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Failure of the fundamentals of Einsteinian

General Relativity
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and

H. Eckardt†

A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
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3 Numerical analysis based on the Lagrangian

method

The force laws and the result for light de�ection derived in section 2 are studied
in grater detail in this section.

3.1 Force law for binary pulsars

The force law (16) of binary pulsars depends on coordinates r and θ. These are
not independent because the force relates to an orbit of the mass m. The orbital
function r(θ) (Eq. (15)) has to be inserted into Eq. (16) to obtain a pure F (r)
dependence. The result obtained by computer algebra is

F (r) = −e
−a θ x2 L2

αmr2
(28)

−2 a e−a θ
√

(ε+ 1) r − α ea θ
√

(ε− 1) r + α ea θ xL2

αmr3

+

(
x2 − a2 − 1

)
L2

mr3
.

It is seen that there remains an exponential θ depemdence indicating some
spiralling behaviour. The �rst term is essentially the Newtonian multiplied by
an exponential. The result is plotted in Fig. 1. Parameters are chosen as
indicated in the Figure caption. Three negative values were used for the pitch a
of the decreasing elliptical orbit. The decrease of radius requires growing force

∗email: emyrone@aol.com
†email: horsteck@aol.com
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over time or the angle θ respectively. This growth is exponential but modulated
by the ellipse as can be seen from the �gure. The orbit together with the force
is shown in Fig. 2 in a polar diagram for a = −0.01. The decrease of the orbit
and the rise of the force is manifest. The mass falls into the centre.

In a second example we used a positive parameter a = 0.1 to describe the
inverse case, an increasing orbit and falling force. This leads to a roughly
logarithmic spiral in force as well as in orbit, see Fig. 3. Observe that the orbit
pertains from inner to outer while the corresponding force runs from outer to
inner.

3.2 Force law for whirlpool galaxies

The orbit of Fig. 3 may resemble a spiral galaxy, but we know that galaxies
are formed more in a hyperbolic than a logarithmic spiral. The orbit has the
simple form

r =
α

θ
(29)

where α is a characteristic length and the spiral describes the linear asymptote
for θ → 0. The direction of θ is inverse to the direction of star movement from
inner to outer. The Euler Lagrange equation (1) of this orbit is extremely simple
since the second derivative of 1/r according to θ vanishes. The folrce law is

F = −θ
3 L2

α3m
, (30)

i.e. F is proportional to θ3, a third power force law. The graph (Fig. 4) shows
the spiralling orbit (with the asymptote) and the force. Observe that for positive
theta direction the orbit goes from outer to inner and the force from inner to
outer. The polynomial spiral characteristic of the force is di�erent to that of
the orbit.

3.3 Light de�ection

The Lagrangian result for light de�ection (21) can be handled analytically. The
integral is in general∫

2α

x

√
ε2 − (αu− 1)

2
du = − 2

x asin

(
2α−2α2 u√

4α2 (ε2−1)+4α2

)
(31)

= 2
x asin

(
αu−1
ε

)
.

Therefore the angle of light de�ection is

∆θ =
2

x

(
asin

(
α−R0

R0 ε

)
+ asin(

1

ε
)

)
. (32)

For an orbit around the sun it is in good approximation x ≈ ε ≈ 1. Then follows

∆θ = −2 asin

(
α−R0

R0

)
− 2π (33)
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Figure 1: Force for shrinking ellipses with parameters L = 1,m = 0.1, α =
1, x = 1.1, ε = 0.3 .

Figure 2: Orbit and force for shrinking ellipses with parameters L = 1,m =
0.1, α = 1, x = 1.1, ε = 0.3, a = −0.01 .
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Figure 3: Orbit and force for strongly expanding ellipses (spirals) with param-
eters L = 1,m = 0.1, α = 1, x = 1.1, ε = 0.3, a = 0.1 .

Figure 4: Orbit and force for a hyperbolic spiral with parameters L = 1,m =
0.1, α = 1.
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or

α

R0
− 1 = sin

(
∆θ

2

)
(34)

from which follows

α = R0 sin

(
∆θ

2

)
+R0. (35)

Because ∆θ is very small, the sinus term is neraly zero. This means that in
good approximation

α ≈ R0. (36)

The characteristic radius α practically coincides with the sun radius.
Finally we calculate the integrals of the time delay (23)-(27). Computer

algebra yields

t1 =

√
R2
E −R2

0

c
, (37)

t2 =

√
R2
P −R2

0

c
, (38)

t3 = 2
√
αm

3cL

(
RP
√

2RP − α+ α
√

2RP − α+RE
√

2RE − α (39)

+ α
√

2RE − α− 2
√

2R0 − αα− 2R0

√
2R0 − α

)
.

The total time delay, formula (22),

∆t = t3 − 2(t1 + t2), (40)

contains more terms than the formula of Wald given by Eq. (29) of paper 155.
In total the Lagrangian method is suited to compute the time delay as well

as all kind of gravitational forces.
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