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ABSTRACT 

The Hamilton Jacobi (HJ) formulation ofECE2 theory is developed in 

preparation for a HJ development ofm theory. The action is found by integration of the HJ_ 

equation. An extensive computer analysis is given of the Hamilton equations in special 

relativity. 

Keywords: ECE2 theory, Hamilton Jacobi equations and Hamilton equations. 



1. INTRODUCTION 

In recent papers of this series { 1 - 41 }_The Euler Lagrange and Hamilton 

dynamics have been applied tom theory, thus giving information that is not available when 

considering the Euler Lagrange equations alone. A fourth complete system of dynamics has 

been developed recently, the Evans Eckardt dynamics, based simph.t on the fact that the 
,.1 

hamiltonian and angular momentum are constants of motion on any level, classical, special 

relativistic, m theory and in quantized dynamics. The three complete systems of dynamics 

were hitherto thought to be the Euler Lagrange, Hamilton and Hamilton Jacobi equations. 

This paper is a short synopsis of detailed calculations found in the notes that 

accompany UFT426 on www.aias.us and www.upitec.org. These notes are an intrinsic part 

of the paper and should be read with the paper itself. Note 426(1) gives the fundamental 

equations of the Euler Lagrange Hamilton dynamics and derives a new equation of motion of 

the Hamilton dynamics. Note 426(2) uses the new equation to show that the m (rl) function 

ofm theory has no dependence on the Newtonian velocity \J tJ . Notes 426(3) and 426(4) 

review the Hamilton Jacobi system of dynamics. Note 426(5) gives a new formulation of the 

Hamilton Jacobi equation and Note 426(6) computes the action of the Hamilton Jacobi 

equation applied to ECE2 theory, which develops the equations of special relativity in a space 

with finite curvature and torsion. These results are a preparation for the application of the 

Hamilton Jacobi system of dynamics tom theory in future work. 

Section 2 computes the action ofthe Hamilton Jacobi formulation ofECE2 and 

Section 3 gives an extensive computer analysis of the Hamilton equations. 

2. HAMILTON AND HAMILTON JACOBI DEVELOPMENT OF ECE2 THEORY 

Define the ECE hamiltonian as: 
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where pis the relativistic linear momentum: 
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and m is the mass of an object that orbits M. The Newton constant is G and r is the distance 

between m and M. The canonically conjugate generalized coordinates p and q of the 

Hamilton dynamics are chosen to be: - (y,) 1. Vh. '\/ ~ ) ~f -
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where L is the angular momentum, a constant of motion and where f is defined by the 

plane polar coordinates ( r , t ). The Evans Eckardt equations ofthe system are: 
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The first Hamilton equation gives: 
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The same result is given by the Euler Lagrange system of dynamics as shown in previous 

papers of the UFT series. This is a successful demonstration of the rigorous self consistency 

of the UFT series. The second Hamilton equation is: 
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where use has been made of: 
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where the Lorentz factor is: 

It follows that the second Hamilton equation gives: 

• 
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This is the relativistic momentum: 

provided that: • 



Q.E.D. 

To extend to plane polar coordinates use: (; 
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It follows that: 

The angular generalized coordinates are: 
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where the angular momentum is: '{ ~ () f - ( l q) 
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The first Hamilton equation gives: 
• 
L 

so L is a constant of motion: 

--

dL ~ o 
tJJ: 

This is the second Evans Eckardt equation. 

The second Hamilton equation gives: 
• • 

where: 
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which is the constant angular momentum, Q.E.D. Again, the same result is given by the 

Euler Lagrange analysis of ECE2 theory { 1 - 41 } , another successful check of the rigorous 

self consistency of ECE2 theory. 

With reference to the background notes accompanying UFT426 on www.aias.us 

and www.upitec.org the Hamilton Jacobi system of dynamics defines: 
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where S is the total action: 

The quantum of action is { , the reduced Planck constant. Therefore Eq. ( ~)gives 
the two Hamilton Jacobi equations: LJ. 
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where E is the total energy: 

~\ 
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This equation quantizes to ilie scm~ct:r e:ati: f _ ( ~ 0 
where 1 is ilie wave function. 

These equations pave the way for the application of the Hamilton Jacobi 

formalism to m theory and its eventual quantization. This will be the subject of future work. 

The Hamilton Jacobi equation ( ~~ ) is integrated using Maxima in Sectio~ 3, 

by co author Horst Eckardt, giving interestingly original results described in Section 3. The 

latter also gives an extensive numerical analysis of the Hamilton equations applied to ECE2 

theory and special relativity. 

The two Evans Eckardt equations: 

J 
-::..0 

I 
0 

can be used with the Hamilton Jacobi equations, and the Euler Lagrange system of dynamics 

can be combined with the Hamilton Jacobi system of dynamics . The essence of the HJ 

system is to find constants of motion and to find the action. The lagrangian is the integral of 

the action and the Hamilton Principle of Least Action minimizes the action to find essentially 

all of classical physics. 

3. NUMERICAL RESULTS AND GRAPHICS. 

Section by Dr. Horst Eckardt 
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3 Numerical results and graphics

3.1 Hamilton equations of central motion

We worked out the Hamilton equations of central motion in a plane polar coor-
dinate system. The general form of the Hamilton equations is

q̇i =
∂H

∂pi
(33)

ṗi = −∂H
∂qi

(34)

where qi are the canonical or generalized coordinates and pi are the conjugate
canonical momenta. The index i refers to the coordinate components. In spher-
ical polar coordinates we have

q1 = r, (35)

q2 = φ, (36)

p1 = m q̇1, (37)

p2 = mq21 q̇2, (38)

where p2 is to be augmented by a γ factor in the relativistic case as discussed
in section 2. The Hamilton equations for the non-relativistic case are listed in
Table 1, first for an iniertial system, then for a system with two dimensions (r, φ).
The inertial system has only one coordiante qr = r. The orbital motion seen
from an external observer is added in the plane polar system. By rewriting (35-
38), the equations of motion are the same as obtained from the Euler-Lagrange
equations which are of second order:

r̈ = φ̇2r − GM

r2
, (39)

φ̈ = −2ṙφ̇

r
. (40)
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The Hamilton equations of special relativity are seldom used. The Hamiltonian
can be writte in two forms, see Tables 2 and 3. The first form uses a γ factor

γ =

1−
p2r +

p2φ
q2r

m2c2

−
1
2

. (41)

This γ factor differs from standard special relativity where it is written by the
velocities:

γ =

(
1−

q2r + q2rq
2
φ

c2

)− 1
2

. (42)

We have evaluated the Hamilton equations with both forms of γ factor and
found that the second form (42) does not give results that pass into the non-
relativistic case when considering the limit γ → 1. Therefore we used the form
(41) containing the generalized momenta. From Table 2 can be seen that there
is an augmentation by γ in the inertial system which gives the values of Table 1
in the non-relativistic limit. For the two-dimensional case the equations become
more complicated, there are additional terms in proportion to 1/c2, a relativistic
correction.

The relativistic Hamiltonian can be written in an alternate form as in Table
3. Here no γ factor appears. One can define a factor ε1 as listed there. Then
the Hamiltonian can be written simply as

H =
1

ε1
− GMm

qr
. (43)

and the resulting Hamilton equations can be written in a quite simple form using
ε1, see Table 3. It has been shown by computer algebra that theses equations
are identical to those obtained in Table 2. However the relativistic corrections
are not visible so directly as in the form of Table 2.

For a numerical solution the Hamilton equations are well suited because they
are of first time order only. Since the right hand sides in Table 2 do not depend
on the time derivatives, the equations can be programmed directly in this way.
We used a model system of an orbiting mass as in previous papers. In the non-
relativistic case we obtain an ellipse graphed in Fig. 1. The relativistic version
leads to a precession, see Fig. 2. This is the same behaviour as for the solution
of the Euler-Lagrange equations as expected. However, for identical parameters,
the ellipses are equal in radial extension but the relativistic effects (precession)
are much greater for the Hamilton equations. The reason could be that the γ
factor is defined by momenta here, while it is defined by velocities in the Euler-
Lagrange equations. Since γ is implicitly contained in the momenta, this could
be the reason for a significantly different solution with greater effects. We had
to increase the velocity of light from 20 to 50 units (i.e. decrease relativistic
effects) to obtain roughly the same precession by the Hamilton equations.

3.2 Self-consistency of the γ factor

We tried to resolve the problem that the γ factor depends on a function that
depends on γ itself:

γ = f(γ, pφ) (44)
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system Hamiltonian Hamilton equations

inertial H = pr
2

2m −
GMm
qr

q̇r = pr
m

q̇φ = 0
ṗr = −GMm

qr2

ṗφ = 0

polar coord. H = 1
2m

(
pr

2 +
pφ

2

qr2

)
− GMm

qr
q̇r = pr

m

q̇φ =
pφ

mqr2

ṗr =
pφ

2

mqr3
− GMm

qr2

ṗφ = 0

Table 1: Non-relativistic Hamilton equations in inertial frame and plane polar
coordinates.

system γ and Hamiltonian Hamilton equations

inertial γ =
(

1− pr
2

m2 c2

)−1/2
q̇r =

( 2
γ−γ)pr
m − γpr

3

c2m3

H = 1
γ

(
pr

2

m +mc2
)
− GMm

qr
q̇φ = 0

ṗr = −GMm
qr2

ṗφ = 0

polar coord. γ =
(

1− p2r+p
2
φ/q

2
r

m2 c2

)−1/2
q̇r =

( 2
γ−γ) pr
m −

γpr

(
pφ

2

qr2
+pr

2

)
c2m3

H = 1
γ

(
pr

2+p2φ/q
2
r

m +mc2
)

q̇φ =
( 2
γ−γ) pφ
mqr2

−
γpφ

(
pφ

2

qr2
+pr

2

)
c2m3 qr2

−GMm
qr

ṗr =
( 2
γ−γ) pφ

2

mqr3
− GMm

qr2

−
γpφ

2

(
pφ

2

qr2
+pr

2

)
c2m3 qr3

ṗφ = 0

Table 2: Relativistic Hamilton equations in inertial frame and plane polar co-
ordinates.

system ε1 and Hamiltonian Hamilton equations

inertial H =
√
c2 pr2 +m2 c4 − GMm

qr
q̇r = c2 pr√

c2 pr2+m2 c4

q̇φ = 0
ṗr = −GMm

qr2

ṗφ = 0

polar coord. ε1 =
(
c2
(
pφ

2

qr2
+ pr

2
)

+m2 c4
)−1/2

q̇r = ε1c
2pr

H =

√
c2
(
pφ2

qr2
+ pr2

)
+m2 c4 q̇φ =

ε1c
2pφ
q2r

−GMm
qr

ṗr =
ε1c

2 pφ
2

qr3
− GMm

qr2

ṗφ = 0

Table 3: Relativistic Hamilton equations in inertial frame and plane polar co-
ordinates, alternative form.
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with

pφ = γmq2r q̇φ. (45)

For simplicity we write

p = γmv2 (46)

with the modulus of velocity v. This then gives

γ =

(
1− γ v2

c2

)− 1
2

. (47)

It is possible to resolve this equation for gamma, giving two solutions

γ1,2 =
c2

2v2

(
1±

√
1− 4v2

c2

)
. (48)

Only the solution with the minus sign gives the correct limit

γ −−−→
v→0

1. (49)

Unfortunately this solution has a pole of γ for v = c/2. This can be avoided by
redefining

γ =

(
1− γ v2

4 c2

)− 1
2

, (50)

giving the solutions

γ1,2 =
2c2

v2

(
1±

√
1− v2

c2

)
. (51)

Here the correct γ factor re-appears but there is no infinite limit for v → c,
instead we find

γ −−−→
v→c

√
2. (52)

Interestingly the same limit was found for a γ factor describing the gravitational
light deflection of photons correctly as described in earlier papers:

γphoton =

(
1− v2

2 c2

)− 1
2

, (53)

which has the same limit for v → c. Both γ factors are compared in Fig. 3,
together with the usual γ definition

γ =

(
1− v2

c2

)− 1
2

, (54)

Obviously the usual γ function rises much more steeply than the others. The
function from the self-consistent calculation rises most slowly and meets the
photon γ at v = c with γ =

√
2 as described. This is a remarkable result,

bringing together different paths of ECE development. The difference of the
three γ factors has to be investigated further.
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3.3 Computation of the function of action Sr

The radial function of action Sr is part of the Hamilton-Jacobi equation (28)
for central motion. This is a differential equation for Sr. It is possible to find
a solution of this function by computer algebra. First, equation (28) has to
be resolved for (∂Sr/∂r)

2. This gives a quartic equation fo ∂Sr/∂r. Solving
this gives four similar looking differential equations containing the parameters
of (28):

∂Sr(r)

∂r
= ±

√
(E2 − c4m2) r2 ± 2EGMmr +G2M2m2 − L2 c2

cr
. (55)

The solutions are analytical and highly depend on ratios between the parame-
ters. We therefore put in the parameters of the numerical model calculations.
The total energy including the term mc2 has to be used. One obtains four
complex functions. The real parts have been graphed in Fig. 4. It can be seen
that these are (besides a null function) exactly two inverse functions, probably
describing the two possible directions of motion of the orbiting mass. The func-
tions are non-constant exactly in the physical range of r which in this example
is 0.3 < r < 1. This is obviously the first time the relativistic action function
Sr was determined for the central motion problem.

5



Figure 1: Non-relativistic orbit of central motion from Hamilton equations.

Figure 2: Relativistic orbit of central motion from Hamilton equations.
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Figure 3: γ functions from three models.

Figure 4: Four solutions for the relativistic action Sr(r).
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