicted as a group of expanding precessing elliptical
orbits that merely have a di�ering - much faster graphical spiral development.
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Figure 6: Newtonian elliptical orbit.

Figure 7: Precessing elliptical orbit.
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Figure 8: Precessing and shrinking elliptical orbit.

Figure 9: Precessing and shrinking elliptical orbit.
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