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ABSTRACT 

It is shown that conservation of antisymmetry in ECE2 physics, notably 

electrodynamics, leads to the inference of a spacetime, aether or vacuum current density. The 

spin connection is calculated for any material vector potential~ by using the antisymmetry 

equations to give unique solutions of an exactly defined equation set. The vacuum current is 

' defined by the Ampere and Gauss laws of ECE2 magneto statics. Sample results are computed 

and graphed. 
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1. INTRODUCTION 

In immediately preceding papers of this ~eries { 1 - 12} the ECE2 field equations 

have been solved with conservation of antisymmetry, a fundamental law of physics first 

inferred in UFT 131. It was shown in UFT 131 ff. that the standard model of electrodynamics 

(the Maxwell Heaviside (MH) theory) violates antisymmetry. The entire standard model of 

electrodynamics, the electro weak field, and of the Higgs boson for example is refuted by 

violation of antisymmetry. By now, the obsolescence of the standard model of physics is well 

known and accepted. On a philosophical plane, violation of antisymmetry is a disaster akin to 

violation of any other conservation law. On the ECE2 level, antisymmetry is conserved. 

This paper is a brief synopsis of extensive calculations posted in the notes 

accompanying UFT386 on www.aias.us. Notes 381(1), 386(2), 386(4) and 386(5) are 

preliminary calculations, the final version of which is given in Note 386(9) and used in 

Section 2 of this paper. Note 386(3) provides an example of a magnetic material potential A, 

which is translated in the note from spherical polar to Cartesian coordinates. Notes 386(6) 

and 3 86(7) give a convenient revision from UFT 131 of the proof of violation of antisymmetry 

in the standard physics. 

Section 2 is based on Note 386(9), and solves the antisymmetry equations of 

ECE2 electrodynamics for the three components of the spin connection. Therefore 

antisymmetry is conserved by this procedure for any material vector potential A. The ECE2 -
'\ I • 

Gauss and Ampere laws of magnetostat1cs are used to calculate a novel spacetime, vacuum or 

aether current density Evac). The spin connection is shown to be the intermediary between A 

and ].{vac). The latter provides energy from spacetime and does not exist i? the MH theory. 

Section 3 uses computer algebra to provide solutions which are graphed and 

discussed. 



2. DERIVATION OF THE SPACE TIME CURRENT 

where A is the usual material vector potential. Eqs. ( l ) to ( 2:, ) are exactly 

determined and give unique solutions for the three Cartesian components of the spin 

connection vector: 

Therefor the spin connection vector ~ can be calcul~ted uniquely for any A, Q.E.D. 

Note carefully that if any more equations are added to Eqs. ( 1 ) to ( 3 ) the 
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system becomes over determined and there is no solution. Eqs. ( i. ) to ( { ) can be 

translated into any coordinate system using computer algebra. 

Therefore in any problem of ECE2 electrodynamics, gravitation and fluid dynamics 

the spin connections are always defined by Eqs. ( S ) to ( l ). This procedure 

conserves antisymmetry, Q. E. D .. For example, the ECE2 field equations of magnetostatics 

are: Q.~ -;:...0 - (~) -
"0- )'u--s - ( ") <1 )'. ~ - (l~ (1 q ""A 0 x.A - J --

where B is the magnetic flux density, }J.. is the S. I. Vacuum permeability, and 1 is the 
-- / 0 .....-

material current density. Here, ~is the material vector potential. From Eq. (9): 

"1(-x!) 
- \X -2 I ~ 

I 
Therefore A can be calculated or computed from any current density 1 ( x ) using Eq. (14). --
There are well known analytical solutions, for example a circular current loop and a 

magnetized sphere, but using a fast desktop, mainframe or supercomputer A can be computed 

for any current density J. 

Having found A from any J, any spin connection vector W can be found from -
Eqs. ( S ) to ( ( ). 

For example, in a well defined approximation { 1 -12}, a magnetic current loop 

gives a material vector potential component in spherical polar coordinates: 



This is translated into Cartesian coordinates in Note 386(3) 

--
Here I is the current in a loop of radius a. Computer algebra can be used to compute the spin 

connection from Eqs. ( S ), ( b ), ( \ ) and ( \~ ). This procedure rigorously 

conserves antisymmetry. Similarly Cv can be computed from any A and examples are - -
given in Section 3. In general the solutions for A of a circular current loop are given in Note 

386(5). 

From the Gauss law ( 'b ), it follows that: 

0 

because: 

- -
It follows from Eq. ( t ~) that a spacetime, vacuum or aether vector potential r1v 
always be defined: 

-
It follows that: 

• 

. -. - ~~A - -

- -
So the ECE2 Gauss law ( <b ) is obeyed Q.E.D. 

The concept of does not exist in MH theory. --

- can 

0 
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where ~(t~1e vacuum, aether or spacetime magnetic flux density. Again this concept does 

not exist in MH theory. It follows that: 

Q.E.D. So J(vac) can be computed from any material A. Clearly, the spin connection vector -
- is the intermediary between the material.:: and the vacuum current.2,. ( '-J,o...c). 

Conservation of ECE2 antisymmetry implies the existence of a vacuum current J(vac ). 

3. COMPUTATION AND GRAPHICS 

(Section by Dr. Horst Eckardt). 
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3 Computation and graphics

We investigate three examples of magnetostatics and analyse the spacetime
properties resulting from the antisymmetry laws.

3.1 Dipole field (far field of magnetic current loop)

In classical electrodynamics, the magnetic dipole field is based on a vector po-
tential havin only a φ component in spherical coordinates, see Eq. (12). For
practical reasons we transform all fields to cartesian coordinates so that the an-
tisymmetry equations (1-3) can be applied directly. Then the vector potential
of a magnetic dipole takes the form

A =
I a2 µ0

4(X2 + Y 2 + Z2)
3
2

−YX
0

 (21)

as given by Eq. (13). The spin connection should be computable from Eqs.
(5-7), however the problem arises that one component of A, appearing in the
denominator, is zero. Therefore one has to solve Eqs. (1-3) directly for this
special case. As a result, the equation system has one dependent equation so
that it is not uniquely solveable any more. Such cases can appear for simple
application cases where some components of the vector potential vanish (see
also next paragraph). Therefore we make a special choice of ω, requiring

∇×A = −ω ×A. (22)

When taking two independent equations of (1-3) and one equation of (22), the
equation set is of rank 3. We obtain:

ω =

−
Z2−2Y 2+X2

X (X2+Y 2+Z2)

− Z2+Y 2−2X2

Y (X2+Y 2+Z2)
3Z

X2+Y 2+Z2

 . (23)
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This is the spin connection of the magnetic dipole. By inserting (23) and (21)
into (22), we have verified that (22) is valid. It should be noticed that the
component equations of (22) are not of rank 3 in general. Therefore using (22)
alone as a general approximation without antisymmetry constraints does not
lead to a unique solution for ω.

The magnetic dipole potential then is

B = ∇×A− ω ×A = 2∇×A (24)

=
I a2 µ0

4(X2 + Y 2 + Z2)
5
2

 3XZ
3Y Z

2Z2 −X2 − Y 2

 .
It follows that

∇×B = 0 (25)

i.e. there is no current connected with B, neither a material current (based on
∇×A nor a vacuum current (based on ω ×A).

The fields are graphed in Figs. 1-3. In Fig. 1 the vector potential in the
XY plane is shown which is a pure rotational field. Some selected field lines are
drawn as red lines. The spin connection is graphed in Fig. 2, by a cut through
the XZ plane. It can be seen from the field lines that spacetime is bent around
the dipole centre. The three-dimensional structure is plotted in Fig. 3. From
the base plane (Z = 0) it can be seen that there is a fourfold symmetry, coming
from the single factors X and Y appearing in Eq. (23). The vectors are bent
to the Z direction when moving from the plane Z = 0. The spin connection is
not divergence-free, but ω ×A is.

The resulting magnetic field (24), graphed in Fig. 4, is the well known dipole
field which is rotationally symmetric around Z. Because of Eq. (25), there is
no material and vacuum current density. It cannot be excluded that this is a
consequence of the special choice (22).

3.2 Field of a magnetic current loop

A single current loop is another standard example and has the vector potential
φ component

Aφ =
I a2 µ0

4(r2 + a2)
3
2

(
15a2 r2 sin (θ)

2

8(r2 + a2)
2 + 1

)
. (26)

Here a is the radius of the loop. Transforming this vector potential into carte-
sian form gives highly complicated expressions, therefore we only present the
graphical results.

Similar as for the dipole field, the vector potential in cartesian coordinates
has no Z component. Therefore we proceed as described in the preceding sec-
tion, using the auxiliary condition ∇ ×A = −ω ×A. The vector potential is
graphed in Fig. 5 and looks quite similar to that of the dipole field (Fig. 1).
The same holds for the spin connection (Fig. 6). The magnetic field (Fig. 7),
however, shows the field lines of the current loop which is in the XY plane, i.e.
perpendicular to the plotted XZ plane. This is the result known from standard
electrodynamics.
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In contrast to the simple dipole, the magnetic field of the current loop pro-
duces a current density

∇×B = µ0J. (27)

As can be seen from Fig. 8, it is circular in the XY plane, however it changes
direction at the radius where the physical loop is placed. There is an inner and
an outer vortex, both with contrary directions. The physical loop separates
both vortices. Because of the choice (22), J corresponds to a material as well
as a spacetime or aether of vacuum current density.

3.3 Constant magnetic field from non-constant potential

In a third example we show that a constant magnetic field can be produced
from a non-trivial vector potential. Consider the potential

A =
B0

4

−YX
Z3

XY

 (28)

which now has three components different from zero. Therefore Eqs. (1-3) are
unique and the general solutions (4-6) can be used, without requiring additional
assumptions. The simple spin connection

ω =

− 1
X

− 1
Y

0

 (29)

is obtained, leading to

ω ×A =
B0

2

− Z3

2XY 2

Z3

2X2Y
−1

 . (30)

From Eq. (28) follows

∇×A =
B0

2

− Z3

2XY 2

Z3

2X2Y
1

 (31)

so both terms ∇×A and ω ×A are not identical due to different signs in the
components. It follows

B =

 0
0
B0

 , (32)

i.e. the magnetic field is constant despite of a non-constant and even non-linear
vector potential and spin connection. It is trivially valid

∇ ·B = 0 (33)
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and

∇×B = 0 (34)

so that the conditions of magnetostatics (8, 9) are fulfilled. Although the total
current density disappears, its constituents, the material and spacetime current
density, do not disappear:

∇× (∇×A) = ∇× (ω ×A) = −B0

2

 3Z2

2X2Y
3Z2

2XY 2

Z3(X2+Y 2)
X3Y 3

 . (35)

The potential (28) is graphed in Fig. 9 for a plane Z = 1. In contrast to
the cases considered before, the potential grows with increasing radius. In Z
direction there is a directional change at Z = 0 (Fig. 10), and similar in the
X and Y direction (the latter not shown). The directional growth is restricted
to the Z direction. The spin connection shows hyperbolic field lines (Fig. 11).
A similar picture results for the magnetic field component ω ×A, presented in
Fig. 12. The hyperbolic field lines are rotated by 45 degrees, compared to Fig.
11, and there are no divergences. The total B field is constant.

Finally the spacetime part of the current density is graphed. In the XY
plane (Fig. 13) it looks similar to the spin connection, but without divergences
on the coordinate lines. In the XZ plane the current density is vertical, similar
to the A field in this plane (cf. Fig. 10) but with no divergence plane at Z = 0.
This is because in general the relation

∇ · (ω ×A) = 0 (36)

is valid.
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Figure 1: A field of far field dipole, XY plane.

Figure 2: ω field of far field dipole, XZ plane.

5



Figure 3: 3D plot (direction vectors) for ω of far field dipole.

Figure 4: B field of far field dipole, XZ plane.
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Figure 5: A field of magnetic current loop, XY plane.

Figure 6: ω field of magnetic current loop, XZ plane.
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Figure 7: B field of magnetic current loop, XZ plane.

Figure 8: Current density J of magnetic current loop, material and spacetime,
XY plane (notice alternating directions).
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Figure 9: A field of special example, XY plane with Z = 1.

Figure 10: A field of special example, XZ plane with Y = 0.1.
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Figure 11: ω field of special example, XY plane.

Figure 12: Magnetic field component ω ×A, special example, XY plane with
Z = −1.
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Figure 13: Current component Jvac, special example, XY plane with Z = 0.1.

Figure 14: Current component Jvac, special example, XZ plane with Y = 0.1.
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