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Derivation of the Gauss Law of Magnetism,
The Faraday Law of Induction, and O(3)
Electrodynamics From The Evans Field Theory

1.1 Introduction

In this paper the Gauss law applied to magnetism [1) and the Faraday Law of
induction [1, 2} are derived from the Evans field theory |3, 33] by the imposi-
tion of well defined constraints in differential geometry. Therefore the origin
of these well known laws is traced to differential geometry and the properties
of the general four dimensional manifold known as Evans spacetime. Such
inferences are not possible in the Maxwell-Heaviside (MH) theory of the stan-
dard model {1, 2] because MH is not an objective theory of physics, rather it
is a theory of special relativity covariant only under the Lorentz transforma-
tion. An objective theory of physics must be covariant under any coordinate
transformation{l] and this is a fundamental philosophical requirement for all
physics, as first realized by Einstein. This fundamental requirement is known
as general relativity and the general coordinate transformation leads to gen-
eral covariance in contrast to the Lorentz covariance of special relativity. The
fundamental lack of objectivity in the Lorentz covariant MH theory means
that it is not able to describe the important mutual effects of gravitation
and electromagnetism. In contrast the Evans unified field theory is generally
covariant and is a direct logical consequence of Einstein’s general relativity,
which is essentially the geometrization of physics. The unified field theory is
able by definition to analyze the effects of gravitation on electromagnetism
and vice-versa.

In Section 2 a fundamental geometrical constraint on the general field

theory is derived e \G,S 2 \Mf
mation of the first Bianchi identity of differential geometry. It

is then shown that this constraint leads to O(3) electrodynamics (3, 33] directly
from the Bianchi identity. These inferences trace the origin of the Gauss
law applied to magnetism and the Faraday law of induction to differential
geometry and general relativity, as required by Einsteinian natural philosophy.
Section 3 is a discussion of the numerical methods needed to solve the general
and restricted Evans field equations.
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1.2 Geometrical Condition Needed for the Gauss Law of
Magnetism and the Faraday Law of Induction and
Derivation of O(3) Electrodynamic

The geometrical origin of these laws in the Evans field theory is the first
Bianchi identity of differential geometry [1]:

DAT*=R!A (1.1)
which can be rewritten as:
dAT* =REAP —Wf AT® (1.2)

Here T* is the vector valued torsion two-form, R} is the tensor valued cur-
vature or Riemann two-form: ¢° is the vector valued tetrad one-form: is the
spin connection, which can be regarded as a one-form [1]. The symbol DA
denotes the covariant exterior derivative and dA denotes the ordinary exterior

derivative.
The Bianchi identity becomes the homogeneous Evans field equation (HE)
using;:
A% = A0 (1.3)
Fo = AOTe | (1.4)

Here A is a scalar valued electromagnetic potential magnitude (whose S.1.
unit is volt s / m). Thus A® is the vector valued electromagnetic potential
one-form and F* is the vector valued electromagnetic field two-form. The HE

( \° ® is therefore:
’ dAF* =R ANA® — @ ANF®

\,,({ = 10j° (1.5)
\\..

where: 1
j* = p (Rg A AP — wi A FP) (1.6)
0

is the homogeneous current, a vector valued three-form. Here is the S. I.
vacuum permeability.

The homogeneous current is theoretically non-zero. However it is known
experimentally to great precision that:

ANF~0 ¢ (1.7)

Eqn. (1.7) encapsulates the two laws which are to be derived here from Evans
field theory. These are usually written in vector notation as follows. The
Gauss law applied to magnetism is:

VeB%~0 (1.8) &

—
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1.2 Geometrical Condition 7

where B® is magnetic flux density. The Faraday law of induction is:

0B
Ea - .. .
v x E* + ot 0 (1.9)

|\

(1.9) comes from equation (1.5), i.e. from general relativity as required by
Einstein. The physical meaning of a is that it indicates a basis set of the
tangent bundle spacetime, a Minkowski or flat spacetime. Any basis elements
(e.g. unit vectors or Pauli matrices) can be used [1]in the tangent spacetime
of differential geometry, and the basis elements can be used to describe states
of polarization [3, 33], for example circular polarization first discovered ex-
perimentally by Arago in 1811. Arago was the first to observe what is now
known as the two transverse states of circular polarization. It is convenient
[3, 33] to describe these states of circular polarization by the well known [34]
complex circular basis:

a=(1),(2)and (3) (1.10)
G whose unit vectors are:
¢ \es% eV = %(i—ij):e@)‘, (1.11)

g &3 :@ (1.12)

~ where * denotes complex conjugation. Each state of circular polarization
can be described by two complex conjugates. One sense of circularly polarized
radiation is described by the complex conjugates:

()
©) _
F\ \ = A7§—(i—ij)e’¢ (1.13)
— = ©) _
A (;.) '= s liries (1.14)

The other sense of circularly polarized radiation is described by the com-
plex conjugates:

() © _
B_ 5 @: % (i + ij) e'® (1.15)

)
p\ (; AP = é\%)(' —ij)e (1.16)

Here ¢ is the electromagnetic phase and Eqns. (1.13) and (1.16) are solu-
tions of Eq. (1.7).

The experimentally observable Evans spin field @ [3, 33] is defined by
the vector cross product of one conjugate with the other. In non-linear optics
[3, 33] this is known as the conjugate product, and is observed experimentally

where@is electric field strength. The index a appearing in Eqns. (1.8) and ..-

| 7=

(3)
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in the inverse Faraday effect, (IFE), the magnetization of any material mat-
ter by circularly polarized electromagnetic radiation. In the sense of circular
polarization defined by Eqns. (1.13) and (1.14):

B® = —igaV) x 4P = BOg (1.17) E° LA\ A%\?(

C\O)( \ where

K

g \_' and where k is the wavenumber. In the sense of circular polarization de-
fined by Eqns. (1.15) and (1.16) B reverses sign:

B = —igA() x A = - BO)k (1.19) &0 & KM"

“~—— and this is observed experimentally [3, 33] because the observable magne-
tization changes sign when the handedness or sense of circular polarization
is reversed. Linear polarization is the sum of 50% left and 50% right circular

polarization and in this state the IFE is observed to disappear. Thu gold r"&ﬂ

\ A in a linearly polarized beam ishes b se half the beam has positiv,

¥6 and the other half negative@@). The(B ) sﬁeld was first inferred by Evams-in
K 1992 [34] and it was recognized for the first time that the phase free magneti-
UW zation of the IFE is due to a third (spin) state of polarization now recognized

as a = (3) in the unified field theory. The Gauss law and the Fara, law g k V’
of induction hold for a = (3), but it is observed experimentally that (A(3))= - 0_ old 7"
[3, 33]. Therefore:

(1.20) Lo\ " \C

(1.21) 1 [ Z
The fundamental reason for this is that the spin of the electromagnetic

field produces an angular momentum which is observed experimentally in

the Beth effect [3, 33]. The electromagnetic field is negative under charge Y
conjugation symmetry (C), so the Beth angular momentum produces’ &o\ & ‘W
€

\ directly, angular mpmentum and magnetic field being both axial vectors. T
6 8\ putative radiatec;@ would be a polar vector if it existed, and would not
K‘ be produced by sptr” There is however no electric analogue of the inverse
\N Faraday effect, a circularly polarized electromagnetic field does not produce

an electric polarization experimentally, only a magnetization. Similarly, in
the original Faraday effect, a static magnetic field rotates the plane of linearly
polarized radiation, but a static electric field does not. The Faraday effect
and the IFE are explained using the same hyperpolarizability tensor in the
standard model, and in the Evans field theory by a term in the well defined
Maclaurin expansion of the spin connection in terms of the tetrad, producing
the IFE magnetization:
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M® = — g0 4@ (1.22)
— Hofme —
“—— where (4®) and are complex jugate tetrad elements combined
into vectors (3, 33]. Sirilarly all non-linear optical effects in the Evans field

theory are, self consistently, properties of the Evans spacetime or general four- -

dimensional base manifold. The unified field theory therefore allows non-linear
optics to be built up from spacetime, as required in general relativity. In the
MH theory the spacetime is flat and cannot be changed, so non-linear optics
must be described using constitutive relations extraneous to the original linear
theory.

In the unified field theory the Evans spin field and the conjugate product
are deduced self consistently from the experimental observation:

§*~0 (1.23)

Egs.(1.23) and (1.6) imply:
REAGP =wf AT (1.24)

\___to high precision.In other words the Gauss law and Faraday law of in-
duction appear to be true within contemporary experimental precision.The
reason for this in general relativity (i.e. objective physics) is Eq.(1.24), a con-
straint of differential geometry. Using the Maurer-Cartan structure equations
of differential geometry [1]:

T¢ = D A g (1.25)
Ry =DAwp (1.26)

Eq.(1.24) becomes the following experimentally implied constraint on the
general unified field theory:

(DAw)AE =wi A(DAGY) (1.27)
A particular solution of Eq.(1.27) is:
wy =)fe‘§cq“ (1.28)

\—— where ¢f, is the Levi-Civita tensor in the flat tangent bundle space-
time.Being a flat spacetime, Latin indices can be raised and lowered in con-
travariant covariant notation and so we may rewrite Eq.(1.28) as:

Wab = K€abeq® . (1.29)

Eqn.(1.29) states that the spin connection is an antisymmetric tensor dual
to the axial vector within a scalar valued factor with the dimensions of inverse
metres. Thus Eq.(1.29) defines the wave-number magnitude, «, in the unified
fleld theory. It follows from Eqn.(1.29) that the covariant derivative defining

Lola VG
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the torsion form in the first Maurer-Cartan structure equation (1.25) can be
written as:

Te=dAq* +wiAg

%%M—d/\q +~quso>

C\()S‘- (131)

t&;whwh it follows,using Eqgs.(1.3) and (1.4), that:
F*=dA A%+ gA® A A° (1.32)

In the complex circular basis,Eq.(1.32) can be expanded as the cyclically
symmetric set of three equations:

FO* — g a AD* _jgA@ A 4® (1.33)
F@* = A AD* —igAB) A 4D (1.34)
(3)* =dA A(S)* _ ’LgA(l) /\ A(2) (1 35)

c\»e —l

~_ with O(3 symmetr)rhese are the deﬁnln elations of O(3) electro-

( dynamics, developed by Evans from 1992 to 2003@-\ I
It has been shown that O(3) electrodynamissAs a direct result It of the

unified field theory given the experimental constraints imposed by the Gauss

law and the Faraday law of induction. It follows that O(3) electrodynamics

automatically produces these laws, i.e.:

AL ANE <
\oy o = \,3/ > =23 (1.36)

\. as observed experimentally.The existence of the conjugate product has
\)\.«& been DEDUCED in Eq.(1.32) from differential geometry.and it follows that
the spin field and the inverse Faraday effect have also been deduced from
differential geometry and the Evans unified field theory of general relativity
or objective physics. This is a major advance from the standard model and

the MH theory of special relativity.

1.3 Numerical Methods of Solutions

In general the homogeneous and inhomogeneous Evans field equations must
be solved simultaneously for given initial and boundary conditions. In this
section the two equations are written out in tensor notation and subsidiary
information summarized. The homogeneous field equation in tensor notation
is:

{/

(o
S

(3-23]



1.3 Numerical Methods of Solutions 11

a b a b
OuF ) +0,Fy +0,F,, = R(;uuAP+RbUPAu+R2puAZ—‘“ vp F/gu_“" Fb

\ose
( “~— and this is equivalent to the barebones or minimalist notation of dlﬁerentlal

Q geometry:

“~— where all indices have been suppressed. For the purposes of electrical
engineering Eq.(1.37) is,to an excellent approximation:

dAF=RAA-wAF (1.38)

BuFS, + 8,F%, + 8,F%, =0 (1.39)

Eq.(1.39) is equivalent to the Gauss Law applied to magnetism:

v . =0 (1.40)

/
\-’and the Faraday Law of induction:

v x+ ~ 0 (1.41)

M — for all polarization states a.

' L — The exceedingly important influence of gravitation on electromagnetism and
G‘& ) vice versa must however be computed in general when the right hand side of
q Eq.(1.37) is non-zero. This tiny but in general non-zero influence leads to a
violation of the well known laws (1.40) and (1.41), and this must be searched
for with high precision instrumentation. Eq.(1.39) may be rewritten as the

Hodge dual equation: ;
O'F;, =0 (1.42)

~~__ and for each index a this is a homogeneous Maxwell-Heaviside field equa-
tion. In general F,‘fu is the Hodge dual of F}j, in Evans spacetime and 3% is
the Hodge dual of the charge-current density three-form defined by the right
hand side of Eq.(1.37), i.e.by:

6/‘ng + 6VF;Jlu + 6PF;:V = /J.()(jﬁup + jgpp + jg;w) (143)
where:
a 1 a b a b
Juvp = E)' (RbuuAp - “JubFup) (1-44)
Thus:
(1.45)
and
(1.46)

5ey QW—Q'.)O
S(G\(""b

sof Ndd
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In computing these Hodge duals the correct ¢éneral definition maps from a
p-form of differential geometry to an (n—p)-forrxj of differential geometry in the
general n dimensional manifold. The general four dimensional manifold is the
Evans spacetime, so named to distinguish it from the Riemannian spacetime
used in Einstein’s field theory of gravitatiorf. The Hodge dual is in general

1}:
(1] G ,

Uy oy (1.47)

The general Levi-Civita symbol is:
1 if gy po... iy is an even permutation
€prpz.un = § —1 if p1po.. s isan odd permutation (1.48)
0 otherwise

\/ and the Levi-Civita tensor used in Eq.(1.47) is:

1/2
Curpariin = (9% €4 (1.49)

~— where |g| is the numerical value (i.e. a number) of the determinant of the
metric tensor g,,,. The field tensor is defined by the torsion tensor:

Fg, = AOTS, (1.50)
\_ and the potential is defined by the tetrad:
Al = A0 g (1.51)

The metric is factorized into a dot product of tetrads:

Guv = qqub;nab (1~52)
where:
S~— 10 00
0-10 0
Nab = 00 -1 0 (153)
00 0 -1

. is the diagonal metric tensor of the tangent bundle spacetime, a Minkowski
or flat spacetime. The gamma and spin connections are related by the tetrad
postulate:

b
D,g} = 8,4 + winay — Ty« (1.54)
The torsion and curvature (or Riemann) tensors are defined by the Maurer-
Cartan structure relations of differential geometry. The torsion tensor is the
covariant derivative of the tetrad and is:
A A — A
T, =qT,,=1,,,-1,, . (1.55)

atpv
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It therefore vanishes for the Christoffel connection of Einstein’s gravita-
tional theory:

r,=r, . (1.56)
The curvature tensor is the covariant derivative of the spin connection and
is:
b
Kuu = ng/\ ‘l:l/u o (157)
It follows that:
bop = Ovwiyp — Ouwpy + wycwiy — Wi Wyp (1.58)

d
\\_/ an o T——
= 0,1, — 0,07\ + Fl‘,’pF[L’,\ -r;,r), (1.59)

= K The Evans spacetime is therefore completely defined by the structure re-

/ lations. The homogeneous field equation is the first Bianchi identity of dif-

ferential geometry within the C negative factor A®_ The second Bianchi

o identity leads to the Noether Theorem of Evans field theory, and states that
@ )\ ) the covariant derivative of the curvature tensor vanishes identically.

/L Note that Eq.(1.39) is equivalent to the use of Riemann normal coor-
dinates and a locally flat spacetime, because it is an equation in ordinary
derivatives, not covariant derivatives. In general, |g|, the modulus of the de-
terminant of the metric, in Eq.(1.49) is a function of z*, but at a point p in
the Evans spacetime or manifold M it is always possible to define the Riemann
normal coordinate system so the metric is in canonical form, and:

0.9=0 (1.60)

This defines the locally flat spacetime. Note carefully that the general ho-
mogeneous equation (1.37) cannot be expressed as a Hodge dual equation of
type (1.39), so the appropriate equation for numerical solution must always be
Eq.(1.37). Eq.(1.39) is mentioned only because of the traditional method of
expressing the homogeneous Maxwell-Heaviside equation of Minkowski space-
time (HME) as the Hodge dual equation. The correct form of the HME is
the following Bianchi identity of Minkowski spacetime:

aAFu.u + au.FuA + auFA“ =0 . (161)

\ a spacetime in which the Hodge dual is definable as:

~ 1
F#V — §€LWP0FPG . (162)

It may then be proven that Eq.(1.61) is the same equation as:
9, F* =0 (1.63)

The proof is as follows. From Eq.(1.63):
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NEF> 4+ §,FH + §,FP =0 (1.64)

\" and using Eq.(1.62):
5 (00 (HVE,,) + 0, (¢7AF,) + 0, (€P#F,) =0 . (165)

Using the Leibniz Theorem and the constancy of ¢#*#? in Minkowski space-
time, Eq.(1.65) becomes:

- cAp#ua,\Fu,, + E“p”aﬂFM + eupkuaupxu =0, (1.66) ’

We may add individual indices of Eq.(1.66), to give, for example:

0B Fyy + P10,y + EP12BF, + - =0 (1.67)
which is
\_’ 61F23+62F31+83F12+"'=0 (168)
upon using:
NG 8 (1023 _ 2031 _ 3012 , (1.69) — 4

Proceeding in this way we see that Eq.(1.61} is the same as Eq.(1.63).Note
carefully that this proof is not true in general for Evans spacetime, because
in that spacetime we obtain results such as:

,—»///_’J\\\-——‘
_ GM 30 )

{ one obtains:

;e 0 (1.71) .

spacetime. Only in the special case of Eq.(1.62) do we obtaln T

P = 0, o (1.72)

Therefore in general, the homogeneous Evaus equation (1.37) must be
solved simultaneously with the inhomogeneous Evans equation.The latter is
¢ an expression for the covariant exterior derivative of the Hodge dual of Fj,. In
the minimalist or barebones notation of differential geometry this expression
is: - - -

dANF=RANA—-wAF

1.73

~~__ where R denotes the Hodge dual of the curvature form. Eq.(1.73) is the
objective or generally covariant expression in unified field theory of the inho-
mogeneous Maxwell-Heaviside equation (IMH) of special relativity:

and there is an extra term which does not appear in Eq.(1.63) of Minkowski /(Ad'"
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dANF = pod (1.74)

It is seen by comparison of Eqgs.(1.73) and (1.74) that in the unified field
theory dA has been replaced by DA as required. Since both F and R in
Eq.(1.38) are two-forms it follows by symmetry that if one takes the Hodge
dual of F on the left hand side, one must take the Hodge dual of R on the °
right hand side. The reason is that the Hodge dual of any two-form in Evans
spacetime is always another two-form. It is convenient to rewrite Eq.(1.73)

as: o
DAF=RAA (1.75)
\/and in analogy with Eq.(1.37), the tensorial expression for Eq. (1 73)
8. Fg,+0,F2 +0,F%, = Ry, AS+Rg, AL +RE, A~ D — ,,Fb

Therefore the general computational task is to solve Eqgs.(1.37) and 1 76)
simultaneously for given initial and boundary conditions. In the 1ast analysis
this is a problem in simultaneous partial differential equations. We may now
define the inhomogeneous current

Juwp = = (R l,Al’—w F?
e “(”‘f /) (1.77)

\_ and we may note that J,,, is in general much larger than the homogeneous
current j,u,. Therefore J,,, is of great practical importance for the acqui-
sition of electric power from Evans spacetime and for counter gravitational
technology in the aerospace industry.

Finally a convenient form of the inhomogeneous field equation may be
obtained from the following considerations.We first construct the following
Hodge dual:

r- 1 vpo
F# = st F,, (1.78)
\/in the MH limit:
dAF =0 (1.79)
dAF = poJ (1.80)
and note that:

-\ BV 1

(d A F) # ST AAF) (1.81)

In convenient shorthand notation this result may be written as:
. 1.
d/\F#ied/\F (1.82)

a result which becomes:
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~ 1 B
d/\F;éilg]%cd/\F (1.83)

“~—_in Evans spacetime. This is a key result because it shows that J¢ is not
zero if j2 is zero or almost zero, and it is J? that is the important current
term for the acquisition of electric power from Evans spacetime.

For the purposes of computation a systematic method of constructing the
inhomogeneous Evans field equation (IE) is needed, where every term needed
for coding is defined precisely. In order to do this begin with the funda-
mental definitions of differential geometry, the two Maurer-Cartan structure
equations:

T® = D Ag® (1.84)
¢ = DA w (1.85)

\‘ and the two Bianchi identities:

DAT* =R} A (1.86)
DAR=0 | (1.87)

In order to correctly construct the Hodge duals of T® and Ry appearing
in the IE the determinant of the metric must be defined correctly in each case
(see Eq.(1.49)). In order to proceed consider the limit of the Evans unified
field theory that gives Einstein’s field theory of gravitation uninfluenced by
electromagnetism. In the Einstein limit the metric tensor is symmetric and
is defined by the inner or dot product of two tetrads:

g‘(ﬁ,) = qg(s)qg(s)nab . (1.88)

The differential geometry appropriate to the Einstein theory is then:

T4S) =0 (1.89)
d A q*S) = —f5) A gblS) (1.90)
R AgS =g | (1.91)

The determinant of the metric is defined in this limit by:
g =1gil (1.92)
- and so the Hodge dual of the Riemann form is defined in Einstein’s theory
of gravitation by:
pa(s) _ 1 1 ¢ a8
RS = SlgD B RS (1.93)
Consider next the limit of the Evans field theory that gives the free electro-
magnetic field when there is no field matter interaction, matter being defined

by the presence of non-zero mass. The differential geometry that defines this
limit is:
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T4A) = D A g*D (1.94)

Ry = D A wp™ (1.95)

gl = g4 A gbA) (1.96)

\_, and the determinant of the metric is: A
g =gty (1.97)

The Hodge duals of the torsion and Riemann forms for the free electro-
magnetic field are therefore:

Faa) %|g(A>|%gTa<A> (1.98)

(1.99)

~a 1 1 alA
Rb(A) = §Ig(A)l§6 Rb( )

Thirdly, when, the electromagnetic field interacts with matter, as in the
{E, the appropriate differential geometry is:

T°=DAg* (1.100)
R =D AWt (1.101)
gt = qiqb (1.102)

¥ and the determinant of the metric tensor is now:

g=1g2) . (1.103)

The metric tensor itself is the sum of symmetric and anti-symmetric com-
ponent metric tensors:

1 ) a by {4)
A (CA N C A R (1.104)
The Hodge dual of the Riemann form in the IE is therefore:
pa S .
Rb = 5‘9‘26 Rb (1105)
“~——_- because in general both the symmetric and antisymmetric metrics con-
tribute to the Riemann tensor or Riemann form when there is field matter

interaction
However, the Hodge dual of the torsion form in the IE is:

T° = %|g<A>|%e’Ta (1.106)

“~—— because only the antisymmetric metric contributes to the torsion tensor
or torsion form from Eq.(1.94).
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Therefore the computational algorithm is fully defined, and the computa-
tional task in general is to solve the HE and IE SIMULTANEOUSLY for given
initial and boundary conditions. The HE and IE contain more information
than the equivalents in Maxwell-Heaviside field theory, and the engineering
task is to CAD/CAM a circuit taking electric power from Evans spacetime,
defined by the general four dimensional manifold in which the Riemann and
torsion tensors are both non-zero. In the Minkowski spacetime of Maxwell-
Heaviside field theory both tensors are zero. We must use the computer to
define this extra source of power and to optimize circuits which utilize this
extra source of power in practical devices.
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