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ABSTRACT 

Using the macroscopic zitterbewegung (MZ) theory of the two immediately 

preceding papers of this series, it is shown that the familiar magnetic dipole potential and 

field develops intricate structures when vacuum fluctuations are considered. It is shown that 

the isotropically averaged contact term of the magnetic dipole flux density no longer 

vanishes, and that the isotropically averaged magnetic potential and magnetic dipole flux 

density develop intricate properties produced by the vacuum fluctuations. These are 

observable in hyperfine structure. 
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1. INTRODUCTION 

In the two immediately preceding papers of this series { 1 - 41 } , UFT3 92 and 

UFT393, the well known concept of zitterbewegung (shivering induced by the vacuum) has 

been developed on the macroscopic level and for the whole of physics. This has been named 

macroscopic zitterbewegung (MZ) theory. UFT392 considered the Coulomb field and 

UFT393 considered the electric dipole field and potential. In this paper, MZ theory is 

extended in section 2 to the familiar magnetic dipole potential and fields used in NMR theory 

for example. The effect of vacuum fluctuations can be observed in hyperfine structure. In 

Section 3 the analytical results are evaluated numerically using isotopic averaging as in 

UFT393, and the graphical results show intricate new structures induced by the vacuum. 

These structures are expected to exist in all areas of physics, a major advance in 

understanding. 

This paper is a short synopsis of detailed calculations in the notes accompanying 

UFT394 on www.aias.us. Note 394(1) defines the magnetic dipole flux density and potential 

for a current loop. Note 394(2) applies antisymmetry, and Note 394(3) is a preliminary 

development of antisymmetry in MZ theory. It was decided to revert to the original Lindstrom 

law of trace antisymmetry, so this note is not used. Note 394(4) is a preliminary development 

ofMZ theory for electrodynamics. Note 394(5) shows that vector antisymmetry is conserved 

automatically in MZ theory. Notes 394(6) and 394(6a)- 394(8) form the basis for Section 2. 

2. MZ THEORY OF THE MAGNETIC DIPOLE POTENTIAL AND FIELDS 

It is proposed that vacuum fluctuations in macroscopic physics introduce 

fluctuations in the frame of reference. So, for example, the position vector: 
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is changed to 

in which fluctuations of the Cartesian coordinates are induced by the vacuum. This is the 

same idea as the accurate zitterbewegung theory of the Lamb shift. In the end result of 

a calculation that is carried through with the position vector r, the result is modified by the 
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frame change: 

The well known magnetic dipole potential used in NMR theory { 1 - 41} is: 
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where ~is the magnetic dipole moment and/ 0 the S. I. permeability in vacuo. Therefore 

the effect of vacuum fluctuations ~ \ is as follows: 
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As in previous work: 
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So the magnetic dipole potential in the presence of the vacuum is: 
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the vector potential is: 

The dipole magnetic flux density due to the dipole potential ( S ) is { 1 - 41}: 
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The contact magnetic flux density is: 

and the magnetic dipole flux density is: 

- --
which has the same structure as the electric dipole flux density ofUFT393. In the presence of 

the vacuum the magnetic dipole flux density becomes: 
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and may be isotropically averaged in the same was as in UFT393 for the electric dipole field 

strength 

The effect of vacuum fluctuations on the contact field ( \ S' ) may be developed 

using the result: 

-=---0 

and the contact term is no longer zero. Its isotbpic average is worked out by computer in 

Section (3) ( k LuS.J)) ~ ~ ~ ( 'J ") ( -7,) 
where: - c~~ ~\ 

Eq. ( :l.O ) can be computed to any order in x. 



As shown in section 3 these procedures lead to intricate structures induced by . 
vacuum fluctuations, structures which are absent co_mpletely from standard physics, but 

which are nevertheless obtained with the same type of shivering motion as considered in the 

accurate zitterbewegung theory of the Lamb shift. 

The MZ theory removes the contradiction inherent in standard physics, which 

asserts that: 

where S ~Qs the Dirac delta function. However, direct differentiation using computer 
) . 

algebra gives the result: 

This is why mathematicians contemporary with Dirac rejected the Dirac delta function as 

pure nonsense. In MZ theory, the Dirac delta function is not used and is not needed. 

Finally, the spin connection for any magnetic flux density Bin the presence of the -
vacuum is defined by: 

-- -
where A is the vector potential in the hypothetical absence of the vacuum. So the vector spin 

-o 
connection or vacuum map can be found. 

3. NUMERICAL AND GRAPHICAL ANALYSIS. 

Section by Horst Eckardt. 
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3 Numerical and graphical analysis

The magnetic dipole field is formally identical to the electrical dipole field dis-
cussed in UFT 393. The same holds when zitterbewegung is added. The mag-
netic dipole field (16) is in linear approximation of x which is defined in Eq. (9):

〈BD〉(2) =
µ0

4πr3

(
3r(m · r)

r2
−m

)
(25)

− µ0

4πr5
〈δr · δr〉

(
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This gives quadratic δr terms, i.e. in proportion to 〈δr · δr〉. In additon, a
fourth-order term appears which is not complete as discussed in UFT 393. The
quadratic approximation in x gives correct fourth-order terms and a sixth-order
term in δr:
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For the magnetic dipole the contact term vanishes but there are shivering con-
tributions. Using the same methods as for Eqs. (25, 26) we obtain for the
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contact term given by (15):
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Figs. 1 and 2 show the dipole fields of UFT 393 again in 2nd and 4th order δr
approximation. There are additional central structures appearing which were
discussed in UFT 393. Figs. 3 and 4 show the magnetic contact terms in
both approximations. Outside the centre, these are constant in direction of the
magnetic dipole m which was chosen in vertical direction. Near to the centre
there is a strong shear strain in form of a rotation. The directions of both
approximations differ in sign but are quite similar else.

When these contact terms are added to the dipole fields of Figs. 1 and 2,
the structures of Figs. 5 and 6 result. The contact terms break symmetry of
the magnetic dipoles. In Fig. 5 (quadratic approximation) four spiraling field
structures appear in addition to the upper and lower divergence regions of the
undistorted case. The inner spirals are not symmetric to the vertical symmetry
axis. When the intersecting plane is rotated around Z, this gives an oblique ring
which is tilted against the outer more symmetrically positioned ring. In the 4th-
order approximation (Fig. 6) only two spirals remain but rotated against the
symmetry plane so that these represent a tilted ring in 3D. The rings could
represent currents in counter direction. There are indeed certain models of
elementary particles which assume such a structure.

The divergence and curl of the field of Fig. 6 has been graphed in Figs. 7
and 8 in the same way as described in UFT 393. There is a significant curl of
the field. In this case it is a magnetic field. For the static case follows from the
ECE2 field equations:

∇×B = µ0J 6= 0. (29)

This means that an electric vacuum current is induced by the zitterbewegung.
This is a consequence of the contact term which is zero in average but not at
each instance of time. If we had a contact term in case of the electric dipole,
this would mean that there is a magnetic monopole current.

The spiralling structure appearing in Figs. 5 and 6 is a mixture between
a source field and a rotational field, reminding to the Lense-Thirring effect in
astronomy. The source part of the magnetic field leads to

∇ ·B 6= 0. (30)

This means there are fluctuating magnetic charges which average out over time.
The shivering of dipoles gives a lot of interesting insights to the vacuum.
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Figure 1: Dipole field with variable shivering radius, quadratic terms.

Figure 2: Dipole field with variable shivering radius, 4th-order terms.

3



Figure 3: Contact term, quadratic approximation.

Figure 4: Contact term, 4th-order approximation.
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Figure 5: Total field with contact term, quadratic approximation.

Figure 6: Total field with contact term, 4th-order approximation.
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Figure 7: Divergence plot of Fig. 6 in the (rX , rY ) plane.

Figure 8: Curl B plot of Fig. 6 perpendicular to the (rX , rY ) plane.
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