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Abstract

The tetrad of the Evans unified field theory is shown to be the wavefunction
for electromagnetism, the Dirac equation, strong force theory and the Majo-
rana/Weinberg spin equations for any particle and field in physics. The origin
of intrinsic spin in physics is shown to be a basis set of elements in the tangent
spacetime to a base manifold at point P . The tangent spacetime is a Minkowski
spacetime and the base manifold an Evans spacetime. The origin of the Pauli
exclusion principle is the half integral intrinsic spin described by an appropriate
basis set of elements. Right and left intrinsic spin in electrodynamics are the
two states of circular polarization which are again described by an appropriate
basis set. Similar reasoning applies for the origin of quark color and for general
spin in the Majorana Weinberg equations. In the Evans unified field theory
there is therefore a self-consistent description of intrinsic spin in physics and
gravitational theory.

Key words: Evans field theory; intrinsic spin; right and left circular polarization;
Pauli exclusion principle; quark color; Majorana Weinberg equations.
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13.1. INTRODUCTION

13.1 Introduction

A true unified field theory must be able to trace the origin of intrinsic spin in
physics, and describe the various manifestation of spin in all radiated and matter
fields. Furthermore it must be able to integrate this type of theory with gravi-
tational theory and also with quantum mechanics. This is a formidable problem
which appears to have been given one plausible solution lately [1]– [17] in the
Evans unified field theory. In this paper the origin of intrinsic spin is discussed
in terms of the tetrad, which is the fundamental field in the Evans theory for
all material matter and radiation. It is shown in Section 13.2 that there exists
a basis set of elements in tangent spacetime at a point P in the base manifold,
a basis set which defines the existence of intrinsic spin. In electrodynamics the
basis set defines left and right circular polarization and the intrinsic spin field
of generally covariant electrodynamics. In Section 13.3 the intrinsic left and
right spin of a fermionic field in the Dirac equation is defined in terms of the
appropriate basis set, and the origin of the Pauli exclusion principle revealed.
In Section 13.4 the origin of quark color in strong field theory is defined by a
color basis set in the tangent spacetime, and this is related to quark flavor in
the base manifold by the tetrad field of strong force theory. This is the matter
field of the six quarks currently postulated to exist and the tetrad in this case is
a transformation matrix linking quark color and flavor. Finally in Section 13.5
the Majorana Weinberg equations for arbitrary spin are set up using the same
principles of differential geometry which underpin the Evans unified field the-
ory. In each case the wavefunction is the tetrad qa

µ , and the tangent spacetime
label a is the index of the elements of the basis set. The index a is the index of
intrinsic spin.

13.2 Electrodynamics

The existence of intrinsic spin in electrodynamics was discovered experimentally
by Arago in 1811 and is referred to as left and right circular polarization. The
existence of the Evans spin field, observed in the inverse Faraday effect is indi-
cated conclusively by general relativity [1]– [17]. The vector potentials for left
and right circular polarization are:

A
(1)

R =
A(0)

√
2

(i− ij) eiφ (13.1)

A
(1)

L =
A(0)

√
2

(i + ij) eiφ, (13.2)

where φ is the electromagnetic phase and where the (1) index denotes complex
conjugation as follows:

A
(1)

R = A
(2)∗

R (13.3)

A
(1)

L = A
(2)∗

L . (13.4)
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The left and right spin field is then:

AR =
A(0)

√
2

(i− ij) eiφ (13.5)

AL =
A(0)

√
2

(i + ij) eiφ. (13.6)

For our present purposes we may simplify the argument by writing:

A
(1)

R = AR (13.7)

A
(1)

L = AL. (13.8)

The basis vectors for the complex circular basis are defined by:

e(1) =
1√
2

(i− ij) (13.9)

e(2) =
1√
2

(i + ij) (13.10)

e(3) = k (13.11)

where i, j, and k are Cartesian unit vectors. Therefore:

AR = A(0)eiφe(1) (13.12)

AL = A(0)eiφe(2). (13.13)

It follows that the right and left basis vectors may be defined as:

eR = eiφe(1) (13.14)

eL = eiφe(2). (13.15)

Within the phase factor eiφ these are the e(1) and e(2) basis vectors of the
complex circular basis. The components of the right and left basis vectors
define a tetrad matrix:

qa
µ =

[
eR

x eR
y

eL
x eL

y

]
(13.16)

where

eR
x =

eiφ

√
2

, eR
y =

−ieiφ

√
2

eL
x =

eiφ

√
2

, eL
y =

ieiφ

√
2
.

(13.17)

The tetrad in Eq.(13.16) obeys the Evans wave equation in the limit of zero
photon mass:

kT =
(mc

~

)2

−→ 0 (13.18)
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13.2. ELECTRODYNAMICS

so that:

�qa
µ = 0. (13.19)

With the Evans Ansatz:

Aa
µ = A(0)qa

µ (13.20)

Eq.(13.19) is the d’Alembert wave equation in free space:

�Aa
µ = 0. (13.21)

The tetrad qa
µ is always defined geometrically [18] by:

V a = qa
µV

µ (13.22)

where V a is a vector in the tangent spacetime and V µ is a vector in the base
manifold.

Define

V µ =

[
ex

ey

]
= e−iφ

[
1
1

]
(13.23)

and

V a =

[
eR

eL

]
=

1√
2

[
1 − i
1 + i

]
(13.24)

and it follows from Eqs.(13.16) and (13.22) to (13.24) that:

1√
2

[
1 − i
1 + i

]
=
eiφ

√
2

[
1 −i
1 i

] [
e−iφ

e−iφ

]
(13.25)

i.e.

V a = qa
µV

µ (13.26)

Q.E.D.

From Eq.(13.25) it is seen that the basis set for the intrinsic spin of electro-
magnetism is:

e(1) × e(2) = ie(3)∗ (13.27)

e(2) × e(3) = ie(1)∗ (13.28)

e(3) × e(1) = ie(2)∗ (13.29)

i.e. the basis set is made up of the complex circular unit vectors. Eq.(13.27) to
(13.29) have O(3) symmetry. This reasoning may be extended to find the origin
and meaning of intrinsic spin in other contexts.
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13.3 Fermionic Matter Field And The Dirac Equa-

tion

The tetrad field for the Dirac equation is

qa
µ =

[
qR

1 qR
2

qL
1 qL

2

]
(13.30)

where the Pauli spinors are defined by:

φR =

[
qR

1

qR
2

]
, φL =

[
qL

1

qL
2

]
. (13.31)

The tetrad field is defined by:

V a = qa
µV

µ (13.32)

where

V a =

[
eR

eL

]
, V µ =

[
e1

e2

]
. (13.33)

The column vector V µ is a two dimensional column vector in the base manifold
and transforms under SU(2) symmetry [19]. Similarly the column vector V a is
a two dimensional column vector in the tangent spacetime.

The tetrad field qa
µ is defined by Eq.(13.30) and obeys the Evans wave

equation [1]– [17]:
(� + kT ) qa

µ = 0. (13.34)

The Dirac equation is recovered in the limit:

kT −→
(mc

~

)2

, T −→ m

V
(13.35)

where m is the mass of the fermion, ~ is the reduced Planck constant, c is the
velocity of light and V is the rest volume of the fermion:

V =
~

2k

mc2
. (13.36)

In the limit (13.35) the Dirac spinor is defined [1]– [17] by:

ψ =




qR
1

qR
2

qL
1

qL
2


 (13.37)

and the Dirac equation is:
(

� +
(mc

~

)2
)
ψ = 0. (13.38)

This is a free particle equation, and in this limit no gravitational attraction
exists between fermions in Eq.(13.38). To describe gravitational attraction be-
tween fermions we need the Evans wave equation (13.34), in general without
approximation.
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13.4. STRONG FIELD THEORY

13.4 Strong Field Theory

In contemporary strong field theory [19] there are thought to exist six quark
flavors and three quark colors. If we accept this view uncritically the Evans
unified field theory can be applied to the n-quark models, where n = 2, . . . , 6.
These models transform under SU(n) symmetry [19]. In the 2-quark model
there are two flavors, u and d, and three colors, R,W and B. Define the
following column two-vector (a two-spinor) in the base manifold:

V µ =

[
u
d

]
=

[
e1

e2

]
(13.39)

and the following column three-vector (a three-spinor) in the tangent spacetime
to the base manifold at point P :

V a =




eR

eW

eB


 . (13.40)

The flavors u and d represent two physically distinct quarks, each of which has
color R,W and B. The u and d particles are analogous to the two distinct
electrons of Dirac theory. The electrons are distinct because they are left and
right handed, with half integral spin. Similarly, R,W and B in strong field
theory plays the role of half integral spin in electron theory. It is seen that
strong field theory is built up by direct analogy with Dirac theory, and quarks
also have half integral spin [19].

Now define the tetrad matrix linking quark color and quark flavor. This
must be a 2 × 3 matrix:



eR

eW

eB


 =



qR

1 qR
2

qW
1 qW

2

qB
1 qB

2



[
e1

e2

]
. (13.41)

Therefore the color-flavor tetrad for the two-quark model is:

qa
µ =



qR

1 qR
2

qW
1 qW

2

qB
1 qB

2


 (13.42)

and is the eigenfunction of the Evans wave equation [1]– [17]:

(� + kT ) qa
µ = 0. (13.43)

This means that qa
µ is the quark matter field. The quarks interact through

gluons, which are the radiated fields [19] of strong field theory.
Similarly, in the three-quark model the tetrad is defined by:




eR

eW

eB



 =




qR

1 qR
2 qR

3

qW
1 qW

2 qW
3

qB
1 qB

2 qB
3








e1

e2

e3



 (13.44)
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and is a 3 × 3 matrix. The name ”tetrad” is used generically [18]. As a final
example the tetrad of the four-quark model is a 4 × 3 matrix defined by:




eR

eW

eB



 =




qR

1 qR
2 qR

3 qR
4

qW
1 qW

2 qW
3 qW

4

qB
1 qB

2 qB
3 qB

4








e1

e2

e3

e4


 (13.45)

and it is possible to proceed in this way up to the six-quark model, where the
tetrad is a 6 × 3 matrix.

13.5 Majorana And Weinberg Equations

The Majorana equation [20, 21] represents the free space equations of electro-
magnetism as Weyl equations, i.e. a Dirac equation with no mass term. The
equations of electromagnetism used originally by Majorana in the nineteen twen-
ties were the Maxwell Heaviside equations. In order to derive the generally
covariant Majorana equation the unified field theory is needed. The Weinberg
equation [22] for any spin is a generalization of the Majorana equation for any
half-integral or integral spin. All these spin equations are special cases of the
Evans unified field theory. In order to illustrate this consider the Maxwell Heav-
iside field equations in free space. In S.I. units:

∇×E +
∂B

∂t
= 0 (13.46)

∇×B− 1

c2
∂E

∂t
= 0 (13.47)

where B is magnetic flux density and E is electric field strength. These equations
are used simply for the sake of illustration. The generally covariant equations
of electrodynamics from the Evans unified field theory [1]– [17] include the
fundamental Evans spin field - which is absent from the Maxwell Heaviside
field theory but which is observed experimentally in the inverse Faraday effect.
Eqs.(13.46) and (13.47) can be written as:

∇× (E − icB) +
i

c

∂

∂t
(E − icB) = 0. (13.48)

Now consider the right and left circularly polarized solutions of Eq.(13.48):

ER =
E(0)

√
2

(i− ij) eiφ (13.49)

BR =
B(0)

√
2

(ii + j) eiφ (13.50)

and

EL =
E(0)

√
2

(i + ij) eiφ (13.51)
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13.5. MAJORANA AND WEINBERG EQUATIONS

BL =
B(0)

√
2

(−ii + j) eiφ. (13.52)

Use
E(0) = cB(0) = ωA(0) (13.53)

to obtain

ER − icBR = 2ω
A(0)

√
2

(i− ij) eiφ. (13.54)

Define the potential field as:

AR =
A(0)

√
2
i (i− ij) eiφ (13.55)

so that
ER − icBR = 2

ω

i
AR. (13.56)

Similarly:

EL + icBL = 2
ω

i
AL (13.57)

where

AL =
A(0)

√
2
i (i + ij) eiφ. (13.58)

Eqs.(13.56) and (13.57) define the right and left handed potential fields. These
obey the equations: (

∇× +
i

c

∂

∂t

)
AR = 0 (13.59)

(
∇×− i

c

∂

∂t

)
AL = 0. (13.60)

The components of Eq.(13.59) are:

∂AR
z

∂y
−
∂AR

y

∂z
+
i

c

∂AR
x

∂t
= 0 (13.61)

∂AR
x

∂z
− ∂AR

z

∂x
+
i

c

∂AR
y

∂t
= 0 (13.62)

∂AR
y

∂x
− ∂AR

x

∂y
+
i

c

∂AR
z

∂t
= 0. (13.63)

Now use the quantum condition [19]:

pµ = i~∂µ (13.64)

where

pµ =

(
En

c
,p

)
, ∂µ =

(
1

c

∂

∂t
,−∇

)
. (13.65)
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Thus:

En = i~
∂

∂t
, p = −i~∇. (13.66)

Eqs.(13.61) to (13.63) therefore become:

EnAR
x + ic

(
pyA

R
z − pzA

R
y

)
= 0 (13.67)

EnAR
y + ic

(
pzA

R
x − pxA

R
z

)
= 0 (13.68)

EnAR
z + ic

(
pxA

R
y − pyA

R
x

)
= 0. (13.69)

Define the three-spinor:

φR =




AR

x

AR
y

AR
z



 (13.70)

and:

α · p =




0 0 0
0 0 −i
0 i 0


 px +




0 0 i
0 0 0
−i 0 0


 py +




0 −i 0
i 0 0
0 0 0


 pz

= i




0 −pz py

pz 0 −px

−py px 0


 .

(13.71)

Then Eqs.(13.67) to (13.63) are:



En
c




1 0 0
0 1 0
0 0 1



+ i




0 −pz py

pz 0 −px

−py px 0












AR

x

AR
y

AR
z



 = 0 (13.72)

or (
En

c
+ α · p

)
φR = 0. (13.73)

Similarly: (
En

c
− α · p

)
φL = 0 (13.74)

where the three-spinors are defined as:

φR =



AR

x

AR
y

AR
z


 , φL =



AL

x

AL
y

AL
z


 . (13.75)

Eqs.(13.73) and (13.74) are the Majorana equations [20, 21]. They are Weyl-
type equations, i.e. a Dirac equation with no mass term. Instead of Pauli
matrices however, the O(3) symmetry rotation matrices of Eq.(13.71) are used.
Eqs.(13.73) and (13.74) are limits of

(
� +

(mc
~

)2
)
ψ = 0. (13.76)
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13.5. MAJORANA AND WEINBERG EQUATIONS

when m −→ 0. Here

ψ =

[
φR

φL

]
(13.77)

is a six-spinor analogous to the Dirac four-spinor of Eq.(13.37). Eq.(13.76) is a
limit of the Evans wave equation:

(� + kT )ψ = 0. (13.78)

The spinor ψ is obtained from the tetrad:

qa
µ =

[
AR

1 AR
2 AR

3

AL
1 AL

2 AL
3

]
(13.79)

defined by:

A(0)

[
eR

eL

]
=

[
AR

1 AR
2 AR

3

AL
1 AL

2 AL
3

]

e1

e2

e3


 . (13.80)

This illustration shows that the Maxwell-Heaviside electromagnetism of the
standard model is an example of a spin equation which is the massless special
relativistic limit of the Evans wave equation. The symmetry in this case can be
either O(3) or SU(3). Finally the Weinberg equation [22] is the spin equation
for any integral or half integral spin, and the Weinberg equation is also a limit
of the generally covariant Evans wave equation.
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