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1. Introduction

Geometry is visible everywhere in daily life. It appears in objects that have been engineered in any
form. We are familiar with geometry, since it has been used for centuries (Fig. 1.1). Also, in pure
sciences like mathematics and physics, it plays an important role. The mathematical description of
geometry consists of the logic elements of geometry itself, for example, the geometric constructions
for triangles (Fig. 1.2). This type of logical treatment dates back to the beginning of recorded time,
which is assumed be around 3500 B.C., when the first written documents appeared in Mesopotamia.
For earlier times, we have to rely on documents of stone, like the pyramids in Egypt, which are
probably much older than commonly assumed. The Cheops pyramid has been charted in detail, and
correlations have been found to the circumference of the earth, hinting that geometry had had an
important role even in the Stone Age. At that time, Europe had a flourishing Celtic culture, from
which numerous stone relics exist, and the runes used by the druids were geometric signs.

Ancient philosophy, in particular natural philosophy, culminated in Greece. Pythagoras is
said to have been the first founder of mathematics, and we all know the Pythagorean theorem.
In Athens, where democracy was born, the “triumvirate” Socrates, Plato and Aristotle founded
classical philosophy, starting at about 400 B.C. Their schools were valid for about a thousand years.
Euclid, who wrote the pivotal treatise on geometric reasoning, Elements, was a member of the
Platonic school.

During medieval times, knowledge from the Roman Empire was preserved by monasteries of
the ecclesia and by Arabian philosophers and mathematicians. The Renaissance, which began in
Italy in the 14th century and spread to the rest of Europe in the 15th and 16th centuries, was both
a rebirth of ancient knowledge, and the beginning of modern empirical natural philosophy. This
philosophy is connected with Galileo Galilei, who constituted the method of experimental proofs,
and to Johann Kepler, who established our modern heliocentric model of the solar system, first
presented as a hypothesis by Nicolaus Copernicus.

Since the 17th century, the mathematical description of physics has made great progress. Isaac
Newton published the law of gravitation, which actually goes back to his mentor Robert Hooke. This
represented huge progress in natural philosophy, because celestial events could now be predicted
mathematically, although this has become completely possible only since the advent of computers.
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Figure 1.1: Example of geometry: rosette
window in the cathedral of Chartres.

Figure 1.2: Example of geometry: triangles.

The 18th century was the golden age of mechanics. Newton’s laws, and their generalizations by
Lagrange and Hamilton, paved the way for mathematical physics for the next 300 years. Initially,
geometry was used mainly for describing the motion of bodies and particles. The emergence of
quantum mechanics in the 20th century extended geometry to the atomic and subatomic realm. For
example, the atoms that comprise solids and molecules exhibit a geometrical structure (Fig. 1.3)
which is essential for their macroscopic properties. Similar arguments hold for electrodynamics
(see, e.g., Fig. 1.4). Faraday’s lines of force describe a close-range effect, which was a basis for the
geometrical description of electrodynamics, culminating in Maxwell’s equations.

The use of geometry changed again at the beginning of the 20th century, when Einstein
introduced his theory of general relativity, in which he based physics on non-Euclidean geometry.
Gravitation was no longer described by a field imposed externally on space and time, but instead the
“spacetime” itself was considered to be an object of description, and altered so that force-free bodies
move on a virtually straight line (geodetic line) through space. Spacetime was considered to be
curved, and the curving described the laws of gravitation. Along with this interpretation, geometry
was considered to be an abstract concept described by numbers and mathematical functions. This
approach is known as analytical geometry, and its simplest form uses coordinate systems and
vectors.

Figure 1.3: Example of geometry: unit cell of
Fluorite crystal. White: Calcium, green: Fluorine.

Figure 1.4: Example of geometry: torus.
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Einstein’s geometrical concept was the first paradigm shift in physics since Newton had
introduced his laws of motion, 300 years earlier. Experimental validation of Einstein’s general
relativity has been rare, and has mainly concerned the solar system, like the deflection of light
by the sun and the precession of the orbit of Mercury. In spite of this limitation, the theory was
taken as a basis for cosmology, from which the existence of the big bang and dark matter was later
extrapolated.

Unfortunately, this approach to cosmology has introduced self-contradictory inconsistencies.
For example, the concept that the speed of light is an absolute upper limit is treated like a dogma
in contemporary physics, and thus immune to rational argument. However, to explain the first
expansive phase of the universe, one has to assume that this happened with an expansion velocity
faster than the speed of light. This example is only one of the criticisms of Einstein that have yet to
be answered properly and scientifically.

Later, after Einstein’s death, the velocity curve of galaxies was observed by astronomers. This
means that stars in the outer arms of galaxies do not move according to Newton’s law of gravitation,
but have a constant velocity. However, Einstein’s theory of general relativity is not able to explain
this behavior. Both theories (Einstein and Newton) break down in cosmic dimensions. When a
theory does not match experimental data, the scientific method requires that the theory be improved
or replaced by a better concept. In the case of galactic velocity curves, however, it was “decided”
that Einstein is right and that there has to be another reason why stars behave in this way. Dark
matter that interacts through gravity and is distributed in a way that accounts for observed orbits
was then postulated. Despite an intensive search for dark matter, even on the sub-atomic level,
nothing has been found that could interact with ordinary matter through gravity, but not interact
with observable electromagnetic radiation, such as light. Sticking with Einstein’s theory seems to
be a pipe dream, but nobody in the scientific community dares to abandon this non-working theory.

The members of the AIAS institute, Myron Evans at the head, took over the task of developing
a new theory of physics that overcomes the problems in Einstein’s general relativity. Shortly after
the year 2000, Myron Evans developed the “Einstein Cartan Evans theory” (ECE theory [1–5])
as a replacement, and was even able to unify this with electrodynamics and quantum mechanics.
This lead to significant progress in several fields of physics, and the most significant aspects are
described in this text book.

ECE theory is based entirely on geometry, as was Einstein’s general theory of relativity.
Therefore, Einstein is included in the name of this new theoretical approach. Both theories take the
geometry of spacetime (three space dimensions, plus one time dimension) as their basis. While
Einstein thought that matter curves spacetime and assumed matter to be a “source” of fields, we will
see that ECE theory is based entirely on the field concept and does not need to introduce external
sources. This idea of sources created a number of difficulties in Einstein’s theory.

Another reason for these difficulties is that Einstein made a significant mathematical error in
his original theory (1905 to 1915), because all of the necessary information was not yet available.
Riemann inferred the metric around 1850, and Christoffel inferred the idea of connection around
the 1860s. The idea of curvature was inferred at the beginning of the twentieth century, by Levi
Civita, Ricci, Bianchi and colleagues in Pisa. However, torsion was not inferred until the 1920s, by
Cartan and his colleagues in Paris.

Therefore, in 1915, when Einstein published his field equation, Riemann geometry contained
only curvature, and there was no way of determining that the Christoffel connection must be
antisymmetric or at least asymmetric. The arbitrary decision to use a symmetric connection was
made into an axiom, and the inferences of Einstein’s theory ended up being based on incorrect
geometry. Omission of torsion leads to many problems, as has been shown by the AIAS Institute,
in great detail [6].

Torsion is a twisting of space, which turns out to be essential and inextricably linked to curvature,
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because if the torsion is zero then the curvature vanishes [6]. In fact, torsion is even more important
than curvature, because the unified laws of gravitation and electrodynamics are basically physical
interpretations of twisting, which is formally described by the torsion tensor.

ECE theory unifies physics by deriving all of it directly and deterministically from Cartan
geometry, and doing so without using adjustable parameters. Spacetime is completely specified by
curvature and torsion, and ECE theory uses these underlying fundamental qualities to derive all
of physics from differential geometry, and to predict quantum effects without assuming them (as
postulates) from the beginning. It is the first (and only) generally covariant, objective and causal
unified field theory.

This book first introduces the mathematics on which ECE theory is based, so that the foundations
of the theory can be explained systematically. Mathematical details are kept to a minimum, and
explained only as far as is necessary to ensure understanding of the underlying Cartan geometry.
This allows the fundamental ECE axioms and theorems to be introduced in a simple and direct
manner. The same equations are shown to hold for electrodynamics, gravitation, mechanics and fluid
dynamics, which places all of classical physics on common ground. In the second volume of this
textbook, physics is then extended to the microscopic level by introducing canonical quantization
and quantum geometry. The quantum statistics used is classically deterministic. There is no need
for renormalization and quantum electrodynamics. All known effects, up to and including the
structure of the vacuum, can be explained within the ECE axioms, which are based on Cartan
geometry. This is the great advancement that this textbook will explain and clarify.
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Table of ECE development over time
Myron Evans developed the B(3) field and O(3) electrodynamics in the 1980s and 90s. He started
developing the formal foundations of ECE theory around 2001, using Cartan geometry as the basis.
A complete presentation of early research, starting with 1973, can be found in the Omnia Opera
Section of the AIAS website [27]. Significant milestones in ECE theory, starting with the first
publications in 2003 and continuing to the present day, are listed in Table 1.1.

Year Development First Reference

2003 First ECE version published in [1]
2006 Spin connection resonance UFT paper 61
2007 Explanation of whirlpool galaxy structures UFT paper 76
2007 Criticism of Einstein field equation UFT paper 96
2008 Explanation of cosmological red shift UFT paper 118
2009 Theory of the fermion UFT paper 129
2009 Antisymmetry law of potentials UFT paper 131
2009 Classical ECE vacuum UFT paper 292
2010 Light deflection and photon mass UFT paper 150
2011 Quantum-Hamilton equations UFT paper 175
2011 x theory of precession UFT paper 192
2012 Proof of antisymmetry of Christoffel connections UFT paper 209
2012 Refutation of standard electroweak theory UFT paper 225
2012 Explanation of Low Energy Nuclear Reaction (LENR) UFT paper 226
2013 New Resonance Spectroscopies from the UFT paper 251

ECE Fermion Equation
2014 Beltrami fields in ECE theory UFT paper 257
2015 ECE2 theory UFT paper 315
2015 ECE2 orbital precession from the Lagrangian UFT paper 325

of special relativity
2016 ECE2 vacuum UFT paper 337
2016 General theory of precessions UFT paper 346
2016 ECE2 fluid electrodynamics UFT paper 349
2017 Analytical mechanics of the gyroscope UFT paper 367
2017 ECE2 vacuum fluctuations of E and B fields UFT paper 392
2018 Generally relativistic m theory of gravitation UFT paper 415
2019 Relativistic quantum m theory UFT paper 428
2019 ECE and Heim theory UFT paper 441

Table 1.1: Historical development of ECE theory.
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2. Mathematics of Cartan geometry

2.1 Coordinate transformations

Before we can discuss the foundations of non-Cartesian and Cartan geometry on a mathematical
level, we need to review the basics of analytical geometry.

2.1.1 Coordinate transformations in linear algebra

To start our discussion of geometry, we first recapitulate some basics of linear algebra. Cartan
geometry is a generalization of these concepts, in a sense. Points in space are described by
coordinates which are n-tuples for an n-dimensional vector space. The tuple components are
numbers and describe how a point in space is reached by putting parts (for example yardsticks)
in different directions together. The directions are called base vectors. For a three-dimensional
Euclidian space we have the base vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 . (2.1)

A point with coordinates (X ,Y,Z) is allocated to a vector

X = Xe1 +Y e2 +Ze3. (2.2)

We have the freedom to choose any base in a vector space, rectangular or not, but when vector
analysis is applied to the vector space, it is beneficial to have a rectangular basis. The basis vectors
have to be normalized so that this is an orthonormal basis.

A question arises as to what happens when the basis vectors are changed. The position of points
in the vector space should be independent of the basis, and we will encounter this fundamental
requirement often in Cartan geometry. The coordinates will change when the basis changes. An
important part of linear algebra deals with describing this mathematically. Taking the above basis
vectors ei, a new basis e′i in an n-dimensional vector space will be a linear combination of the
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original basis:

e′i =
n

∑
j=1

qi je j (2.3)

where the coefficients qi j represent a matrix that is commonly called the transformation matrix.
The above equation can therefore be written as a matrix equatione′1

...
e′n

= Q

e1
...

en

 (2.4)

with

Q = (qi j) (2.5)

and the unit vectors formally arranged in a column vector. Q must be of rank n and invertible. In
Eq. (2.4) the unit vectors can be written with their components as row vectors. Denoting the j-th
component of the unit vector ei by (ei) j = ei j, we then can set up a matrix from the unit vectors
and write (2.4) in the forme′11 . . . e′1n

...
...

e′n1 . . . e′nn

= Q

e11 . . . e1n
...

...
en1 . . . enn

 . (2.6)

Then the basis transformation is a matrix multiplication by Q. The matrix for the inverse transfor-
mation is obtained by multiplying (2.4) or (2.6) by the inverse matrix Q−1:e11 . . . e1n

...
...

en1 . . . enn

= Q−1

e′11 . . . e′1n
...

...
e′n1 . . . e′nn

 . (2.7)

Multiplying Q with Q−1 gives the unit matrix which can be expressed by the Kronecker symbol:

Q Q−1 =

1 . . . 0
...

...
0 . . . 1

= (δi j). (2.8)

� Example 2.1 The rotation of bases by an angle φ in a two-dimensional vector space can be
described by the rotation matrix

Q =

(
cosφ sinφ

−sinφ cosφ

)
. (2.9)

The basis of unit vectors (1,0), (0,1) is then transformed to the new basis vectors(
e′1
e′2

)
=

(
cosφ sinφ

−sinφ cosφ

)(
1 0
0 1

)
=

(
cosφ sinφ

−sinφ cosφ

)
, (2.10)

this means

e′1 =
(

cosφ

sinφ

)
, e′2 =

(
−sinφ

cosφ

)
. (2.11)

Both basis sets are depicted in Fig. 2.1. �
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Figure 2.1: Basis vector rotation by an angle φ .

Now that we understand the basis transformation, we want to find the transformation law for
vectors. The components of vectors in one base, the coordinates, are transformed to the components
in another base. From the definition (2.2) a vector with coordinates xi can be written as

X = ∑
i

xiei (2.12)

and may be transformed to a representation in a second basis with coordinates x′i:

X′ = ∑
i

x′ie
′
i. (2.13)

Since the vector should remain the same in both bases, we can set X = X′. Inserting the basis
transformations into this relation, one finds that the transformation law of coordinates is

X′ = Q−1 X (2.14)

or in coordinates:x′1
...

x′n

= Q−1

x1
...

xn

 . (2.15)

We notice the important result that the coordinates transform with the inverse matrix compared to
the basis vectors and vice versa.

� Example 2.2 The transformation matrix of coordinates for the rotation in two dimensions is

Q−1 =

(
cosφ −sinφ

sinφ cosφ

)
. (2.16)

This can easily be seen because the reverse rotation is by an angle −φ . Then the sine function
reverses sign but the cosine function does not. The vectors on the basis axes are transformed to(

1
0

)
→
(

cosφ

−sinφ

)
,

(
0
1

)
→
(

sinφ

cosφ

)
. (2.17)

�
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Comparing with (2.9), we see that the columns of the transformation matrix Q represent the
coordinates of the transformed unit vectors, not the basis. In general:x11 . . . xn1

...
...

x1n . . . xnn

= Q−1

1 . . . 0
...

...
0 . . . 1

 (2.18)

where xi j = (xi) j denotes the jth component of the transformed unit vector ei. Please notice that the
index scheme for xi j is transposed compared to the usual matrix definition.

2.1.2 General coordinate transformations and coordinate differentials
In the framework of general relativity, coordinate transformations are mappings from one vector
space to another. These mappings are multidimensional functions. In the preceding section we
restricted ourselves to linear transformations (or mappings), while in general relativity we operate
with nonlinear transformations.

Space is described by a four-dimensional manifold, using advanced mathematics. However, in
this book we do not develop these concepts in any great extent, but only explain the parts that are
required for a basic understanding. The mathematical details can be found in textbooks on general
relativity, for example, see [7]- [11].

In this book, we use one time-coordinate plus three space-coordinates for general relativity,
with indices numbered from 0 to 3. Such vectors are also called 4-vectors. The functions and maps
(later: the tensors) defined on this base space are functions of the coordinates: f (xi), i=0...3. In
particular, coordinate transformations can be described in this form. Let’s consider two coordinate
systems A and B which describe the same space and are related by a nonlinear transformation.
Let Xi be the components of a 4-vector X in space A and Yi the components of a 4-vector Y in
space B. The coordinate transformation function f : X→ Y then can be expressed as a functional
dependence of the components:

Yi = fi(X j) = Yi(X j) (2.19)

for all components i of f and all pairs i, j. In the following, we consider the transformations
between a rectangular, orthonormal coordinate system, defined by basis vectors (1,0, ...),(0,1, ...),
etc., and coordinates

X =


X1
X2
X3
X4

 (2.20)

and a curvilinear coordinate system with coordinates

u =


u1
u2
u3
u4

 . (2.21)

The transformation functions from the curvilinear to the cartesian coordinate system may be defined
by

Xi = Xi(u j) (2.22)
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Figure 2.2: Transformation to curvilinear coordinates.

as discussed above. The inverse transformations define the coordinate functions of u:

ui = ui(X j). (2.23)

The functions ui = constant define coordinate surfaces, see Fig. 2.2, for example.
The degree of change in each direction is given by the change of arc length and is expressed by

the scale factors

hi =

∣∣∣∣∂X
∂ui

∣∣∣∣ . (2.24)

The unit vectors in the curvilinear space are computed by

ei =
1
hi

∂X
∂ui

. (2.25)

The tangent vector of the coordinate curves at each point of space is defined by

∇ui = ∑
j

∂ui

∂X j
e j. (2.26)

We require that curvilinear coordinate system be orthonormal at each point of space. This can be
assured by the condition that the tangent vectors of the coordinate curves at each point fulfill the
requirement

∇ui ·∇u j = δi j. (2.27)

The scale factors can alternatively be expressed by the modulus of the tangent vector:

hi =
1
|∇ui|

. (2.28)

� Example 2.3 We consider the transformation from cartesian coordinates to spherical coordinates
in Euclidean space. The curvilinear coordinates of a point in space are (r,θ ,φ), where r is the
radius, θ the polar angle and φ the azimuthal angle, see Fig. 2.3. The cartesian coordinates are
(X ,Y,Z). The transformation equations from the curvilinear to the rectangular coordinate system
are

X = r sinθ cosφ

Y = r sinθ sinφ (2.29)

Z = r cosθ
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and the inverse transformations are

ur = r =
√

X2 +Y 2 +Z2

uθ = θ = arccos
Z√

X2 +Y 2 +Z2
(2.30)

uφ = φ = arctan
Y
X
.

Figure 2.3: Spherical polar coordinates [176].

The vector of scale factors (2.24) is

h =

 1
r

r sinθ

 (2.31)

and the matrix of column unit vectors (2.25) is

(e1,e2,e3) =

 cosφ sinθ sinφ sinθ cosθ

cosφ cosθ sinφ cosθ −sinθ

−sinφ cosφ 0

 . (2.32)

The components of h have to be positive. The sine function may have positive and negative values,
but in spherical coordinates the range of θ is between 0 and π , therefore this function is always
positive. �

As explained, the coordinate systems are chosen in a way that ensures that the length of vectors
is conserved. This must also hold for time-dependent processes. For example, a distance vector
changing over time is

∆X = v∆t−X0 (2.33)

where v is the velocity vector of a mass point and X0 is an offset. The squared distance is

s2 = v2
∆t2− (X0)

2. (2.34)

We notice that a minus sign appears in front of the space part of s2. This is different from pure
“static” Euclidean 3-space, where we have

s2
E = X2 +Y 2 +Z2. (2.35)
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Now we generalize Eq. (2.34). When the differences in time as well as in space between two
points are infinitesimally different, we can write the distance between these points with coordinate
differentials:

ds2 = c dt2−dX2−dY 2−dZ2 (2.36)

where ds is the differential line element. We have added a factor c to the time coordinate t so that
all coordinates have the physical dimension of length. In the same way, we can express the line
element in another coordinate system, say u coordinates:

ds2 = (du0)
2− (du1)

2− (du2)
2− (du3)

2. (2.37)

So far we have dealt with a Euclidian 3-space, augmented by a time component. More generally,
the above equations can be written in the form

ds2 = ∑
i j

ηi j dxi dx j (2.38)

where ηi j represents a matrix of constant coefficients directly leading to the result (2.36) or (2.37):

(ηi j) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.39)

Formally, we can write the coordinates as a 4-column vector

(xµ) =


ct
X1

X2

X3

 (2.40)

where µ runs from 0 to 3 and is written as an upper index. We can do the same for the coordinate
differentials:

(dxµ) =


cdt
dX1

dX2

dX3

 . (2.41)

At this point, we should notice that the determinant of the matrix (2.39) is -1. The η matrix is
called the metric of the space, here the time-extended flat Euclidean space, also called Minkowski
space. Obviously, the metric is negative definite. Sometimes η is defined with reverse signs but the
result is the same. At this point, we enter the realm of special relativity, but we need not deal with
Lorentz transformations in this book. Since the spacetime metric is an essential physical quantity in
general relativity as well as in ECE theory, we introduce special relativity only under the view point
that the line element ds is independent of the coordinate system. Later we will see that this leads to
the gamma factor of special relativity. This is the only formalism in common between Einstein’s
relativity and ECE theory. We will come back to this when physical situations are considered where
very high velocities occur. This requires a relativistic treatment (in the sense of special relativity).
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2.1.3 Transformations in curved spaces
So far, we have done linear algebra in Euclidean spaces, but now we are extending the concepts
of the preceding section to curved spaces. This means that equidistant coordinate values do not
describe line elements equal in length. But we should be warned: Using such coordinate systems
does not mean that space is “curved” in any way. According to Example 2.1 in the preceding
section, a curvilinear coordinate system can perfectly describe a Euclidean “flat” space.

Below, we consider two coordinate systems existing in the same space, denoted by primed and
un-primed differentials dx and dx′. According to Eqs. (2.22, 2.23) we have a functional dependence
between both coordinates:

xµ = xµ(x′ν) (2.42)

and

x′ν = x′ν(xµ). (2.43)

Differentiating these equations gives

dx′µ = ∑
ν

∂x′µ

∂xν
dxν , (2.44)

dxµ = ∑
ν

∂xµ

∂x′ν
dx′ν . (2.45)

To make these equations similar to the transformations in linear algebra (see Section 2.2.2), we
define transformation matrices

α
µ

ν =
∂xµ

∂x′ν
, (2.46)

α
µ

ν =
∂x′µ

∂xν
(2.47)

so that any vector V with components V µ in one coordinate system can be transformed to a vector
V ′ in the other coordinate system by

V ′µ = α
µ

ν V ν , (2.48)

V µ = α
µ

ν V ′ν . (2.49)

These matrices, however, are not elements of linear algebra but matrix functions, because we are
not working with linear transformations. α is the inverse matrix function of α and vice versa. This
means:

∑
ρ

α
µ

ρ α
ρ

ν = δ
µ

ν (2.50)

with the Kronecker delta

δ
µ

ν =

{
1 if µ = ν

0 if µ 6= ν
. (2.51)

Here we have written α with an upper and lower index intentionally. This allows us to introduce
the Einstein summation convention: if the same index appears as an upper and a lower index on one
side of an equation, this index is summed over. Such an index is also called a dummy index. We
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will use this feature intensively, when tensors are introduced later. With this convention, which we
will use without notice in the future, we can write:

α
µ

ρ α
ρ

ν = δ
µ

ν . (2.52)

Since space is not necessarily flat, the metrical coefficients of (2.39) are not constant, and non-
diagonal terms may appear. This general metric is conventionally called gµν and defined by the
line element as before:

ds2 = gµν dxµ dxν . (2.53)

For a flat space with cartesian coordinates we have

gµν = ηµν . (2.54)

� Example 2.4 We compute an example for a transformation matrix. Using Example 2.3 (trans-
formation between cartesian coordinates and spherical polar coordinates), we have by (2.29),
(2.30):

x1 = r sinθ cosφ

x2 = r sinθ sinφ (2.55)

x3 = r cosθ

and the inverse transformations

x′1 = r =
√

(x1)2 +(x2)2 +(x3)2

x′2 = θ = arccos
x3√

(x1)2 +(x2)2 +(x3)2
(2.56)

x′3 = φ = arctan
x2

x1 .

The transformation matrix is according to (2.46):

α
1
1 =

∂x1

∂x′1
=

∂

∂ r
(r sinθ cosφ) = sinθ cosφ (2.57)

α
1
2 =

∂x1

∂x′2
=

∂

∂θ
(r sinθ cosφ) = r cosθ cosφ

etc. ...

resulting in the 3x3 matrix

α =

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.58)

Obviously, this matrix is not symmetric and even has a zero on the main diagonal. Nonetheless, it
is of rank 3 and is invertible, as can be checked. We omit the details here, since the inverse matrix
is a bit complicated. The determinant of α is r2 sinθ , the determinant of the inverse matrix α is
1/(r2 sinθ). By insertion, one can check that

α ·α = 1. (2.59)

This example is available as code for the computer algebra system Maxima [114]. �
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� Example 2.5 As a further example, we will compute the metric of the coordinate transformation
of the previous example (2.4), see computer algebra code [115]. So far, we have no formal method
given to do this. The simplest way for Euclidean spaces is the method going back to Gauss. If the
metric g (a matrix) is known for one coordinate system xµ , the invariant line element of a surface
(which is hypothetical in our case) is given by

ds2 =
[
dx1dx2dx3

]
g

dx1

dx2

dx3

 . (2.60)

The metrical matrix belonging to another coordinate system x′µ is then computable by

g′ = JT g J (2.61)

where J is the Jacobian of the coordinate transformation:

J =

 ∂x1

∂x′1
∂x1

∂x′2
∂x1

∂x′3
∂x2

∂x′1
∂x2

∂x′2
∂x2

∂x′3
∂x3

∂x′1
∂x3

∂x′2
∂x3

∂x′3

 . (2.62)

Comparing this with Eq. (2.57), we see that the transformation matrix α is identical with the
Jacobian, so we can also write:

g′ = α
T g α. (2.63)

The metric of the cartesian coordinates is simply

g =

1 0 0
0 1 0
0 0 1

 (2.64)

and can be inserted into (2.63), together with α from the preceding example. The result is

g′ =

1 0 0
0 r2 0
0 0 r2sin2θ

 (2.65)

for the metric of the spherical coordinates. Written as the line element, this is

ds2 = dr2 + r2dθ
2 + r2 sin2

θ dφ
2. (2.66)

The metric is symmetric in general, and diagonal in most relevant cases. We will learn other
methods of determining the metric in curved spaces during the course of this book. �

2.2 Tensors
Now that we have explained coordinate transformations and their matrix representations, including
the metric, to some extent, we will extend this formalism from vectors to tensors. First, we have to
define what a tensor is, and then we can see how they are transformed.

In Section 1.1.3 we introduced the formalism of writing matrices and vectors by indexed
quantities, with upper or lower index, where this position was chosen more or less arbitrarily, for
example to fulfill the Einstein summation convention. Now let’s introduce k-dimensional objects (k
ranging from 0 to any integer number) with upper and lower indices of the form

T µ1...µn
ν1...νm . (2.67)
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T has n upper indices µi and m lower indices νi with n+m = k. It is not required that all upper
indices appear first, for example

T 3 30
1 (2.68)

is a valid object. The indices µi,νi represent the coordinate indices for each dimension, ranging
from 0 to k-1 by definition. In the above example we have k = 4, so

T 3 40
5 (2.69)

would not be a valid object. For k = 2 such an object represents a matrix, for k = 1 a vector and for
k = 0 (without index) a scalar value. A tensor is defined by objects of type (2.67) which adhere to a
certain transformation behavior of the upper and lower indices. Given a coordinate transformation
α

µ

ρ between two coordinate systems, this transformation has to be applied for each index of a tensor
separately. For example, a 2-dimensional tensor T may be transformed to T ′ by

T ′µν = α
µ

ρ α
ν

λ
T ρλ . (2.70)

We further require that for lower indices we use the inverse transformation matrices:

T ′µν = α
ρ

µ α
λ
ν Tρλ (2.71)

and, consequently, for mixed cases:

T ′µν = α
µ

ρ α
λ
ν T ρ

λ
. (2.72)

Please notice that the α matrices are defined by the differentials of the transformation, see Eqs.
(2.44, 2.45).

In Section 2.1.1 we have seen that, if α
µ

ρ transforms the basis vectors, then the inverted
matrix α

ν

λ
transforms the coordinates of vectors. Therefore, the upper indices of tensors transform

like coordinates, while the lower indices transform like the basis. Upper indices are also called
contravariant indices, while lower indices are called covariant indices. A tensor containing both
types of indices is called a mixed index tensor.

We conclude this section with the hint that the metric introduced in the previous section is also
a tensor. Mathematically, more precisely, we would restrict the tensors then to live in metric spaces,
but we won’t bother too much with mathematical details in this textbook. The metric gµν in curved
spaces is a symmetric matrix and a tensor of dimension 2. The inner product of two vectors v, w
can be written with aid of the metric:

s = gµν vµwν . (2.73)

In Euclidean space with Cartesian coordinates, g is the unit matrix as demonstrated in Example
(2.5). Indices of arbitrary tensors can be moved up and down via the relations

T µ

ν = gνρ T µρ (2.74)

and

T µ

ν = gµρ Tρν (2.75)

where gµρ is the inverse metric:

gµρgνρ = δ
µ

ν . (2.76)
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� Example 2.6 We present several tensor operations. Tensors can be multiplied. Then the product
has the union set of indices, for example

AµνBρ =Cµν

ρ . (2.77)

The order of multiplication of A and B plays a role. Therefore, such a product is only meaningful
for tensors with a certain symmetry, for example the product tensor of two vectors:

vµwν =Cµν . (2.78)

Here C is a symmetric tensor, i.e.

Cµν =Cνµ . (2.79)

Only tensors with the same rank can be added:

Aµ

ν +Bρ

σ =Cα

β
. (2.80)

The equation

Aµ

ν +Bρσ

τ =? Cαβ

τ (2.81)

is not compatible with the definition of tensors, and is therefore wrong. For further examples,
see [7]. �

2.3 Base manifold and tangent space
Now that we have seen an overview of the tensor formalism, we will consider the spaces on which
these tensors are operating. A tensor can be considered as a function, for example

T µ

ν : R4→ R2 (2.82)

which maps a 4-vector to a two-dimensional tensor field:

[ct,X ,Y,Z]→ T µ

ν (ct,X ,Y,Z) (2.83)

where the two indices of the tensor indicate that the image map is two-dimensional. We speak of
“tensor field” in cases where a continuous argument range is mapped to a continuous image range
which is different from the argument set. For example, T could be an electromagnetic field which
is defined at each point of 4-space. If the set of arguments is not Euclidean, we require that, at each
point of the argument set, a local neighborhood exists, which is homomorphous to an open subset of
Rn where n is the dimension of the argument set. This is then called a manifold. Applying multiple
tensor functions to a manifold means that several maps of the manifold exist. It is further required
that the manifold is differentiable because we want to apply the differential calculus later. Assume
that a point P is located within the valid local range of two different coordinate systems. Then
the manifold is differentiable in P, if the Jacobian of the transformation between both coordinate
systems is of rank n, the dimension of the manifold. For definition of scalar products, lengths,
angles and volumes we need a metric structure for “measurements”, and this requires the existence
of a metric tensor. A differentiable manifold with a metric tensor is called Riemannian manifold.

� Example 2.7 In Fig. 2.4 an example for a 2-dimensional manifold is given: the surface of
the earth. The geometry is non-Euclidean. For large triangles on the earth’s surface, the sum of
angles is different from 180◦. A small region is mapped to a flat area where Euclidean geometry
is re-established. This can be done for each point of a manifold within a neighborhood, but not
globally for the whole manifold. �
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Figure 2.4: 2-dimensional manifold and mapping of a section to a plane segment.

Figure 2.5: Tangential vector v to a 2-dimensional manifold M.

At each point of such a manifold a tangential space can be defined. This is a flat Rn space
with the same dimension as the manifold. In Fig. 2.5 an example of a 2-dimensional manifold and
tangent space is depicted. The manifold is denoted by M and the tangent space at the point x by
TxM. Such a tangent space (a plane) for example occurs for the motion of mass points along an
orbital curve γ(t).

The manifold can be covered by points with local neighborhoods and corresponding tangent
spaces in each of these points. The set of all tangent spaces is called the tangent bundle. Changing
the coordinate systems within the manifold means that the mapping from the manifold to the
tangential space has to be redefined. A scalar product can be defined in the tangential space by use
of the metric of the manifold.

Now we want to make the definition of tangent space independent of the choice of coordinates.
The tangent space TxM at a point x in the manifold can be identified with the space of directional
derivative operators along curves through x. The partial derivatives ∂

∂xµ = ∂µ represent a suitable
basis for the vector space of directional derivatives, which we can therefore safely identify with the
tangent space.

Consider two manifolds M and N and a function F : M→ N for a mapping of points of M to
points in N. In M and N no differentiation is defined. However, we can define coordinate charts
from the manifolds to their corresponding tangent spaces. These are the functions denoted by φ

and ψ in Fig. 2.6. The coordinate charts allow us to construct a map between both tangent spaces:

ψ ◦ f ◦φ
−1 : Rm→ Rn. (2.84)

With aid of this construct we can define a partial derivative of f exploiting the indirection via the
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tangent spaces. For a point xµ in Rm (the mapped point x of M) we define:

∂ f
∂xµ

:=
∂

∂xµ
(ψ ◦ f ◦φ

−1)(xµ). (2.85)

In many application cases we have a curve in the manifold M described by a parameter λ . This
could be the motion of a mass point in dependence of time. Similarly, as above, we can define the
derivative of function f according to λ by using the chain rule:

d f
dλ

:=
dxµ

dλ
∂µ f . (2.86)

As can be seen, there is a summation over the indices µ and the ∂µ can be considered as a basis of
the tangent space. This is sometimes applied in mathematical textbooks (for example [12]).

Figure 2.6: Mapping between two manifolds and tangent spaces.

n-forms
There is a special class of tensors, called n-forms. These comprise all completely anti-symmetric
covariant tensors. In an n-dimensional space, there are 0-forms, 1-forms, ..., n-forms. All higher
forms are zero by the antisymmetry requirement. A 2-form F can be constructed, for example, by
two 1-forms (co-vectors) a and b:

Fµν =
1
2
(aµbν −aνbµ). (2.87)

By index raising this can be rewritten to the form

F ′µν =
1
2
(a′µb′ν −a′νb′µ) (2.88)

with

a′µ = gµνaν , etc. (2.89)

Introducing a square bracket for an antisymmetric index permutation:

[µν ]→ µν−νµ (2.90)

we can also write this in the form

Fµν =
1
2

a[µbν ]. (2.91)
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In general, we can define

T[µ1µ2...µn] =
1
n!
(Tµ1µ2...µn + alternating sum over permutations of µ1 . . .µn). (2.92)

The antisymmtric tensor may contain further indices which are not permuted.

� Example 2.8 Consider a tensor T τ
µνρσ being antisymmetric in the first three indices. Then we

have

T τ

[µνρ]σ =
1
6
(T τ

µνρσ −T τ
µρνσ +T τ

ρµνσ −T τ
νµρσ +T τ

νρµσ −T τ
ρνµσ ). (2.93)

By utilizing the antisymmetry of the first two indices, we can simplify this expression to

T τ

[µνρ]σ =
1
6

(
T τ

µνρσ − (−T τ
µνρσ )+T τ

ρµνσ − (−T τ
ρµνσ )+T τ

νρµσ − (−T τ
νρµσ )

)
(2.94)

=
1
3

(
T τ

µνρσ +T τ
ρµνσ +T τ

νρµσ

)
.

This is the sum of indices µ,ν ,ρ cyclically permuted. �

With the help of antisymmetrization, we can define the exterior product or wedge product.
Given a p-form a and q-form b, we define the antisymmetric product by the ∧ (wedge) operator:

(a∧b)µ1...µp+q :=
(p+q)!

p!q!
a[µ1...µpbµp+1...µp+q]. (2.95)

For example, the wedge product of two 1-forms is

(a∧b)µν = 2a[µbν ] = aµbν −aνbµ . (2.96)

The wedge product is associative:

(a∧ (b+ c))
µν

= (a∧b)µν +(a∧ c)µν . (2.97)

Mathematicians like to omit the indices if it is clear that an equation is written for forms. Thus the
last equation can also be written as

a∧ (b+ c) = a∧b+a∧ c (2.98)

in a short-hand notation. Another property is that wedge products are not commutative. For a
p-form a and a q-form b it is

a∧b = (−1)pqb∧a (2.99)

and for a 1-form:

a∧a = 0. (2.100)

These features may justify the name “exterior product” as a generalization of a vector product in
three dimensions.

An important operation on forms is applying the Hodge dual. First we have to define the
Levi-Civita symbol in n dimensions:

εµ1...µn =


1 if µ1 . . .µn is an even permutation of 0, . . .(n−1),
−1 if µ1 . . .µn is an odd permutation of 0, . . .(n−1),
0 otherwise.

(2.101)
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The determinant of a matrix can be expressed by this symbol. If Mµ

µ ′ is a n× n matrix, the
determinant |M| obeys the relation

εµ ′1...µ
′
n
|M|= εµ1...µnMµ1

µ ′1
· · ·Mµn

µ ′n
(2.102)

or, restricting to one permutation at the left-hand side:

|M|= εµ1...µnMµ1
1 · · ·M

µn
n . (2.103)

The Levi-Civita symbol is defined in any coordinate system in the same way, not undergoing a
coordinate transformation. Therefore, it is not a tensor. The symbol is totally antisymmetric, i.e.
when any two indices are interchanged, the sign changes. All elements where one index appears
twice are zero because the index set must be a permutation.

The Levi-Civita symbol can also be defined with upper indices in the same way. Then the
determinant (2.102/2.103) takes the form

ε
µ ′1...µ

′
n |M|= ε

µ1...µnMµ ′1
µ1 · · ·M

µ ′n
µn (2.104)

or

|M|= ε
µ1...µnM1

µ1
· · ·Mn

µn
. (2.105)

We can construct a tensor from the Levi-Civita symbol by multiplying it with the square root of
the modulus of the metric (in Minkowski space the metric is negative definite, therefore we have to
take the modulus). To show this, we start with the transformation equation of the metric tensor

gµ ′ν ′ =
∂xµ

∂xµ ′
∂xν

∂xν ′
gµν (2.106)

and apply the determinant. With the product rule of determinants this can be written as

|gµ ′ν ′ |=
∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣ ∣∣∣∣ ∂xν

∂xν ′

∣∣∣∣ |gµν |=
∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣2 |gµν | (2.107)

or ∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣=
√
|gµ ′ν ′ |
|gµν |

(2.108)

where the left-hand side represents the determinant of the Jacobian. Using the special case

Mµ ′

µ =
∂xµ ′

∂xµ
(2.109)

and inserting this into (2.104) we obtain

ε
µ ′1...µ

′
n

∣∣∣∣∣∂xµ ′

∂xµ

∣∣∣∣∣= ε
µ1...µn

∂xµ ′1

∂xµ1
· · · ∂xµ ′n

∂xµn
. (2.110)

The determinant of the inverse Jacobian is∣∣∣∣ ∂xµ

∂xµ ′

∣∣∣∣=
∣∣∣∣∣∂xµ ′

∂xµ

∣∣∣∣∣
−1

, (2.111)
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therefore we obtain from (2.110) with inserting (2.108):

ε
µ ′1...µ

′
n

1√
|gµ ′ν ′ |

= ε
µ1...µn

∂xµ ′1

∂xµ1
· · · ∂xµ ′n

∂xµn

1√
|gµν |

. (2.112)

So εµ1...µn/
√
|g| transforms like a tensor, and therefore is a tensor, by definition. The corresponding

covariant tensor transforms as

εµ ′1...µ
′
n

√
|gµ ′ν ′ |= εµ1...µn

∂xµ1

∂xµ ′1
· · · ∂xµn

∂xµ ′n

√
|gµν |. (2.113)

Indices can be raised and lowered as usual by multiplying with metric elements.
With this behavior of the Levi-Civita symbol in mind, we define the Hodge-Dual of a tensorial

form as follows. Assume a n-dimensional manifold, a p-dimensional sub-manifold p < n, and a
tensor p-form A. We then define

Ãµ1...µn−p :=
1
p!
|g|−1/2

ε
ν1...νp

µ1...µn−p Aν1...νp . (2.114)

The tilde superscript ˜ is called the Hodge dual operator. In the mathematical literature this
is mostly denoted by an asterisk as prefix-operator (∗A) but this is a very misleading notation,
therefore we prefer the tilde superscript. The Hodge dual can be rewritten with a Levi-Civita
symbol with only covariant components by

Ãµ1...µn−p =
1
p!
|g|−1/2 gν1σ1 · · ·gνpσp εσ1...σpµ1...µn−p

Aν1...νp . (2.115)

In this book, we will mostly use a somewhat simpler form where a contravariant tensor is trans-
formed into a covariant tensor and vice versa. The factors gν1σ1 , etc., can be used to raise the indices
of Aν1...νp :

Ãµ1...µn−p =
1
p!
|g|−1/2

εν1...νn
Aν1...νp , (2.116)

Ãµ1...µn−p =
1
p!
|g|1/2

ε
ν1...νn Aν1...νp (2.117)

where the sign of the exponent of |g| has been changed according to (2.113). As an example, in
four-dimensional space we use n = 4, p = 2. Then Hodge duals of the A form are

Ãµν =
1
2
|g|−1/2

εµνσρ Aσρ , (2.118)

Ãµν =
1
2
|g|1/2

ε
µνσρ Aσρ . (2.119)

The Hodge dual Ã is linearly independent on the original form A. We will use the Hodge dual when
deriving the theorems of Cartan geometry and the field equations of ECE theory.

2.4 Differentiation

We have already used some types of differentiation in the preceding sections, but only in the
“standard” way within Euclidean spaces. Now we will extend this to curved spaces (manifolds) and
to the calculus of p-forms.
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2.4.1 Covariant differentiation
So far, we have already used partial derivatives of tensors and parametrized derivatives. This,
however, is not sufficient to define a general type of derivative in curved spaces of manifolds. Partial
derivatives depend on the coordinate system. What we need is a “generally covariant” derivative
that keeps its form under coordinate transformations and passes into the partial derivative for
Euclidean spaces.

To retain linearity, the covariant derivative should have the form of a partial derivative plus a
linear transformation. The latter corrects the partial derivative in such a way that covariance is
ensured. The linear transformation depends on the coordinate indices. We define for the covariant
derivative of an arbitrary vector field V ν :

DµV ν := ∂µV ν +Γ
ν

µλ
V λ (2.120)

where the Γν

µλ
are functions and called the connection coefficients or Christoffel symbols. In

contrast to an ordinary partial derivative, the covariant derivative of a vector component V ν depends
on all other components via the sum with the connection coefficients (observe the summation
convention!). The covariant derivative has tensor properties by definition, therefore Eq. (2.120) is a
tensor equation, transducing a (1,0) tensor into a (1,1) tensor, and we can apply the transformation
rules for tensors:

Dµ ′V ν ′ =
∂xµ

∂xµ ′
∂xν ′

∂xν
DµV ν =

∂xµ

∂xµ ′
∂xν ′

∂xν

(
∂

∂xµ
V ν +Γ

ν

µλ
V λ

)
. (2.121)

On the other hand, we can apply the transformation to Eq. (2.120) directly:

Dµ ′V ν ′ = ∂µ ′V ν ′+Γ
ν ′

µ ′λ ′V
λ ′ . (2.122)

The single terms on the right-hand side transform as follows:

∂µ ′V ν ′ =
∂xµ

∂xµ ′
∂

∂xµ
V ν ′ =

∂xµ

∂xµ ′
∂

∂xµ

(
∂xν ′

∂xν
V ν

)
(2.123)

=
∂xµ

∂xµ ′
∂ 2xν ′

∂xµ∂xν
V ν +

∂xµ

∂xµ ′
∂xν ′

∂xν

∂

∂xµ
V ν ,

Γ
ν ′

µ ′λ ′V
λ ′ = Γ

ν ′

µ ′λ ′
∂xλ ′

∂xλ
V λ , (2.124)

where the product rule has been applied in the first term. Eqs. (2.122) and (2.121) can be equated.
The term with the partial derivative of V ν cancels out and we obtain:

Γ
ν ′

µ ′λ ′
∂xλ ′

∂xλ
V λ +

∂xµ

∂xµ ′
∂ 2xν ′

∂xµ∂xλ
V λ =

∂xµ

∂xµ ′
∂xν ′

∂xν
Γ

ν

µλ
V λ . (2.125)

Here we have replaced the dummy index ν by λ in the term with the mixed partial derivative. This
is a common operation for tensor equations. Another common operation is multiplying a tensor
equation by an indexed term and summing over one or more free indices (i.e. making the previously
independent index into a dummy index). Multiplying the last equation by ∂xλ

∂xλ ′ then gives

Γ
ν ′

µ ′λ ′V
λ =

∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂xν ′

∂xν
Γ

ν

µλ
V λ − ∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂ 2xν ′

∂xµ∂xλ
V λ (2.126)
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so that we approach an equation of determining the transformation of the connection coefficients.
The last equation holds for any vector V λ , therefore the equation must hold for the coefficients of
V λ directly. Thus, we obtain the transformation equation for the connection coefficients:

Γ
ν ′

µ ′λ ′ =
∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂xν ′

∂xν
Γ

ν

µλ
− ∂xµ

∂xµ ′
∂xλ

∂xλ ′
∂ 2xν ′

∂xµ∂xλ
. (2.127)

Obviously, the Gammas do not transform as a tensor, the last term prevents this. The Gammas
are not a tensor, therefore indices of Gamma cannot be raised and lowered by multiplying with
metric elements and we need not put too much effort into maintaining the order of upper and lower
indices.

So far, we have investigated covariant derivatives of a contravariant vector (Eq. (2.120)). The
theory can be extended to covariant vectors of 1-forms ων :

Dµων := ∂µων + Γ̄
λ
µνωλ (2.128)

where Γ̄ is a connection coefficient being a priori different from Γ. It can be shown [7] that, for
consistency reasons, Γ̄ is the same as Γ except for the sign:

Γ̄
λ
µν =−Γ

λ
µν . (2.129)

Please note that the summation indices are different between (2.120) and (2.128). Now that we
have a covariant derivative for contravariant and covariant components, the covariant derivative for
arbitrary (k,m) tensors is defined as follows:

Dσ T µ1...µk
ν1...νm := ∂σ T µ1...µk

ν1...νm +Γ
µ1
σλ

T λ µ2...µk
ν1...νm +Γ

µ2
σλ

T µ1λ µ3...µk
ν1...νm + . . . (2.130)

−Γ
λ
σν1

T µ1...µk
λν2...νm

−Γ
λ
σν2

T µ1...µk
ν1λν3...νm

− . . .

By applying the covariant derivative, a (k,m) tensor is transformed into a (k,m+1) tensor. It is also
possible to take the covariant derivative of a scalar function. Since no indices are defined for the
connection in this case, we define for a scalar function φ :

Dµφ := ∂µφ . (2.131)

As we have seen, the connection coefficients are not a tensor. It is, however, easy to make a
tensor of them by taking the antisymmetric sum of the lower indices:

T λ
µν := Γ

λ
µν −Γ

λ
νµ . (2.132)

This is called the torsion tensor. When applying the transformation (2.127) for the difference of
Gammas, the last term vanishes because the order in the mixed partial derivative is arbitrary. The
torsion tensor is antisymmetric by definition. In four dimensions it can be written out for each
index λ as

(T λ
µν ) =


0 T λ

01 T λ
02 T λ

03
−T λ

01 0 T λ
12 T λ

13
−T λ

02 −T λ
12 0 T λ

23
−T λ

03 −T λ
13 −T λ

23 0

 . (2.133)

There are six independent components per λ . We will see later that this is one of the basis elements
of Cartan geometry. A connection that is symmetric in its lower indices is torsion-free.

For completeness, we give the definition of the Riemann curvature tensor, which is also defined
by the connection coefficients, but in a more complicated manner:

Rλ
ρµν := ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ . (2.134)

The tensor is antisymmetric in its last two indices. If it is written in pure covariant form Rλρµν =
gτλ Rτ

ρµν and the manifold is torsion-free, the Riemann tensor is also antisymmetric in its first two
indices. This property will, however, not be used in Cartan geometry.
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2.4.2 Metric compatibility and parallel transport
A fundamental property of vectors in physics is that they must be independent of their coordinate
representation. From Euclidean space, we know that a rotation of a vector leaves its length and
orientation against other vectors constant. In curved manifolds this is not necessarily the case
anymore. Whether the length of a vector is preserved depends on the metric tensor. A parallel
transport of a vector is depicted in Fig. 2.7. On a spherical surface, a vector is parallel transported
from the north pole to a point on the equator in two ways: 1) moved directly along a meridian
(red; right) and 2) moved first along another meridian and then along an equatorial latitude (left;
blue). Obviously, the results are different, so this naive procedure is not compatible with a spherical
manifold.

Figure 2.7: Parallel transport of a vector on a sphere.

Let us formalize the process to define parallel transport in a compatible way. A path is a
displacement of a vector V ν whose coordinates are parameterized, say by a parameter λ :

V ν =V ν(λ ) at point xν(λ ). (2.135)

This can be considered as moving the vector (which is a tensor) along a predefined path. We define
the covariant derivative along the path by

D
dλ

:=
dxµ

dλ
Dµ , (2.136)

where dxµ

dλ
is the tangent vector of the path. This gives us a method for specifying a parallel

transport of V . This transport condition is fulfilled if the covariant derivative along the path
vanishes:

D V ν

dλ
=

dxµ

dλ
DµV ν =

dxµ

dλ
(∂µV ν +Γ

ν
µρV ρ) = 0. (2.137)

Since the tangent vector cannot vanish (we would not have a path anymore), it follows that the
covariant derivative of the tensor must vanish:

DµV ν = 0. (2.138)

This is the condition for parallel transport. It is fulfilled if and only if the covariant derivative along
a path vanishes. This holds for any tensor. In particular we can choose the metric tensor and require
it to be parallel transported:

Dσ gµν = 0. (2.139)
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This is called metric compatibility. It is also said that the connection is metrically compatible
because it is contained in the covariant derivative. It means that the metric tensor is covariantly
constant everywhere and can be parallel transported. If this requirement were omitted, we would
have difficulties defining meaningful physics in a manifold, for example, norms of vectors would
not be constant but change during translations or rotations.

� Example 2.9 We show that the inner product of two vectors is preserved if the vectors can be
parallel transported. The inner product of vectors V µ and W ν is gµνV µW ν . Its covariant path
derivative is

D
dλ

(
gµνV µW ν

)
=

(
D

dλ
gµν

)
V µW ν +gµν

(
D

dλ
V µ

)
W ν +gµνV µ

(
D

dλ
W ν

)
= 0

(2.140)

because all three tensors are parallel transported, by definition. In the same way, one can prove that,
if gµν can be parallel transported, then so can its inverse gµν :

0 =
D

dλ
gµν =

D
dλ

(
gµσ gρν gρσ

)
(2.141)

=
D

dλ

(
gµσ

)
gρν gρσ +gµσ

D
dλ

(
gρν

)
gρσ +gµσ gρν

D
dλ

(gρσ ) .

The first two terms in the last line vanish by definition, and consequently the third term has to
vanish. �

The concept of parallel transport allows us to find the equation for geodesics. A geodesic is the
generalization of a straight line in Euclidean space. Mass points without external forces move this
way. In a curved manifold, the motion follows the curving of space and therefore is not a straight
line. We can find the equation of geodesics by requiring that the path parallel transports its own
tangent vector. This is in analogy to flat space where the tangent vector is parallel to its line vector.
From (2.137) then we have

D
dλ

dxν

dλ
= 0 (2.142)

which can be written

dxµ

dλ
Dµ

dxν

dλ
=

dxµ

dλ

(
∂

∂xµ

dxν

dλ
+Γ

ν
µρ

dxρ

dλ

)
= 0 (2.143)

and, by replacement of ∂

∂xµ by ∂λ

∂xµ

d
dλ

, simplifies to

d2xν

dλ 2 +Γ
ν
µρ

dxµ

dλ

dxρ

dλ
= 0 (2.144)

which is the geodesic equation. In flat space, the Gammas vanish and Newton’s law ẍ = 0 for an
unconstrained motion is regained.

Given a path in the manifold, covariant derivatives can be used to describe the deviation of
a tensor from being parallel transported. Consider a round-trip as depicted in Fig. 2.8. A tensor
is moved counter-clockwise along its covariant tangent vector Dµ , then Dν , and afterwards back
to its starting point in the reverse order. In the case where the tensor is parallel transportable, all
derivatives vanish. However, this will not be the case in general. The commutator of two covariant
derivatives is defined as

[Dµ ,Dν ] := DµDν −DνDµ (2.145)
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Figure 2.8: Closed loop for composition of two covariant derivatives.

and describes the difference of both paths with respect to the covariant derivative. We can apply
this to a vector V ρ and evaluate the terms:

[Dµ ,Dν ]V ρ = DµDνV ρ −DνDµV ρ (2.146)

= ∂µ(DνV ρ)−Γ
λ
µνDλV ρ +Γ

ρ

µσ DνV σ

−∂ν(DµV ρ)+Γ
λ
νµDλV ρ −Γ

ρ

νσ DµV σ

= ∂µ∂νV ρ +(∂µΓ
ρ

νσ )V
σ +Γ

ρ

νσ ∂µV σ −Γ
λ
µν∂λV ρ −Γ

λ
µνΓ

ρ

λσ
V σ

+Γ
ρ

µσ ∂νV σ +Γ
ρ

µσ Γ
σ

νλ
V λ

−∂ν∂µV ρ − (∂νΓ
ρ

µσ )V σ −Γ
ρ

µσ ∂νV σ +Γ
λ
νµ∂λV ρ +Γ

λ
νµΓ

ρ

λσ
V σ

−Γ
ρ

νσ ∂µV σ −Γ
ρ

νσ Γ
σ

µλ
V λ

=
(

∂µΓ
ρ

νσ −∂νΓ
ρ

µσ +Γ
ρ

µλ
Γ

λ
νσ −Γ

ρ

νλ
Γ

λ
µσ

)
V σ − (Γλ

µν −Γ
λ
νµ)DλV ρ .

Comparing the last line with the definitions of curvature tensor (2.134) and torsion tensor (2.132),
it can be written:

[Dµ ,Dν ]V ρ = Rρ

σ µνV σ −T λ
µν DλV ρ . (2.147)

Interestingly, the commutator of covariant derivatives of a vector depends linearly on the vector
itself and its tangent vector, where the coefficients are the curvature and torsion tensors. In the case
of no torsion, there would be no dependence on a derivative of V ρ at all. The action of [Dµ ,Dν ]
can be applied to a tensor of arbitrary rank. In general, it is

[Dρ ,Dσ ]X
µ1...µk

ν1...νm = Rµ1
λρσ

Xλ µ2...µk
ν1...νm +Rµ2

λρσ
X µ1λ ...µk

ν1...νm + · · · (2.148)

−Rλ
ν1ρσ X µ1...µk

λν2...νm
−Rλ

ν2ρσ X µ1...µk
ν1λ ...νm

−·· ·

−T λ
ρσ Dλ X µ1...µk

ν1...νm .

We have seen that the curvature and torsion tensors depend on the connection coefficients
directly. To describe the geometry of a manifold, one must know these coefficients. The geometry
is typically defined by a coordinate transformation. However, there is no direct way to derive the
connection coefficients from the coordinate transformation equations. In Example (2.8) we have
seen that the metric tensor can be derived from the Jacobian, which contains the derivatives of
the coordinate transformations. Therefore, what we need is a relation between the metric and the
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connection, from which the connection coefficients can be derived, when the metric is known. Such
a relation is given by the metric compatibility condition:

Dσ gµν = ∂σ gµν −Γ
λ
σ µgλν −Γ

λ
σνgµλ = 0. (2.149)

For a space of four dimensions, this tensor equation represents 43 = 64 single equations. The first
of them (for the diagonal metric elements) read:

∂

∂x0 g00−2Γ
0
00 g00 = 0 (2.150)

−Γ
1
00 g11−Γ

0
01 g00 = 0

−Γ
2
00 g22−Γ

0
02 g00 = 0

−Γ
3
00 g33−Γ

0
03 g00 = 0

. . .

You should keep in mind that the metric is symmetric, and therefore not all equations are linearly
independent. It is difficult to see how many independent equations remain. Computer algebra (code
available at [10]) tells us that one half (24 equations) are dependent on the other 24 equations.
Therefore, we can predefine 24 Gammas arbitrarily. A solution is, for example,

Γ
0
00 =

∂

∂ x0 g00

2g00
(2.151)

Γ
0
01 =−

g11

g00
A25

Γ
0
02 =−

g22

g00
A43

Γ
0
03 =−

g33

g00
A40

Γ
0
10 =

∂

∂ x1 g00

2g00

. . .

with

Γ
1
00 = A25 (2.152)

Γ
2
00 = A43

Γ
3
00 = A40

. . .

where the Ai are the predefined parameters, and they may even be functions of xµ . From the first
equation of (2.150), it can be seen that assuming Γ0

00 = 0 is not a good choice, because this would
impose the restriction ∂g00

∂ x0 = 0 on the metric a priori. Therefore, the diagonal elements of the lower
pair of indices of Gamma do not vanish in general. By comparing the solutions for Γ0

01 andΓ0
10 in

(2.151) it is obvious that the Gammas are not symmetric in the lower indices.
Having found the connection coefficients, we can construct the curvature and torsion tensors

(2.134) and (2.132). While the coefficients go into the curvature tensor as is, the torsion tensor itself
depends only on the antisymmetric part of the Gammas. Each 2-tensor or connection coefficient
can be split into a symmetric and antisymmetric part:

Γ
ρ

µν = Γ
ρ(S)
µν +Γ

ρ(A)
µν (2.153)
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with

Γ
ρ(S)
µν = Γ

ρ(S)
νµ , (2.154)

Γ
ρ(A)
µν =−Γ

ρ(A)
νµ .

For the torsion tensor we have

T λ
µν = Γ

λ (A)
µν −Γ

λ (A)
νµ = 2 Γ

λ (A)
µν , (2.155)

the symmetric part does not enter the torsion. This motivates the imposition of additional antisym-
metry requirements on the Gammas, instead of choosing 24 elements arbitrarily. So, in addition to
the metric compatibility equation (2.149), we define 24 extra equations

Γ
ρ

µν =−Γ
ρ

νµ (2.156)

for all pairs µ 6= ν with µ > ν . This reduces the number of free solution parameters from 24 to
4 (see computer algebra code [117]). The situation gets quite complicated when non-diagonal
elements in the metric are present [118]. Alternatively, we could even force a purely symmetric
connection by requiring that

Γ
ρ

µν = Γ
ρ

νµ . (2.157)

Then there are no free parameters anymore, and all Gammas are uniquely defined, where 24 of
them turn out to be zero. However, in this case, torsion is zero and we will run into irretrievable
conflicts with geometrical laws, as we will see in subsequent sections. There is a reason for leaving
a certain variability in the connection: the theorems of Cartan geometry have to be satisfied, which
imposes additional conditions on curvature and torsion, and thereby on the connection.

For completeness, we describe how the symmetric connection coefficients are computed in
Einsteinian general relativity. Starting with Eq. (2.149), this equation is written three times with
permuted indices:

∂σ gµν −Γ
λ
σ µgλν −Γ

λ
σνgµλ = 0, (2.158)

∂µgνσ −Γ
λ
µνgλσ −Γ

λ
µσ gνλ = 0,

∂νgσ µ −Γ
λ
νσ gλ µ −Γ

λ
νµgσλ = 0.

Subtracting the second and third equation from the first and using the symmetry of the connection
gives

∂σ gµν −∂µgνσ −∂νgσ µ +2 Γ
λ
µνgλσ = 0, (2.159)

and multiplying the equation by gσρ gives for the Gamma term:

(Γλ
µνgλσ ) gσρ = Γ

λ
µν(gλσ gσρ) = Γ

λ
µνδ

ρ

λ
= Γ

ρ

µν . (2.160)

From (2.159) then follows

Γ
ρ

µν =
1
2

gρσ (∂µgνσ +∂νgσ µ −∂σ gµν). (2.161)

The symmetric connection is determined completely by the metric, in accordance with our earlier
result from the single equation of metric compatibility.

All derivations in this section were exemplified with a diagonal metric. They remain true
if non-diagonal elements are added, but the solutions become much more complex. Imposing
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additional symmetry or antisymmetry conditions on the connection may lead to results differing
from those for a diagonal metric.

It should be noted that the metric of a given geometry of a manifold is not unique, and depends
on the choice of coordinate system. Recalling the examples above, Euclidean space can be described
by cartesian or spherical coordinates which lead to different metric tensors. However, the spacetime
structure is the same, only the numerical addressing of points changes, as do the coordinates of
vectors. However, the vectors as physical objects (position and length) remain the same.

� Example 2.10 We compute the connection for the spherical coordinate system (r,θ ,φ ) for three
cases: general connection, antisymmetrized connection, and symmetrized connection. This example
is available as Maxima code [116]. The metric tensor is from Example 2.5:

(gµν) =

1 0 0
0 r2 0
0 0 r2sin2θ

 . (2.162)

Since the metric is not time-dependent, indices run from 1 to 3. This gives 33 = 27 equations from
metric compatibility (2.149), and the first equations are

−2 Γ
1
11 = 0 (2.163)

−Γ
2
11 r2−Γ

1
12 = 0

−Γ
3
11 r2 sin2(θ)−Γ

1
13 = 0

−Γ
2
11 r2−Γ

1
12 = 0

2r−2 Γ
2
12 r2 = 0

. . .

The solution (obtained by computer algebra) contains 9 free parameters A1, . . . ,A9. There are 27
solutions in total. Some of them are:

Γ
1
11 = 0 (2.164)

Γ
1
13 =−A9 r2 sin2(θ)

Γ
1
31 = 0

Γ
1
33 =−A3 r2 sin2(θ)

Γ
2
12 =

1
r

Γ
2
21 =−

A4

r2

Γ
3
23 =

cos(θ)
sin(θ)

Γ
3
32 = A2

. . .
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With 9 additional antisymmetry conditions, the solutions are

Γ
1
11 = 0 (2.165)

Γ
1
13 = Γ

1
31 = 0

Γ
1
23 =−Γ

1
32 =−A10

Γ
2
12 =−Γ

2
21 =

1
r

Γ
3
23 =−Γ

3
32 =

cos(θ)
sin(θ)

. . .

There is only one free parameter A10 left. A certain similarity to the general solution is retained,
but with antisymmetry. If symmetric connection coefficients are enforced, most Gammas are zero.
The only non-zero coefficients are:

Γ
1
22 =−r (2.166)

Γ
1
33 =−r sin2(θ)

Γ
2
12 = Γ

2
21 =

1
r

Γ
2
33 =−cos(θ)sin(θ)

Γ
3
13 = Γ

3
31 =

1
r

Γ
3
23 = Γ

3
32 =

cos(θ)
sin(θ)

This example is often found in textbooks of general relativity. If all coordinates have the physical
dimension of length, then the connection coefficients have the same physical dimension. In this
example we have angles and lengths, therefore the physical dimensions differ. �

2.4.3 Exterior derivative
So far, we have dealt with covariant derivatives of tensors. Now we want to extend the concept of
derivatives to n-forms. We already know that a partial derivative of a tensor does not conserve the
tensor properties. Therefore, we will define an appropriate derivative for n-forms. We have already
introduced antisymmetric forms in Section 2.3. It is useful to define a derivative on these objects
that conserves antisymmetry and tensor properties. A partial derivative for one coordinate generates
an additional index in a tensor, therefore a p-form is extended to a (p+1)-form by the definition

(d∧A)µ1...µp+1 := (p+1)∂[µ1Aµ2...µp+1]. (2.167)

This (p+1)-form is a tensor, irrespective of what A is. The simplest exterior derivative is that of a
scalar function φ(xµ) which is

(d∧φ)µ = ∂µφ , (2.168)

in other words, this is the gradient of φ . Another example is the definition of the electromagnetic
field in tensor form Fµν as a 2-form (see Example 2.11 below). It is derived as an exterior derivative
of a 1-form, the vector potential Aµ :

Fµν := (d∧A)µν = ∂µAν −∂νAµ . (2.169)
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The tensor character of exterior derivatives can be seen by applying the transformation law
(2.123) to a (0,1) tensor V for example:

∂

∂xµ ′
Vν ′ =

∂xµ

∂xµ ′
∂

∂xµ
Vν ′ =

∂xµ

∂xµ ′
∂

∂xµ

(
∂xν

∂xν ′
Vν

)
(2.170)

=
∂xµ

∂xµ ′
∂ 2xν

∂xµ∂xν ′
Vν +

∂xµ

∂xµ ′
∂xν

∂xν ′
∂

∂xµ
Vν .

The first term in the second line should not appear if this were a tensor transformation. It can be
rewritten to

∂ 2xν

∂xµ ′∂xν ′
Vν (2.171)

and now is symmetric in µ ′ and ν ′. Since the exterior derivative only contains antisymmetric sums
of both indices, all these terms vanish because partial derivatives are commutable. Therefore, d∧Vν

transforms like a tensor, and so do all n-forms.
An important property of an exterior derivative is that its two-fold application is zero:

d∧ (d∧A) = 0. (2.172)

The reason is the same as above, the partial derivatives are commutable, summing up to zero in all
antisymmetric sums.

� Example 2.11 We describe Maxwell’s homogeneous field equations in form notation and
transform this to the well-known vector form (see computer algebra code [119]). The homogeneous
laws are the Gauss law and the Faraday law. In tensor notation they are condensed into one equation:

d∧F = 0 (2.173)

or with indices

(d∧F)µνρ = 0. (2.174)

Because F is a 2-form, the exterior derivative of F is a 3-form. The electromagnetic field tensor is
antisymmetric and defined by the contravariant tensor

Fµν =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

=


0 −E1 −E2 −E3

E1 0 −cB3 cB2

E2 cB3 0 −cB1

E3 −cB2 cB1 0

 (2.175)

where E i are the components of the electric field and Bi those of the magnetic field. It is E1 =
EX ,E2 = EY , etc. To be able to apply the exterior derivative, we first have to transform this tensor
to covariant form. Since classical electrodynamics takes place in a Euclidean space, we use the
Minkowski metric to lower the indices:

ηµν = η
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.176)

Then the covariant field tensor is

Fµν = ηµρηνσ Fρσ =


0 E1 E2 E3

−E1 0 −cB3 cB2

−E2 cB3 0 −cB1

−E3 −cB2 cB1 0

 . (2.177)



44 Chapter 2. Mathematics of Cartan geometry

Compared to the contravariant form, only the signs of the electric field components have changed.
Working out the exterior derivative for µ = 0,ν = 1,ρ = 2, we obtain

(d∧F)012 = ∂0F12 +∂1F20 +∂2F01−∂0F21−∂1F02−∂2F10. (2.178)

Because F is antisymmetric, the negative summands are equal to the positive summands with
reversed sign so that we have

(d∧F)012 = 2(∂0F12 +∂1F20 +∂2F01), (2.179)

this is twice the cyclic sum of indices. Since (µ,ν ,ρ) must be a subset of (0, 1, 2, 3) only the
combinations
(0, 1, 2)
(0, 1, 3)
(0, 2, 3)
(1, 2, 3)
are possible, leading to four equations for d∧F . Setting F01 = EX etc. leads to the four equations:

2(c∂0B3 +∂1E2−∂2E1) = 0 (2.180)

2(−c∂0B2 +∂1E3−∂3E1) = 0

2(c∂0B1 +∂2E3−∂3E2) = 0

2(c∂1B1 + c∂2B2 + c∂3B3) = 0

or, written with cartesian components and simplified:

∂tBZ +∂X EY −∂Y EX = 0 (2.181)

∂tBY −∂X EZ +∂ZEX = 0

∂tBX +∂Y EZ−∂ZEY = 0

∂X BX +∂Y BY +∂ZBZ = 0

where we have used ∂0 = 1/c ·∂t . Comparing these equations with the curl operator:

∇×V =

 ∂YVZ−∂ZVY

−∂XVZ +∂ZVX

∂XVY −∂YVX

 (2.182)

the first three equations of (2.181) contain the third, second and first line of this operator and can be
written in vector form:

∂B
∂ t

+∇×E = 0 (2.183)

which is the Faraday law. The fourth equation of (2.181) is the Gauss law

∇ ·B = 0. (2.184)

We conclude this example with the hint that the inhomogeneous Maxwell equations (Coulomb law
and Ampère-Maxwell law) cannot be written as an exterior tensor derivative due to the current
terms. In those cases, a formulation similar to that in the next example has to be used. �

� Example 2.12 As an example involving the Hodge dual (see computer algebra code [120]), we
derive the homogeneous Maxwell equations from a tensor notation containing the Hodge dual of
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the electromagnetic field tensor introduced in the preceding example, 2.11. In tensor notation, the
equation is:

∂µ F̃µν = 0 (2.185)

and involves the Hodge dual of the 4 x 4 field tensor, defined as follows:

F̃µν =
1
2

εµνρσ Fρσ =


0 −cB1 −cB2 −cB3

cB1 0 −E3 E2

cB2 E3 0 −E1

cB3 −E2 E1 0

 . (2.186)

Indices are raised using the Minkowski metric (2.176):

F̃µν = η
µκ

η
νρ F̃κρ . (2.187)

Therefore, the covariant Hodge dual is:

F̃µν =


0 cB1 cB2 cB3

−cB1 0 −E3 E2

−cB2 E3 0 −E1

−cB3 −E2 E1 0

 , (2.188)

for example:

F̃01 =
1
2
(ε0123F23 + ε0132F32) = F23 (2.189)

and

F̃01 = η
00

η
11F̃01 =−F̃01. (2.190)

The homogeneous laws of classical electrodynamics are obtained as follows, by choice of
indices. The Gauss law is obtained by choosing:

ν = 0 (2.191)

and so

∂1F̃10 +∂2F̃20 +∂3F̃30 = 0. (2.192)

In vector notation this is

∇ ·B = 0. (2.193)

The Faraday law of induction is obtained by choosing:

ν = 1,2,3 (2.194)

and consists of three component equations:

∂0F̃01 +∂2F̃21 +∂3F̃31 = 0 (2.195)

∂0F̃02 +∂1F̃12 +∂3F̃32 = 0

∂0F̃03 +∂1F̃13 +∂2F̃23 = 0.
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These can be condensed into one vector equation, which is

∂B
∂ t

+∇×E = 0. (2.196)

The differential form, tensor and vector notations are summarized as follows:

d∧F = 0→ ∂µ F̃µν = 0→∇ ·B = 0 (2.197)
∂B
∂ t

+∇×E = 0.

The homogeneous laws of classical electrodynamics are most elegantly represented by the differen-
tial form notation, but most usefully represented by the vector notation. �

Exterior covariant derivative
So far, we have seen that exterior derivatives are antisymmetric sums of partial derivatives applied
to n-forms. The question now is what happens if we want to combine the concept of the exterior
derivative with a covariant derivative. This is a generalization of the concept, which should be
more appropriate to curved manifolds where covariant derivatives play an important role for their
description, for example, to define commutators as in Section 2.4.2. We can define an exterior
covariant derivative by creating an (n+1)-form from an n-form A:

D∧A := (D∧A)µ1...µn+1 = D[µ ∧Aν1···νn]. (2.198)

For a 1-form Aν this then is

D∧A = (D∧A)µν = D[µ ∧Aν ] = ∂µAν −Γ
λ
µνAλ −∂νAµ +Γ

λ
νµAλ (2.199)

= ∂[µAν ]− (Γλ
µν −Γ

λ
νµ)Aλ

and with the definition (2.132) of the torsion tensor this can be written:

D∧A = ∂[µAν ]−T λ
µν Aλ . (2.200)

Since the right-hand side is a tensor, D∧A is also a tensor. The equation can be written in form
notation:

D∧A = d∧A−T A. (2.201)

We will extend this concept further in the next chapter.

2.5 Cartan geometry
Having developed the basics of Riemannian geometry, including torsion, we now approach the
central point of this book: Cartan geometry. This will be the mathematical foundation of all fields
of physics, as we will see.

2.5.1 Tangent space, tetrads and metric
By using Riemannian geometry as a basis, we have available nearly all tools that we need to develop
the geometry that is called Cartan geometry and is the basis of ECE theory. We now need to set
our focus on tangent spaces. In Section 2.1 we dealt with coordinate transformations in the base
manifold. The tangent space at a point x in the base manifold was introduced as a Minkowski space
of the same dimension for the local neighborhood of x. A vector V µ defined in the base manifold
can be transformed to a vector in tangent space denoted by V a. We introduce Latin indices to
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denote vectors and tensors in tangent space. A vector in the base manifold can be transformed to the
corresponding one in the tangent space by a transformation matrix q. This is similar to introduction
of the transformation matrix α in Eqs. (2.46 ff.), but with the difference that the transformation
takes place between two different spaces. The basic transformation is

V a = qa
µV µ (2.202)

with transformation matrix elements qa
µ . This is the basis of Cartan geometry, and q is called the

tetrad. q transforms between the base manifold and tangent space. The inverse transformation is
q−1 = (qµ

a), producing a vector in the base manifold:

V µ = qµ
aV a. (2.203)

If the metric of the tangent space ηab is transformed to the base manifold (this is a (0,2) tensor), the
result must be the metric of the base manifold gµν by definition:

gµν = n qa
µqb

ν ηab, (2.204)

and inversely:

ηab =
1
n

qµ
aqν

b gµν , (2.205)

where n is the dimension of the base manifold. Since q is a coordinate transformation, the product
of q and its inverse has to be the unit matrix:

qq−1 = 1 (2.206)

which, written in component form, is

qa
µqν

a = δ
ν
µ , (2.207)

qa
µqµ

b = δ
a
b . (2.208)

The sum of the diagonal elements of (2.206), called the trace, is the dimension of the spaces
between which the transformation takes place:

qa
µqµ

a = n. (2.209)

However, this kind of summed product will often occur in our calculations and it is beneficial to let
the result be unity:

qa
µqµ

a := 1. (2.210)

Therefore, we introduce a scaling factor of 1/
√

n to the tetrad elements and
√

n to the inverse tetrad
elements:

qa
µ →

1√
n

qa
µ , (2.211)

qµ
a→
√

n qµ
a. (2.212)

Thus, the conditions (2.204) and (2.205) remain satisfied.
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� Example 2.13 We consider the transformation to spherical polar coordinates, Eq. (2.58) from
Example (2.4):

α =

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.213)

The inverse transformation is

α
−1 =

cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)
cos(φ) cos(θ)

r
sin(φ) cos(θ)

r − sin(θ)
r

− sin(φ)
r sin(θ)

cos(φ)
r sin(θ) 0

 (2.214)

as can be seen from computer algebra code [121]. To make this transformation a tetrad from a
cartesian base manifold to a Euclidian tangent space with spherical polar coordinates, we have to
set

q =
1√
3

α, (2.215)

q−1 =
√

3 α
−1. (2.216)

Then we have

qq−1 =

1 0 0
0 1 0
0 0 1

 (2.217)

which is the unit matrix as required. �

2.5.2 Derivatives in tangent space
We will now investigate the differential calculus in tangent space and how it is connected to that of
the base manifold. The tangent space at a point x is a Euclidian space, and we could argue that this
allows us to use ordinary differentiation. To define a derivative, we have to construct infinitesimal
transitions from the neighborhood of x. For a point y 6= x, however, another tangent space is defined
because of the definition of tangent spaces. Therefore, the curved structure of the base manifold
has to be respected in the definition of the derivatives in tangent space. In the base manifold, we
defined the covariant derivative for this purpose, see Eq. (2.120):

DµV ν := ∂µV ν +Γ
ν

µλ
V λ (2.218)

where the partial derivatives ∂µ and the connection coefficients Γν

µλ
are operating on a vector V λ

in the base manifold. We can do the same definition for a vector V a in tangent space, but the
connection coefficients are different here:

DµV a := ∂µV a +ω
a
µbV b. (2.219)

The role of the connection coefficients is taken over by other coefficients called spin connections
ωa

µb . These have the same number of indices as the Γ’s but transform in the tangent space.
Therefore they have two Latin indices. The name “spin connection” comes from the fact that this
can be used to define covariant derivatives of spinors, which is actually impossible using the Γ

connection coefficients. The derivative Dµ itself is defined with respect to the base manifold and
therefore has a Greek index. This also has to be present in the spin connection to maintain the
indices as required for a tensor expression.
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Covariant derivatives of a mixed index tensor are defined in a way so that the indices of tangent
space are accompanied by a spin connection and the indices of the base manifold by a Christoffel
connection, for example:

DµV a
ν = ∂µV a

ν +ω
a
µbV b

ν −Γ
λ

µνV a
λ
. (2.220)

or

DµXab
cν = ∂µXab

cν +ω
a
µd Xdb

cν +ω
b
µd Xad

cν −ω
d
µc Xab

dν −Γ
λ

µνXab
cλ
. (2.221)

In the second example d and λ are dummy indices. The summations over lower (covariant)
indices have a minus sign for both the spin connection and Christoffel connection terms. The spin
connections are not tensors, as this holds for the Γ connections. However, the expressions with
covariant derivatives are tensors.

2.5.3 Exterior derivatives in tangent space
In section 2.4.3 we introduced exterior derivatives. These are n-forms based on covariant derivatives.
Considering a mixed-index tensor V a

µ , we can interpret this as a vector-valued 1-form where a is
the index of the vector component. So V a would be a short notation of this 1-form. The concept of
antisymmetric n-forms has been introduced in section 2.3. An exterior derivative of n-forms has
been introduced in section 2.4.3, where a p-form is extended to a (p+1)-form by introducing the
antisymmetric derivative operator d∧, see Eq. (2.167):

(d∧A)µ1...µp+1 = (p+1)∂[µ1Aµ2...µp+1]. (2.222)

We can extend this concept to the tangent space. First, the definition of the covariant derivative
can be extended to mixed-index tensors by giving A one or more indices of tangent space:

(d∧Ab)µ1...µp+1 := (p+1)∂[µ1Ab
µ2...µp+1]. (2.223)

This definition stands on its own, but in curved manifolds it becomes important to define a covariant
exterior derivative of p-forms by basing this definition on the covariant derivative operator Dµ . In
form notation, this kind of covariant derivative is written as

(D∧Ab)µ1...µp+1 := (p+1)D[µ1Ab
µ2...µp+1]. (2.224)

where the D’s at the right-hand side are the “usual" covariant derivatives of coordinate index µ1,
etc., as defined in (2.220) for example. A may be a tensor of an arbitrary number of Greek and
Latin indices, as before. The lower Greek indices define the p-form. In short indexless notation we
can also write:

D∧A := (p+1)D[µ1Aµ2...µp+1]. (2.225)

We will come back to this short-hand notation later. For example, Eq. (2.220) with exterior
covariant derivative and coordinate indices µ ∈ {0,1,2} reads:

D∧V a = (D∧V a)µν (2.226)

= 2(D0V a
1 +D1V a

2 +D2V a
0 −D1V a

0 −D2V a
1 −D0V a

2 )

= 2(D0(V a
1 −V a

2 )+D1(V a
2 −V a

0 )+D2(V a
0 −V a

1 ))

where the “normal” covariant derivatives are defined as before, for example:

D0V a
1 = ∂0V a

1 +ω
a
0bV b

1 −Γ
λ

01V a
λ
. (2.227)

The antisymmetry of the 2-form (2.226) requires

(D∧V a)µν =−(D∧V a)νµ (2.228)

from which it follows that interchanging the indices µ and ν gives the negative result of (2.226).
That this is the case can be seen directly from the second line of the equation.
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2.5.4 Tetrad postulate
Since the tangent space is uniquely related to the base manifold via the tetrad matrix qa

µ , the
Γ-connections of the base manifold and spin connections of the tangent space are related to each
other. To see how this is the case, we use the metric compatibility, the statement that a vector
must be the same when described in different coordinate systems. This is necessary for physical
uniqueness, otherwise we would be dealing with a kind of mathematics that is not related to physical
objects and processes. We introduced this concept in Section 2.4.2 for vectors in the base manifold,
and here we extend it to the tangent space in Cartan geometry.

Having this in mind, we can represent a covariant derivative of a tangent vector in two different
ways. Denoting the orthonormal unit vectors in the base manifold by êν and those of the tangent
space by êa, we can write

DV = DµV ν = (∂µV ν +Γ
ν

µλ
V λ )êν (2.229)

and

DV = DµV a = (∂µV a +ω
a
µbV b)êa (2.230)

for the same vector DV . In the latter case, one also speaks of a mixed basis because the derivative
relates to the manifold as before. The latter equation can be transformed into the base manifold
coordinates by transforming the coordinates V a and the unit vectors êa according to the rules
introduced in Section 2.5.1 and with renaming of dummy indices:

DµV a =
(

∂µV a +ω
a
µbV b

)
êa (2.231)

=
(

∂µ(qa
νV ν)+ω

a
µb qb

λ
V λ

)
qσ

aêσ

= qσ
a

(
qa

ν∂µV ν +V ν
∂µqa

ν +ω
a
µb qb

λ
V λ

)
êσ

=
(

∂µV ν +qν
aV λ

∂µqa
λ
+ω

a
µb qν

aqb
λ
V λ

)
êν .

Comparing with Eq. (2.229) then directly gives

Γ
ν

µλ
= qν

a∂µqa
λ
+qν

aqb
λ

ω
a
µb . (2.232)

Multiplying this equation with qλ
c and applying the same rules as above gives

qλ
cΓ

ν

µλ
= qν

aω
a
µc +qλ

cqν
a∂µqa

λ
(2.233)

and multiplying with qb
ν gives

qb
νqλ

cΓ
ν

µλ
= ω

b
µc +qλ

c∂µqb
λ
, (2.234)

which after renaming of indices is

ω
a
µb = qa

νqλ
bΓ

ν

µλ
−qλ

b∂µqa
λ
. (2.235)

Thus, we have obtained the relations between both types of connections that we needed. Knowing
one of them and the tetrad matrix allows us to compute the other connection.

We can further multiply Eq. (2.232) by qc
ν , obtaining (after applying the rules)

qa
νΓ

ν

µλ
= ∂µqa

λ
+qb

λ
ω

a
µb . (2.236)
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As can be seen by comparison with (2.220), these are exactly the terms of the covariant derivative
of the tensor qa

ν in a mixed basis. It follows that

Dµqa
ν = 0. (2.237)

This is called the tetrad postulate. It states that the covariant derivative of all tetrad elements
vanishes.

This is a consequence of metric compatibility, which we postulated at the beginning of this
section. As was shown earlier in Eq. (2.139), metric compatibility in the base manifold is defined
by an analogue equation for the metric:

Dσ gµν = 0. (2.238)

If the space is Euclidean, we have

Dσ ηµν = 0 (2.239)

for the Minkowski metric (2.176). Since this is also the metric for the tangent space, we can apply
the corresponding definition of the covariant derivative:

Dµηab = ∂µηab−ω
c
µa ηcb−ω

c
µb ηac = 0. (2.240)

The Minkowski metric lowers the Latin indices of the spin connections so that we have

−ωaµb −ωbµa = 0 (2.241)

or

ωaµb =−ωbµa . (2.242)

Metric compatibility provides the property of antisymmetry for the spin connections. Notice that
antisymmetry is only defined if the respective indices are all at the lower or upper positon. Despite
this antisymmetry, the spin connection is not a tensor, as is also the case for the Γ connection. The
symmetry properties of the Γ connection were discussed in Section 2.4.2.

� Example 2.14 We compute some spin connection examples from Eq. (2.235). We need a given
geometry defined by a tetrad and the Christoffel connection coefficients. We will use example 2.13,
where we considered a transformation to spherical polar coordinates. We interpret this in such a
way that the polar coordinates of the base manifold are transformed into cartesian coordinates of
the tangent space. According to Eqs. (2.213) and (2.215) the tetrad matrix then is

q =
1√
3

sinθ cosφ r cosθ cosφ −r sinθ sinφ

sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

 . (2.243)

The spin connections for spherical polar coordinates have been investigated in three variants in
example 2.10:

1. a general connection,
2. a connection antisymmetrized in the non-diagonal lower indices,
3. a symmetric connection (used in Einsteinian relativity).

These functions for the Γ’s have to be inserted into Eq. (2.235), together with the tetrad elements
of (2.243). Please notice that both the tetrad and inverse tetrad elements occur in (2.235). The
qa

ν are the elements of (2.243) and the qν
a are those of the inverted tetrad matrix, essentially Eq.
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(2.214). The calculation is lengthy and has been automated through computer algebra code [122].
The results for case 1 (the general connection) are, for example:

ω
(1)

1(1) = 0, (2.244)

ω
(1)

1(2) =−sin(θ) (A9 r sin(θ)+A8 cos(θ)) ,

ω
(1)

1(3) = A8 sin(φ)sin(θ)2−A9 sin(φ)r cos(θ) sin(θ)− A7 cos(φ)
r

.

The A’s are constants contained in the Γ’s. Obviously they have different physical units, otherwise
there would be problems in summation. In order to make it easier to distinguish between Latin and
Greek indices, the numbers for Latin indices have been set in parentheses. For case 2 (above), the
results are simpler:

ω
(1)

1(1) = 0, (2.245)

ω
(1)

1(2) =
A10 cos(θ)
r2 sin(θ)

,

ω
(1)

1(3) =−
A10 sin(φ)

r2 ,

and in case 3 (symmetric Christoffel connections), all spin connections vanish:

ω
a
µb = 0, (2.246)

indicating that there is no spin connection for a geometry without torsion. The antisymmetry holds
even for the case where a and b are indices at different positions (upper and lower), because the
metric in tangent space is the unit matrix. The antisymmetry has been checked using the code, and
it is always

ω
a
µb =−ω

b
µa (2.247)

as required. �

2.5.5 Evans lemma
We now come to some more specifically relevant properties of Cartan geometry. The tetrad postulate
can be modified to give a differential equation of second order for the tetrad elements. This equation
is a wave equation and is fundamental for many fields of physics. The tetrad postulate (2.237) can
be augmented by an additional derivative:

Dµ(Dµqa
ν) = 0. (2.248)

We introduced a covariant derivative with upper index in order to make µ a summation (dummy)
index. Because the expression in the parentheses is a scalar function due to the tetrad postulate, we
need not bother with how this derivative is defined, it reduces to a partial derivative by definition.
So, we can write:

∂
µ(Dµqa

ν) = 0. (2.249)

or

∂
µ(∂µqa

ν +ω
a
µb qb

ν −Γ
λ

µνqa
λ
) = 0. (2.250)
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In a manifold with 4-vectors [ct,X ,Y,Z], the contravariant form of the partial derivative is defined
in the usual way:

[∂0, ∂1, ∂2, ∂3] =

[
1
c

∂

∂ t
,

∂

∂X
,

∂

∂Y
,

∂

∂Z

]
, (2.251)

while the covariant form of the partial derivative is defined with sign changed for the spatial
derivatives:[

∂
0, ∂

1, ∂
2, ∂

3]= [1
c

∂

∂ t
, − ∂

∂X
, − ∂

∂Y
, − ∂

∂Z

]
. (2.252)

Therefore ∂ µ∂µ is the d’Alembert operator

�=
1
c2

∂ 2

∂ t2 −
∂ 2

∂X2 −
∂ 2

∂Y 2 −
∂ 2

∂Z2 . (2.253)

Then from Eq. (2.250) follows

� qa
ν +Ga

ν = 0 (2.254)

a wave equation with the tensor function

Ga
ν = ∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
). (2.255)

This equation can be made an eigenvalue equation by requiring Ga
ν to be split into a tetrad part and

a scalar function R:

Ga
µ = Rqa

ν (2.256)

with

R = qν
a

(
∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
)
)
. (2.257)

R contains only dummy indices and is a scalar function. Then (2.254) can be written as

� qa
ν +Rqa

ν = 0 (2.258)

and is called the Evans lemma. It is a generally covariant eigenvalue equation. R plays the role of a
curvature, as we will see in later chapters. The entire field of generally covariant quantum mechanics
is based on this equation. The equation is highly non-linear, because R depends on the eigenfunction
qa

ν and the Christoffel and spin connections. In later chapters, in a first approximation, we will
often assume that R is a constant.

2.5.6 Maurer-Cartan structure equations
The torsion and curvature tensors of Riemannian geometry can be transformed to 2-forms of Cartan
geometry simply by defining

T a
µν := qa

κ T κ
µν , (2.259)

Ra
bµν := qa

ρqσ

b Rρ

σ µν . (2.260)

Multiplication with tetrad elements replaces some Greek indices with Latin indices of the tangent
space, so the torsion and curvature tensors defined in Eqs. (2.132) and (2.134) are made 2-forms of
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torsion and curvature. To these forms two foundational relations apply, which will be derived in
this section, using the proof described in [13].

We first define forms of the Christoffel and spin connections similarly to (2.259) and (2.260):

Γ
a

µν := qa
λ

Γ
λ

µν , (2.261)

ω
a
µν := qb

ν ω
a
µb . (2.262)

These are both 2-forms as well. The tetrad postulate (2.237) can be formulated by inserting these
definitions into (2.236):

Γ
a

µν = ∂µqa
ν +ω

a
µν . (2.263)

Inserting the definition of torsion

T κ
µν := Γ

κ
µν −Γ

κ
νµ (2.264)

into (2.259) gives

T a
µν = qa

κ (Γ
κ

µν −Γ
κ

νµ) = Γ
a

µν −Γ
a
νµ , (2.265)

and inserting relation (2.263) gives

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µν −ω

a
νµ . (2.266)

This can be written with the ∧ operator for antisymmetric forms, introduced in Example 2.8 and
Section 2.4.3 as

(T a)µν = (d∧qa)µν +(ωa
b ∧qb)µν (2.267)

or, in short form notation:

T a = d∧qa +ω
a
b ∧qb (2.268)

which is called the first Maurer-Cartan structure equation.
The Riemann curvature tensor is defined

Rλ
ρµν := ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ . (2.269)

We define additional 1-forms of the Christoffel connection:

Γ
a

µb := qa
λ

qν
bΓ

λ
µν (2.270)

and from (2.263) we have

Γ
a

µb = qν
b(∂µqa

ν +ω
a
µν ). (2.271)

Then the curvature form (2.260) can be written:

Ra
bµν = ∂µΓ

a
νb−∂νΓ

a
µb +Γ

a
µcΓ

c
νb−Γ

a
νcΓ

c
µb. (2.272)

This is an antisymmetric 2-form that in form notation reads:

Ra
b = d∧Γ

a
b +Γ

a
c∧Γ

c
b. (2.273)
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The first term on the right-hand side is

d∧Γ
a

b = (d∧d∧qa)qb +d∧ω
a
b = d∧ω

a
b (2.274)

because of the rule d∧d∧a = 0 for any form a. The second term of (2.273) is

Γ
a

c∧Γ
c
b = (qc d∧qa +ω

a
c )∧ (qb d∧qc +ω

c
b ). (2.275)

The terms with the exterior derivative can be written with full indices as qν
c∂µqa

ν , for example.
The product is summed over by the dummy index ν .

From the Leibniz rule we find:

qλ
c∂µqa

λ
+qa

λ
∂µqλ

c = ∂µ(qλ
cqa

λ
) = ∂µδ

a
c = 0, (2.276)

therefore:

qλ
c∂µqa

λ
=−qa

λ
∂µqλ

c. (2.277)

The summation on the left-hand and right-hand side can be contracted to functions

qa
c =−qa

c. (2.278)

It follows

qa
c = 0, (2.279)

qν
c∂µqa

ν = 0. (2.280)

Therefore from (2.275):

Γ
a

c∧Γ
c
b = ω

a
c ∧ω

c
b , (2.281)

and with (2.274), we obtain from (2.273):

Ra
b = d∧ω

a
b +ω

a
c ∧ω

c
b (2.282)

which is called the second Maurer-Cartan structure equation. Using the definition of the exterior
covariant derivative (2.198), the Maurer-Cartan structure equations can be written in the form

T a = D∧qa = d∧qa +ω
a
b ∧qb,

Ra
b = D∧ω

a
b = d∧ω

a
b +ω

a
c ∧ω

c
b .

(2.283)

(2.284)

� Example 2.15 The validity of structure equations is demonstrated by an example of the trans-
formation to spherical polar coordinates again. The tetrad was defined in Example 2.13, and the
spin connections in Example 2.14. For the Gamma connections two versions were used: a general,
asymmetric connection, and an antisymmetrized connection, as described in Example 2.14. If we
know the Gamma connection, we can compute the torsion form:

T a
νµ = qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)
(2.285)

and the Riemann form:

Ra
bµν = qa

σ qµ

b

(
∂µΓ

σ
νρ −∂νΓ

σ
µρ +Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ

)
. (2.286)
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This has been done using computer algebra code [123]. The antisymmetry of the form elements in
the two last indexes is checked:

T a
µν =−T a

νµ , (2.287)

Ra
bµν =−Ra

bνµ . (2.288)

For example, we find with the antisymmetrized connection:

T (2)
11 = 0 (2.289)

T (2)
13 =

2cos(φ) sin(θ)√
3

+
2A10 sin(φ) cos(θ)√

3r
(2.290)

T (2)
31 =−2cos(φ) sin(θ)√

3
− 2A10 sin(φ) cos(θ)√

3r
(2.291)

R(1)
(3)11 = 0 (2.292)

R(1)
(3)13 =−

A10
2 sin(φ) cos(θ)

r3 sin(θ)
(2.293)

R(1)
(3)31 =

A10
2 sin(φ) cos(θ)

r3 sin(θ)
(2.294)

Now all elements of the torsion and curvature form are computed, and we are ready to evaluate
the right-hand sides of the structure equations (2.283) and (2.284), which in indexed form can be
written:

Dµqa
ν −Dνqa

µ = ∂µqa
ν −∂νqa

µ +ω
a
µb qb

ν −ω
a
νb qb

µ (2.295)

and

Dµω
a
νb −Dνω

a
µb = ∂µω

a
νb −∂νω

a
µb +ω

a
µc ω

c
νb −ω

a
νc ω

c
µb . (2.296)

The covariant derivatives have been resolved according to their definitions for each permutation of
(µ,ν). When the indices run over all values 1,2, this does not matter because the antisymmetry
property sets all quantities with equal indices, for example (µ,ν) = (1,1), to zero. In computer
algebra code [123], it is shown that the right-hand sides of the structure equations are equal to the
definitions of the torsion and curvature form defined by (2.285) and (2.286). In addition, it is shown
that re-computing the torsion and curvature tensors from their 2-forms gives the original tensors
(2.264) and (2.269):

T ρ

µν = qρ
aT a

µν , (2.297)

Rσ
ρµν = qσ

a qb
ρ Ra

bµν . (2.298)

�



3. The fundamental theorems of Cartan geometry

We have now arrived at a knowledge level in Cartan geometry that allows us to formulate the
fundamental theorems of this geometry. Some of them are known for a longer time and have been
mentioned in textbooks [14], but others have been found during the development of ECE theory.
The theorems can easily be formulated in form notation but for the proofs we have to descend to
the tensor notation and then climb to the form notation again.

3.1 Cartan-Bianchi identity
The first theorem is called Cartan-Bianchi identity [14] and is known as the first Bianchi identity
or simply the Bianchi identity in Riemannian geometry without torsion. We have added the name
of Cartan to stress that this theorem connects torsion and curvature in Cartan geometry. In form
notation, it reads:

D∧T a = Ra
b∧qb. (3.1)

This is an equation of 3-forms. To prove this equation, we recast the left-hand side into the
right-hand side. Inserting the definition of the exterior covariant derivative gives, for the left-hand
side:

(D∧T a)µνρ = (d∧T a)µνρ +(ωa
b ∧T b)µνρ . (3.2)

Since this is an antisymmetric 3-form, we can write in commutator notation (see Section 2.3):

D[µT a
νρ] = ∂[µT a

νρ] +ω
a
[µb T b

νρ] . (3.3)

In Example 2.8, we had seen that the six index permutations of a 3-form can be reduced to three
cyclic permutations of the indices, by use of antisymmetry properties. Therefore, we obtain

D[µT a
νρ] =∂µT a

νρ +∂νT a
ρµ +∂ρT a

µν (3.4)

+ω
a
µb T b

νρ +ω
a
νb T b

ρµ +ω
a
ρb T b

µν .
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Please notice that the lower b index of the spin connection is not included in the permutations,
because it is a Latin index of tangent space.

Inserting the definition of torsion

T a
νµ = Γ

a
µν −Γ

a
νµ = qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)
(3.5)

then leads to

D[µT a
νρ] =∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
+∂ν

[
qa

λ

(
Γ

λ
ρµ −Γ

λ
µρ

)]
(3.6)

+∂ρ

[
qa

λ

(
Γ

λ
µν −Γ

λ
νµ

)]
+ω

a
µb qb

λ

(
Γ

λ
νρ −Γ

λ
ρν

)
+ω

a
νb qb

λ

(
Γ

λ
ρµ −Γ

λ
µρ

)
+ω

a
ρb qb

λ

(
Γ

λ
µν −Γ

λ
νµ

)
.

The first term in brackets can be written with help of the Leibniz theorem:

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
=
(
∂µqa

λ

)(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
. (3.7)

Applying the tetrad postulate (2.236) in the form

∂µqa
λ
= qa

νΓ
ν

µλ
−qb

λ
ω

a
µb . (3.8)

then gives

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
=
(

qa
νΓ

ν

µλ
−qb

λ
ω

a
µb

)(
Γ

λ
νρ −Γ

λ
ρν

)
(3.9)

+qa
λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
.

Adding the first and fourth term of (3.6) causes the terms with ωa
µb to cancel out:

∂µ

[
qa

λ

(
Γ

λ
νρ −Γ

λ
ρν

)]
+ω

a
µb qb

λ

(
Γ

λ
νρ −Γ

λ
ρν

)
(3.10)

= qa
σ Γ

σ

µλ

(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
.

Putting all terms of (3.6) together, we obtain

D[µT a
νρ] = (3.11)

qa
σ Γ

σ

µλ

(
Γ

λ
νρ −Γ

λ
ρν

)
+qa

λ

(
∂µΓ

λ
νρ −∂µΓ

λ
ρν

)
+qa

σ Γ
σ

νλ

(
Γ

λ
ρµ −Γ

λ
µρ

)
+qa

λ

(
∂νΓ

λ
ρµ −∂νΓ

λ
µρ

)
+qa

σ Γ
σ

ρλ

(
Γ

λ
µν −Γ

λ
νµ

)
+qa

λ

(
∂ρΓ

λ
µν −∂ρΓ

λ
νµ

)
.

Rearranging the sum:

D[µT a
νρ] = (3.12)

qa
λ

[(
∂µΓ

λ
νρ −∂νΓ

λ
µρ

)
+qa

λ

(
∂νΓ

λ
ρµ −∂ρΓ

λ
νµ

)
+qa

λ

(
∂ρΓ

λ
µν −∂µΓ

λ
ρν

)]
+qa

σ

[
Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ +Γ

σ

νλ
Γ

λ
ρµ −Γ

σ

ρλ
Γ

λ
νµ +Γ

σ

ρλ
Γ

λ
µν −Γ

σ

µλ
Γ

λ
ρν

]
.
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Now, in the first line the dummy index λ is replaced by σ :

D[µT a
νρ] = (3.13)

qa
σ

[(
∂µΓ

σ
νρ −∂νΓ

σ
µρ

)
+qa

σ

(
∂νΓ

σ
ρµ −∂ρΓ

σ
νµ

)
+qa

σ

(
∂ρΓ

σ
µν −∂µΓ

σ
ρν

)
+ Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ +Γ

σ

νλ
Γ

λ
ρµ −Γ

σ

ρλ
Γ

λ
νµ +Γ

σ

ρλ
Γ

λ
µν −Γ

σ

µλ
Γ

λ
ρν

]
.

This expression can be compared to the definition of the Riemann tensor (2.269) with some
renumbering:

Rσ
ρµν := ∂µΓ

σ
νρ −∂νΓ

σ
µρ +Γ

σ

µλ
Γ

λ
νρ −Γ

σ

νλ
Γ

λ
µρ . (3.14)

Obviously (3.13) is the cyclic sum of the Riemann tensor:

D[µT a
νρ] = qa

σ Rσ

[ρµν ] = qa
σ Rσ

[µνρ]. (3.15)

According to the procedure in Eqs. (2.270-2.273), the Riemann tensor can be written as a 2-Form:

Ra
bνρ = qa

σ qµ

b Rσ
µνρ . (3.16)

To bring the right-hand side of (3.15) into this form, we extend the Riemann tensor by a unity term
according to rule (2.207):

qτ
bqb

µ = δ
τ
µ (3.17)

and re-associate the products:

qa
σ Rσ

µνρ = Ra
µνρ = Ra

τνρ(q
τ

b qb
µ)δ

τ
µ = (Ra

τνρqτ
b) qb

τδ
τ
µ = Ra

bνρ qb
µ . (3.18)

Re-introducing the cyclic sum we have

D[µT a
νρ] = qb

[µ Ra
bνρ] = Ra

b[µν
qb

ρ]. (3.19)

which in form notation gives the Cartan-Bianchi identity:

D∧T a = Ra
b∧qb. (3.20)

� Example 3.1 We check the Cartan-Bianchi identity by computing all required elements according
to Example 2.15 (the transformation from cartesian to spherical polar coordinates). The Cartan-
Bianchi identity (3.20) can be written in indexed form according to (3.19):

DµT a
νρ +DνT a

ρµ +DρT a
µν = Ra

bµν qb
ρ +Ra

bνρ qb
µ +Ra

bρµ qb
ν . (3.21)

Resolving the covariant derivatives according to (3.4) this finally gives:

∂µT a
νρ +∂νT a

ρµ +∂ρT a
µν +ω

a
µb T b

νρ +ω
a
νb T b

ρµ +ω
a
ρb T b

µν (3.22)

= Ra
bµν qb

ρ +Ra
bνρ qb

µ +Ra
bρµ qb

ν

for each index triple (µ,ν ,ρ). The left-hand and right-hand sides of this equation are computed
using computer algebra code [124], and comparison shows that both sides are equal. We note that
this result is obtained for both forms of Gamma connections (unconstrained and symmetrized). The
torsion tensor is the same for both forms, but the Gamma and spin connections are different. The
Cartan-Bianchi identity holds, irrespective of this difference. �
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3.2 Cartan-Evans identity

In the preceding section, it has been shown that the Cartan-Bianchi identity is a rigorous identity
of the Riemannian manifold in which ECE theory is defined. The Cartan-Evans identity [15–17]
is a new identity of differential geometry, and is the counterpart of the Cartan-Bianchi identity in
dual-tensor representation. Both identities will be identical with the ECE field equations as will be
worked out in later chapters. The Cartan-Bianchi identity is valid in the Riemannian manifold, and
Cartan geometry in the Riemannian manifold is well known to be equivalent to Riemann geometry,
thought to be the geometry of natural philosophy (physics). The same holds for the Cartan-Evans
identity, which reads

D∧ T̃ a = R̃a
b∧qb. (3.23)

The concept of the Hodge dual was introduced at the end of Section 2.3, and use of the Hodge
dual for Maxwell’s equations was already discussed in Example 2.12. In this section, we introduce
a Hodge dual connection for use in the covariant Hodge dual derivative. Thereafter, the proof of the
Cartan-Evans identity is worked out in full analogy to the proof of the Cartan-Bianchi identity.

As has been seen in previous sections, only the antisymmetric part of the Christoffel connection
is essential for Cartan geometry. Restricting the connection to the antisymmetric part, we can define
the Hodge dual of the Christoffel connection according to Eq. (2.114) by

Λ
λ

µν := Γ̃
λ

µν =
1
2
|g|−1/2

ε
αβ

µν Γ
λ

αβ
, (3.24)

where |g|−1/2 is the inverse square root of the modulus of the determinant of the metric, a weighting
factor, by which the Levi-Civita symbol ε

αβ µν
is made the totally antisymmetric unit tensor,

see section 2.3. In (3.24) the Levi-Civita symbol appears with mixed upper and lower indices.
Therefore, we have to raise the first two indices in accordance with (2.115):

Λ
λ

µν =
1
2
|g|−1/2gραgσβ

ερσ µν Γ
λ

αβ
. (3.25)

Since the totally antisymmetric tensor (based on the Levi-Civity symbol) does not change its form
for any coordinate transformation, we can use the metric of Minkowski space ηµν with |g|= 1:

Λ
λ

µν =
1
2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
. (3.26)

In this way, a new connection Λλ
µν is defined. It is well known that the connection does not

transform as a tensor under the general coordinate transformation, but the antisymmetry in its lower
two indices means that its Hodge dual may be defined for each upper index of the connection
as in the equation above. The antisymmetry of the connection is the basis for the Cartan-Evans
identity, a new and fundamental identity of differential geometry. In ECE theory, it will become the
inhomogeneous field equation as was already indicated for the homogeneous Maxwell equation in
Example 2.12. Note carefully that the torsion is a tensor, but the connection is not a tensor. The
same is true of the Hodge duals of the torsion and connection.

In Eq. (2.147) the fundamental commutator equation of Riemannian geometry was derived:

[Dµ ,Dν ]V ρ = Rρ

σ µνV σ −T λ
µν DλV ρ , (3.27)

which holds for any vector V ρ of the base manifold. Now take the Hodge duals of either side of Eq.
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(3.27) using:

[Dµ ,Dν ]HD =
1
2
|g|−1/2

ε
αβ

µν [Dα ,Dβ ], (3.28)

R̃ρ

σ µν =
1
2
|g|−1/2

ε
αβ

µν Rρ
σαβ , (3.29)

T̃ λ
µν =

1
2
|g|−1/2

ε
αβ

µν T λ
αβ . (3.30)

Thus:

[Dα ,Dβ ]HDV ρ = R̃ρ

σαβ
V σ − T̃ λ

αβ
DλV ρ . (3.31)

Re-label indices in Eq. (3.31) to give:

[Dµ ,Dν ]HDV ρ = R̃ρ

σ µνV σ − T̃ λ
µν DλV ρ . (3.32)

The left-hand side of this equation is defined by:

[Dµ ,Dν ]HDV ρ := Dµ(DνV ρ)−Dν(DµV ρ) (3.33)

where the covariant derivatives must be defined by the Hodge dual connection (which was defined
in Eq. (3.24)):

DµV ρ = ∂µV ρ +Λ
ρ

µλ
V λ , (3.34)

DνV ρ = ∂νV ρ +Λ
ρ

νλ
V λ . (3.35)

Working out the algebra of torsion and curvature according to Eqs. (2.132, 2.134):

T̃ λ
µν = Λ

λ
µν −Λ

λ
νµ , (3.36)

R̃λ
µνρ = ∂µΛ

λ
νρ −∂νΛ

λ
µρ +Λ

λ
µσ Λ

σ
νρ −Λ

λ
νσ Λ

σ
µρ . (3.37)

These are the Hodge dual torsion and curvature tensors of the Riemannian manifold.
Now we prove the Cartan Evans identity as follows. The identity is:

D∧ T̃ a = R̃a
b∧qb (3.38)

or

d∧ T̃ a +ω
a
b ∧ T̃ b = R̃a

b∧qb. (3.39)

In tensorial notation, in the Riemannian manifold Eqs. (3.38, 3.39) become:

Dµ T̃ a
νρ +Dρ T̃ a

µν +Dν T̃ a
ρµ = R̃a

µνρ + R̃a
ρµν + R̃a

νρµ , (3.40)

which can be written with permutation brackets as

D[µ T̃ a
νρ] = R̃a

[µνρ] = qa
σ R̃σ

[µνρ]. (3.41)

This equation is formally identical to (3.15) with the following correspondences:

T → T̃ , (3.42)

R→ R̃,

Γ→ Λ.
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Therefore, the proof of the Cartan-Evans identity can proceed in full analogy to that of the Cartan-
Bianchi identity in the previous section. Starting with the equivalent of the left-hand side of Eq.
(3.15),

D[µ T̃ a
νρ] = ∂[µ T̃ a

νρ] +ω
a
[µb T̃ b

νρ] , (3.43)

it follows that this expression is equal to its right-hand side equivalent of (3.15):

qa
σ R̃σ

[µνρ]. (3.44)

It follows the validity of Eqs. (3.40 / 3.41), which are the counterpart of (3.19):

D[µ T̃ a
νρ] = qa

σ R̃σ

[µνρ]. (3.45)

In form notation, this is the Cartan-Evans identity:

D∧ T̃ a = R̃a
b∧qb. (3.46)

In the proof of the Cartan-Bianchi identity, the tetrad postulate (2.237) was used. For the Cartan-
Evans identity, this has to be used in the form with the Λ connection:

∂µqa
λ
+qb

λ
ω

a
µb −qa

νΛ
ν

µλ
= 0. (3.47)

Obviously, here the spin connection ω depends on the Λ connection, not the Γ connection. (It
would have been best to use a different symbol for ω , but we stay with ω for convenience.)

In summary, all geometric elements for the Cartan-Evans identity are obtained from the
following equation set:

Λ
λ

µν =
1
2
|g|−1/2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
, (3.48)

ω
a
µb = qa

νqλ
bΛ

ν

µλ
−qλ

b∂µqa
λ
, (3.49)

T̃ λ
µν = Λ

λ
µν −Λ

λ
νµ , (3.50)

R̃λ
µνρ = ∂µΛ

λ
νρ −∂νΛ

λ
µρ +Λ

λ
µσ Λ

σ
νρ −Λ

λ
νσ Λ

σ
µρ . (3.51)

Alternatively, the Hodge duals of curvature and torsion can be computed from the original quantities
(based on the Γ connection):

R̃ρ

σ µν =
1
2
|g|−1/2

ε
αβ

µν Rρ
σαβ , (3.52)

T̃ λ
µν =

1
2
|g|−1/2

ε
αβ

µν T λ
αβ . (3.53)

The 2-forms of T̃ a and R̃a
b are obtainable in the usual way by multiplying with tetrad elements:

R̃a
bµν = qa

ρqσ

bR̃ρ

σ µν , (3.54)

T̃ a
µν = qa

λ
T̃ λ

µν . (3.55)

One of the novel inferences of the Cartan-Evans identity is that there is a Hodge dual connection
in the Riemannian manifold in four dimensions. This is a basic discovery, and may be developed
in pure mathematics using any type of manifold. However, that development is not of interest to
physics by Ockham’s Razor, and the need to test a theory against experimental data.
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� Example 3.2 In analogy to Example 3.1, we check the Cartan-Evans identity by computing all
required elements according to Example 2.15 (the transformation from cartesian to spherical polar
coordinates). The Cartan-Evans identity (3.46) can be written in indexed form according to (3.45):

Dµ T̃ a
νρ +Dν T̃ a

ρµ +Dρ T̃ a
µν = R̃a

bµν qb
ρ + R̃a

bνρ qb
µ + R̃a

bρµ qb
ν . (3.56)

Resolving the covariant derivatives according to (3.4) finally gives:

∂µ T̃ a
νρ +∂ν T̃ a

ρµ +∂ρ T̃ a
µν +ω

a
µb T̃ b

νρ +ω
a
νb T̃ b

ρµ +ω
a
ρb T̃ b

µν (3.57)

= R̃a
bµν qb

ρ + R̃a
bνρ qb

µ + R̃a
bρµ qb

ν

for each index triple (µ,ν ,ρ). The left-hand and right-hand sides of this equation are computed
using computer algebra code [125, 126]. There is however a difference. While the Cartan-Bianchi
identity holds for any dimension n of Riemannian space, introducing the Hodge dual for the Cartan-
Evans identity constrains the dimension of the dual 2-forms to n− 2. So, to obtain comparable
equations for both identities, we have to use n = 4 in the example, leading to 2-forms of the Hodge
duals, as well. We have to extend the transformation matrix α (Eq. (2.213)) by the 0-component
(time coordinate), resulting in

α =


1 0 0 0
0 sinθ cosφ r cosθ cosφ −r sinθ sinφ

0 sinθ sinφ r cosθ sinφ r sinθ cosφ

0 cosθ −r sinθ 0

 . (3.58)

The time coordinate remains unaltered by the transformation. The n-dimensional metric tensor g
can be computed from the tetrad by (2.204):

gµν = n qa
µqb

νηab. (3.59)

We obtain the metric tensor:

g =


1 0 0 0
0 0 −1 0 0
0 0 0 −r2 0
0 0 0 0 −r2 sin2

θ

 (3.60)

which has the modulus of the determinant

|g|= r4 sin2
θ . (3.61)

The Levi-Civita symbol εαβ µν in four dimensions can be computed by the formula

εa0,a1,a2,a3 = sig(a3−a0) sig(a3−a1) sig(a3−a2) sig(a2−a0) sig(a2−a1) sig(a1−a0).
(3.62)

Now we have all of the elements that we need to evaluate Eqs. (3.48-3.51). With these, both sides
of Eq. (3.56) can be evaluated as was done in Example 3.1. We do this in two examples, using
computer algebra. In the first example we repeat the calculations of example 3.1 (Cartan-Bianchi
identity) in four dimensions [125]. An interesting result is that the Gamma connection, obtained
with additional antisymmetry conditions, has only 4 free parameters. This is similar to Einstein’s
theory, where the symmetric metric is only determined up to 4 parameters that can be chosen freely
and represent “free choice of coordinates”. In Cartan geometry, the metric is uniquely defined from
the tetrad. The “free choice” appears in the connections. Therefore, this choice is also present
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in torsion and curvature, and finally in the fundamental theorems. Some results from computer
algebra code [125] are:

Γ
0

12 = A4r2 (3.63)

Γ
3

01 =−
A2

r2 sin2
θ

ω
(2)

1(3) =
A3 cosφ

r2

T 2
13 =

2A3

r2

R0
213 =

A1r sinθ −A2 cosθ

sinθ

As in the preceding example, comparison of both sides of the Cartan-Bianchi identity shows that
both sides are equal, in this case for four dimensions.

In the second computer algebra code [126], the Hodge dual connections Λ and ω and the
tensors T̃ , R̃ and their corresponding 2-forms are computed. We obtain, for example, for the Hodge
dual connections and tensors:

Λ
0

03 =
A4

sin2
θ

(3.64)

Λ
3

01 =
cosθ

r2 sin3
θ

ω
(2)

1(3) =
sinφ

(
r2 cosθ sin2

θ +A2 sinθ −A1r cosθ
)

r3 sinθ

T̃ 2
13 = 0

T̃ 2
02 =− 2A3

r4 sin2
θ

R̃0
213 = 0

R̃0
202 =−

2A2 r2 cosθ sinθ −A2
2

r4 sin4
θ

Inserting these quantities into both sides of the Cartan-Evans identity, we find that both sides are
equal, thus the identity holds in the chosen example. �

3.3 Alternative forms of Cartan-Bianchi and Cartan-Evans identity
3.3.1 Cartan-Evans identity

We showed that the Cartan-Evans identity is based on the fundamental definition of the Hodge dual
torsion and curvature, and adds three of them in cyclic permutation.

By using the definition

T̃ a
µν = qa

λ
T̃ λ

µν (3.65)

it follows that:

Dµ T̃ a
νρ = ( Dµqa

κ)T̃
κ
νρ +qa

κDµ T̃ κ
νρ (3.66)

using the Leibniz rule. We use the tetrad postulate:

Dµqa
κ = 0 (3.67)
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to find that:

Dµ T̃ a
νρ = qa

κDµ T̃ κ
νρ . (3.68)

It follows that:

Dµ T̃ κ
νρ +Dν T̃ κ

ρµ +Dρ T̃ κ
µν = R̃κ

µνρ + R̃κ
νρµ + R̃κ

ρµν (3.69)

which is the Cartan-Evans identity written in the base manifold only. This equation may be rewritten
as:

DµT κµν = Rκ µν

µ . (3.70)

The easiest way to see this is to take a particular example:

D1T̃ κ
23 +D3T̃ κ

12 +D2T̃ κ
31 = R̃κ

123 + R̃κ
312 + R̃κ

231 (3.71)

and then to take Hodge dual terms with upper indices according to Eq. (2.117). The constant factors
cancel out. For the Levi-Civita symbol, the relation holds:

ε
µναβ =−εµναβ , (3.72)

so that the sign change also cancels out. Furthermore, for a two-fold Hodge dual of a tensor T , the
relation˜̃T =±T (3.73)

is valid, so that any sign change of this kind also cancels out. We take the Hodge dual of (3.71)
term by term. The Levi-Civita symbol effects that in the expressions

ε
µναβ T κ

αβ
(3.74)

the index pairs (µν) and (αβ ) are mutually exclusive:

µ 6= ν , α 6= β , (3.75)

µ /∈ {α,β},
ν /∈ {α,β}.

In total, we obtain for the Hodge dual example of (3.71):

D1T κ01 +D2T κ02 +D3T κ03 = Rκ 01
1 +Rκ 02

2 +Rκ 03
3 (3.76)

which is an example of Eq. (3.70), the alternative form of the Cartan-Evans identity:

DµT κµν = Rκ µν

µ . (3.77)

3.3.2 Cartan-Bianchi identity
Eq. (3.77) is the most useful format of the Cartan-Evans identity. The Cartan-Bianchi identity can
also be rewritten into this format. From Eq. (3.19) follows:

DµT κ
νρ +DνT κ

ρµ +DρT κ
µν = Rκ

µνρ +Rκ
νρµ +Rκ

ρµν (3.78)

which is identical to (3.69), except that these are the original tensors instead of the Hodge duals.
Therefore, the same derivation as above leads to the alternative form of the Cartan-Bianchi-identity:

Dµ T̃ κµν = R̃κ µν

µ . (3.79)

It should be noted that in the above contravariant forms of both identities, the Hodge dual and
original tensors are interchanged, compared to the covariant forms (3.19) and (3.45).
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3.3.3 Consequences of the identities
At the end of this section we will investigate the implications of antisymmetry of the Gamma
connection in Cartan geometry. The Gamma connection has to have at least antisymmetric parts
with

Γ
λ

µν =−Γ
λ

νµ . (3.80)

If µ = ν , the commutator vanishes, as do the torsion and curvature tensors. If there are only
symmetric parts in the connection:

Γ
λ

µν = Γ
λ

νµ 6=? 0 (3.81)

then torsion vanishes, leading to the special case of (3.77):

Rκ µν

µ = 0. (3.82)

It has been shown by computer algebra [18, 19] that all of the metrics of the Einstein field
equation in the presence of matter give the erroneous result:

Rκ µν

µ 6=? 0, (3.83)

DµT κµν =? 0. (3.84)

This contradicts basic properties of Cartan geometry, the superset of Riemannian geometry, and
therefore Eq. (3.77) is a constraint for theories like Einsteinian relativity, which are based on
Riemannian geometry. This error has been perpetuated uncritically for nearly a hundred years, and
allowed to create a defective cosmology that should be discarded by scholars. The cosmology of
the Standard Model is baseless and incorrect, and should be replaced by ECE cosmology, which is
based on torsion.

3.4 Further identities
There are some other identities which are not as significant to the field equations of ECE theory, but
which represent new insights into Cartan geometry. They were developed as part of ECE theory,
and we present them here, partially without proofs (which can be found in the Unified Field Theory
(UFT) Section of www.aias.us).

3.4.1 Evans torsion identity (first Evans identity)
From the Cartan-Bianchi identity another identity can be derived, containing torsion terms only.
This is the Evans torsion identity [16]. In explicit form it reads

T κ

λν
T λ

σ µ +T κ

λ µ
T λ

νσ +T κ

λσ
T λ

µν = 0 (3.85)

and can be written in short form with permutation brackets:

T κ

λ [ν T λ

σ µ] = 0 . (3.86)

The identity can be rewritten in form notation as

T κ

λ
∧T λ = 0, (3.87)

or by multiplying with qa
κ :

T a
λ
∧T λ = 0 . (3.88)

Here T a
λ

is a 1-form and T λ is a 2-form, making up a 3-form on the left-hand side. The proof
consists mainly of inserting the definitions of torsion into the Cartan-Bianchi identity, and can be
found in the literature [16].
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3.4.2 Jacobi identity

The Jacobi identity [20] is an exact identity used in field theory and general relativity. It is an
operator identity that applies to covariant derivatives and group generators [21] alike. It is very
rarely proven in all detail, so we are providing the following complete proof. The Jacobi identity is
a permuted sum of three covariant derivatives:

[Dρ , [Dµ ,Dν ]]+ [Dν , [Dρ ,Dµ ]]+ [Dµ , [Dν ,Dρ ]] = 0 . (3.89)

For the proof, we expand the commutators on the-left hand side:

L.H.S =[Dρ ,DµDν −DνDµ ]+ [Dν ,DρDµ −Dµ ,Dρ ]+ [Dµ ,DνDρ −DρDν ] (3.90)

=Dρ(DµDν −DνDµ)− (DµDν −DνDµ)Dρ

+Dν(DρDµ −Dµ ,Dρ)− (DρDµ −Dµ ,Dρ)Dν

+Dµ(DνDρ −DρDν)− (DνDρ −DρDν)Dµ ,

and this expansion is regarded as an expansion by algebra which sums up to zero:

L.H.S =DρDµDν −DρDνDµ −DµDνDρ +DνDµDρ (3.91)

+DνDρDµ −DνDµDρ −DρDµDν +DµDρDν

+DµDνDρ −DµDρDν −DνDρDµ +DρDνDµ

=0,

Q.E.D. The Jacobi identity can also be written in an alternative form:

[[Dµ ,Dν ],Dρ ]+ [[Dρ ,Dµ ],Dν ]+ [[Dν ,Dρ ],Dµ ] = 0 . (3.92)

3.4.3 Bianchi-Cartan-Evans identity

Einsteinian general relativity uses the second Bianchi identity, which is obtained from the covariant
derivative of the first Bianchi identity. General relativity ignores torsion, but the same procedure
can be applied to the Cartan-Bianchi identity of Cartan geometry, which contains both torsion and
curvature. The result is the Bianchi-Cartan-Evans identity [22–24]:

DµDλ T κ
νρ +DρDλ T κ

µν +DνDλ T κ
ρµ = DµRκ

λνρ
+DρRκ

λ µν
+DνRκ

λρµ
. (3.93)

The proof was first carried out in UFT Paper 88 [22] which is the most read paper of ECE theory.
Two variants of this identity can be produced by cyclic permutation of (µ,ν ,ρ). Eq. (3.93) is the
correct “second Bianchi identity” augmented by torsion. In Einsteinian theory the incorrect version

DµRκ

λνρ
+DρRκ

λ µν
+DνRκ

λρµ
=? 0 (3.94)

is used. This follows from (3.93) by arbitrarily omitting torsion. The Einstein-Hilbert field equation
is derived from this erroneously truncated “second Bianchi identity” [22]. Therefore, all solutions
of the Einstein-Hilbert field equation are inconsistent.

It should be noted that the Bianchi-Cartan-Evans identity gives no information beyond what is
provided by the Cartan-Bianchi identity, because it is derived from the latter by differentiation and
therefore not independent.
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3.4.4 Jacobi-Cartan-Evans identity
The Jacobi identity can be used to derive another identity. When the terms of the Cartan-Bianchi
identity are inserted into the Jacobi identity (3.89), the relation(

[Dρ , [Dµ ,Dν ]]+ [Dν , [Dρ ,Dµ ]]+ [Dµ , [Dν ,Dρ ]]
)

V κ (3.95)

=
(

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ

)
V λ

−
(

T λ
µν [Dρ ,Dλ ]+T λ

ρµ [Dν ,Dλ ]+T λ
νρ [Dµ ,Dλ ]

)
V κ

= 0

follows, where the Jacobi identity has been applied to an arbitrary vector V κ of the base manifold.
Because the Jacobi identity sums to zero, we obtain the equation(

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ

)
V λ (3.96)

=
(

T λ
µν [Dρ ,Dλ ]+T λ

ρµ [Dν ,Dλ ]+T λ
νρ [Dµ ,Dλ ]

)
V κ .

Further transformations, described in [24], give

DρRκ

λ µν
+DνRκ

λρµ
+DµRκ

λνρ
= T α

µν Rκ

λρα
+T α

ρµ Rκ

λνα
+T α

νρ Rκ

λ µα
, (3.97)

which is called the Jacobi-Cartan-Evans identity. This will be used in an advanced version of ECE
theory, the ECE2 theory introduced in chapter 6.
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4. The field equations of electrodynamics

In the preceding chapter, we developed the mathematical methodology for ECE theory: Cartan
geometry and its most important theorems. Now we switch our focus to physics. We first describe
how physical quantities are obtained from geometrical quantities. This is achieved by defining
suitable axioms. We then derive the field equations of electromagnetism, as well as the wave
equation. In this way, electrodynamics is transformed into an axiomatic, mathematically correct
theory. It is shown how the spin connections extend classical electromagnetism to a theory of
general relativity. The novel concepts are underpinned by a number of important applications.

4.1 The axioms

In order to obtain physical quantities, we have first to define how geometry is transformed into
physics. We do this by two fundamental axioms, relating to potentials and electromagnetic fields.
The first axiom states that the electromagnetic potential is proportional to the Cartan tetrad. Thus,
the geometry of spacetime is directly equated to physical quantities. The potential contains the
same indices as the tetrad. We use the 4-vector potential Aµ in relativistic notation. However, the
tetrad qa

µ is (formally) a matrix and contains the polarization index a. Therefore, the potential is
extended to matrix form with two indices: Aa

µ . This is the main formal difference from classical
electrodynamics: all electromagnetic ECE quantities have a polarization index, extending the
definition range by one dimension. We will see later how we can reduce these quantities to one
polarization direction, if required.

The first axiom is formally written in the form

Aa
µ := A(0)qa

µ , (4.1)

where we have introduced a factor of proportionality A(0). Since the tetrad is dimensionless, A(0)

must have the physical units of a vector potential which is V s/m or T ·m. The product c ·A(0) can be
considered as a primordial voltage, where c is the velocity of light. In detailed form, the complete
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ECE potential reads:

Aa
µ =


A(0)

0 A(0)
1 A(0)

2 A(0)
3

A(1)
0 A(1)

1 A(1)
2 A(1)

3

A(2)
0 A(2)

1 A(2)
2 A(2)

3

A(3)
0 A(3)

1 A(3)
2 A(3)

3

= A(0)


q(0)0 q(0)1 q(0)2 q(0)3
q(1)0 q(1)1 q(1)2 q(1)3
q(2)0 q(2)1 q(2)2 q(2)3
q(3)0 q(3)1 q(3)2 q(3)3

 . (4.2)

The lines number the polarization and the columns the coordinate indices. The zeroth component
of the potential is the scalar potential φ , which also gets a polarization index:

Aa
0 =

φ a

c
. (4.3)

The above equations use the mixed-index notation (contravariant and covariant). The coor-
dinates of vectors, however, correspond to contravariant indices. Therefore, we transform the
coordinate indices by the Minkowski metric, Eq. (2.39):

ηµν = η
µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (4.4)

in the usual form

Aaµ = η
µνAa

ν . (4.5)

The diagonal form of the Minkowski metric leads to

A(0)0 = η
00A(0)

0 = A(0)
0,

A(0)1 = η
11A(0)

1 =−A(0)
1,

A(0)2 = η
22A(0)

2 =−A(0)
2, (4.6)

etc.

so that the potential components with coordinates 1,2,3 are changed in sign:

Aaµ =


A(0)0 A(0)1 A(0)2 A(0)3

A(1)0 A(1)1 A(1)2 A(1)3

A(2)0 A(2)1 A(2)2 A(2)3

A(3)0 A(3)1 A(3)2 A(3)3

=


A(0)

0 A(0)
1 A(0)

2 A(0)
3

A(1)
0 −A(1)

1 −A(1)
2 −A(1)

3

A(2)
0 −A(2)

1 −A(2)
2 −A(2)

3

A(3)
0 −A(3)

1 −A(3)
2 −A(3)

3

 . (4.7)

This is the form of the potential we will mostly use.
The relativistic electromagnetic field tensor Fµν was already introduced in Example 2.11 and

its Hodge dual in Example 2.12. These are 2-index tensors, comprising the electric and magnetic
field. Therefore, the electromagnetic field of ECE theory also has to have two coordinate indices.
We define the electromagnetic field tensor of ECE theory to be proportional to the Cartan torsion
T a

µν :

Fa
µν := A(0)T a

µν . (4.8)

Because torsion has a polarization index, the electromagnetic field has to have one, too. It is
a 3-index quantity, an indexed antisymmetric 2-form of Cartan geometry. In classical electro-
magnetism, the electromagnetic field is a derivative of the potential, therefore it has the units of
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[potential]/[length] = V s/m2 = T . Since geometrical torsion has the units 1/m, the constant of
proportionality A(0) is the same for both the potential and the field. The polarization index can
be seen as a vector index augmenting the electric field E and magnetic field (i.e. induction) B.
Therefore, we have fields Ea and Ba, which are components of the ECE electromagnetic tensor
field:

Faµν =


Fa00 Fa01 Fa02 Fa03

Fa10 Fa11 Fa12 Fa13

Fa20 Fa21 Fa22 Fa23

Fa30 Fa31 Fa32 Fa33

=


0 −Ea1 −Ea2 −Ea3

Ea1 0 −cBa3 cBa2

Ea2 cBa3 0 −cBa1

Ea3 −cBa2 cBa1 0

 . (4.9)

The Hodge dual of the classical electromagnetic field Fµν was computed in Example 2.12. As
demonstrated before, this has to be augmented by a polarization or tangent space index a, leading to

F̃aµν =


0 cBa1 cBa2 cBa3

−cBa1 0 −Ea3 Ea2

−cBa2 Ea3 0 −Ea1

−cBa3 −Ea2 Ea1 0

 . (4.10)

We have chosen the contravariant versions of F and F̃ , because these correspond to the electric and
magnetic vector components and are needed for deriving the field equations in vector form.

The ECE potential is a Cartan 1-form and the ECE electromagnetic field is a Cartan 2-form.
Both are vector-valued by the polarization index a. In summary, the basic ECE axioms are:

Aa
µ := A(0)qa

µ ,

Fa
µν := A(0)T a

µν .

(4.11)

(4.12)

4.2 The field equations
The aim of this section is to derive the ECE field equations in the form of Maxwell’s equations.
The latter are known as:

Gauss’ law:

∇ ·B = 0, (4.13)

Faraday’s law of induction:

∇×E+
∂B
∂ t

= 0, (4.14)

Coulomb’s law:

∇ ·E =
ρ

ε0
, (4.15)

Ampère-Maxwell’s law:

∇×B− 1
c2

∂E
∂ t

= µ0J, (4.16)

where ρ is the electrical charge density and J the current density. The ECE field equations will be
shown to be identical to the Cartan-Bianchi identity and the Cartan-Evans identity. These theorems
of geometry are converted into physical laws by multiplying them with the factor A(0).
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4.2.1 The field equations in covariant tensor form
From Eqs. (3.20) and (3.46), in form notation,

D∧T a = Ra
b∧qb, (4.17)

D∧ T̃ a = R̃a
b∧qb, (4.18)

follows, when inserting the ECE Axioms (4.11) and (4.12):

D∧Fa = Ra
b∧Ab, (4.19)

D∧ F̃a = R̃a
b∧Ab. (4.20)

These are the field equations, written in 3-forms at both sides of the equations. We will see that
these two equations lead to the equivalent of Maxwell’s equations (4.13 - 4.16). To develop this,
we rewrite the field equations in tensor form first. With indices written out, they read

(D∧Fa)µνρ = (Ra
b∧Ab)µνρ , (4.21)

(D∧ F̃a)µνρ = (R̃a
b∧Ab)µνρ , (4.22)

or, with wedge operation carried out, in tensor form:

D[µFa
νρ] = Ra

b[µν
Ab

ρ], (4.23)

D[µ F̃a
νρ] = R̃a

b[µν
Ab

ρ]. (4.24)

The covariant exterior derivative D∧ was defined in Eqs. (3.2/3.3):

(D∧Fa)µνρ = (d∧Fa)µνρ +(ωa
b ∧Fb)µνρ , (4.25)

or, written as a cyclic sum:

D[µFa
νρ] = ∂[µFa

νρ] +ω
a
[µb Fb

νρ] . (4.26)

Inserting this derivative into the first field equation (4.23) gives (in form notation):

d∧Fa +ω
a
b ∧Fb = Ra

b∧Ab, (4.27)

and bringing the spin connection term to the right-hand side gives:

d∧Fa = Ra
b∧Ab−ω

a
b ∧Fb. (4.28)

This equation has a form similar to the first two field equations of classical electrodynamics, Eq.
(2.173) in Example 2.11, where they are condensed into one equation:

d∧F = 0. (4.29)

These two field equations (the Gauss law and the Faraday law) are homogeneous, i.e. there are
no current terms on the right-hand side. In contrast, the right-hand side of (4.28) is not zero. It is
therefore to be assumed that a current may exist for the Gauss and Faraday laws in their generalized
form in ECE theory. This is called the homogeneous current and denoted by j. It corresponds to
magnetic charges and currents, whose existence is not universally accepted in science.

In ECE theory, the homogeneous current has to be augmented by a polarization index so that
Eq. (4.28) can be written as

d∧Fa = ja (4.30)
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with the definition of the homogeneous current being

ja := Ra
b∧Ab−ω

a
b ∧Fb. (4.31)

For the second field equation (4.24), containing the Hodge duals F̃ and R̃, we have to use the spin
connection of the Λ connection as defined by Eq. (3.49). For clarity, we add an index (Λ) here:

d∧ F̃a = R̃a
b∧Ab−ω

a
(Λ) b ∧ F̃b. (4.32)

This equation defines the other pair of generalized Maxwell equations, the Coulomb and Ampère-
Maxwell laws. We find

d∧ F̃a = µ0Ja (4.33)

with the definition

Ja :=
1
µ0

(
R̃a

b∧Ab−ω
a

(Λ) b ∧ F̃b
)
, (4.34)

which we call the inhomogeneous current. This corresponds to the well-known electrical 4-current
density. In addition, we have introduced the vacuum permeability µ0 = 4π · 10−7 Vs

Am in order
to obtain Ja in the usual units of A/m2. The 0-component of Ja is the electric charge density
ρ , augmented by a polarization index. For consistency, we will also use the factor 1/µ0 in the
homogeneous current (4.31).

Please note that the current densities here are 3-forms. For example, in tensor notation, Eq.
(4.34) reads:

(Ja)µνρ =
1
µ0

(
R̃a

b[µν
Ab

ρ]−ω
a

(Λ) [µb F̃b
νρ]

)
. (4.35)

=
1
µ0

(
R̃a

bµνAb
ρ + R̃a

bνρAb
µ + R̃a

bρµAb
ν

−ω
a

(Λ) µb F̃b
νρ −ω

a
(Λ) νb F̃b

ρµ −ω
a

(Λ) ρb F̃b
µν

)
.

The standard current density, however, is a 1-form, because the current density J is a vector with
only one coordinate index. So, ja and Ja are types of generalized currents, which cannot simply
be correlated to known quantities. However, we will see in the next section that the contravariant
formulation reduces them to 1-forms, as requested.

So far, we can write the ECE field equations in form notation with covariant tensors:

d∧Fa = µ0 ja,

d∧ F̃a = µ0 Ja.

(4.36)

(4.37)

For formal symmetry, we have added a factor of µ0 here to the homogeneous current ja. This is
arbitrary and only changes the units of ja, which of course are different from those of Ja.

4.2.2 The field equations in contravariant tensor form
In this section, the field equations are translaated into vector form so that they will be familiar to
engineers and physicists. We start with the alternative form of the Cartan-Bianchi and Cartan-Evans
identities, Eqs. (3.79 and 3.77).

Dµ T̃ κµν = R̃κ µν

µ , (4.38)

DµT κµν = Rκ µν

µ . (4.39)
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These equations were given in the base manifold, but can be transformed to tangent space. The
κ index is replaced formally by the a index, multiplying the equations with qa

κ and applying the
tetrad postulate:

Dµ T̃ aµν = R̃a µν

µ , (4.40)

DµT aµν = Ra µν

µ . (4.41)

Multiplying by the factor A(0) then gives us the second form of field equations:

Dµ F̃aµν = A(0)R̃a µν

µ , (4.42)

DµFaµν = A(0)Ra µν

µ . (4.43)

Please notice that the role of the original and Hodge dual equations have interchanged, compared
to (4.36) and (4.37). The first equation, corresponding to the first pair of Maxwell equations, is
based on the Hodge dual equation, and the second equation, corresponding to the third and forth
Maxwell equations, contains the original torsion and curvature. There is no wedge product in the
equations but there is a summation over the coordinate parameter µ . They are tensor equations with
a contraction.

Now we apply the definition of the covariant derivative, similarly as in the preceding section:

DµFaνρ = ∂µFaνρ +ω
a
µb Fbνρ , (4.44)

leading to

∂µ F̃aµν = A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν , (4.45)

∂µFaµν = A(0)Ra µν

µ −ω
a
µb Fbµν . (4.46)

The first equation is similar to Eq. (2.185), representing the first two Maxwell equations of classical
electrodynamics in Hodge dual formulation. Therefore, we can again interpret the right-hand sides
of both equations as an homogeneous and inhomogeneous current. Similarly to (4.36, 4.37) we can
write:

∂µ F̃aµν = µ0 jaν ,

∂µFaµν = µ0Jaν

(4.47)

(4.48)

with

jaν :=
1
µ0

(
A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν

)
, (4.49)

Jaν :=
1
µ0

(
A(0)Ra µν

µ −ω
a
µb Fbµν

)
. (4.50)

Now we have arrived at 1-forms for the currents, which can be set into relation with classical
expressions. The covariant 4-current density is written in tangent space as

(Ja)µ =


Ja

0
Ja

1
Ja

2
Ja

3

 . (4.51)
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To use the components in the usual contravariant form we have to raise the coordinate indices,
which gives a sign change of space components according to the Minkowski metric:

(Ja)ν =


Ja0

Ja1

Ja2

Ja3

=


Ja

0
−Ja

1
−Ja

2
−Ja

3

 . (4.52)

The 0-component is defined by

Ja0 = cρ
a. (4.53)

The right-hand side of Ja0 has the units of m
s

C
m3 =

C
m2s =

A
m2 , which is the same current density unit

as used for the spatial components.
We conclude this section with the hint that the currents are geometrical quantities and not

externally imposed as in Maxwell’s theory. The field equations are fully geometric, no terms are
added defining an external energy-momentum like in Einstein’s general relativity. Since the currents
depends on the fields F , for which the equations have to be solved, we have an intrinsic nonlinearity.
A similar case is known from Ohm’s law where the current density is assumed to be proportional to
the electric field via the conductivity σ , which in general is a tensor. In most cases, σ is assumed to
be a scalar quantity, and Ohm’s law is used for the current term in classical electrodynamics:

J = σE. (4.54)

Comparing this with Eq. (4.50), the conductivity takes the role of a constant scalar spin connection.
However, the ECE field equations are valid in a curved and twisted spacetime, going far beyond the
Minkowski space of Maxwell’s equations and special relativity.

4.2.3 The field equations in vector form
It was already demonstrated in Example 2.12, how the Gauss and Faraday laws are derived from a
tensor equation of the Hodge dual of the classical electromagnetic field, F̃µν . It is easy to extend
this procedure to the field equation (4.47):

∂µ F̃aµν = µ0 jaν . (4.55)

According to Eq. (4.10), the field is an antisymmetric tensor, consisting of electric and magnetic
field components. In Examples 2.11 and 2.12, the field tensor was given in electric field units of
V/m for convenience. We have the freedom of choice for these units. Here we use the units of
the magnetic field (Tesla) so that we obtain the same constants in the vector equations aswe do in
Maxwell’s equations. This means that we have to make the following replacements:

Eµ → Eµ/c,

cBµ → Bµ .

In addition, the fields have to be augmented by the polarization index a:

F̃aµν =


F̃a00 F̃a01 F̃a02 F̃a03

F̃a10 F̃a11 F̃a12 F̃a13

F̃a20 F̃a21 F̃a22 F̃a23

F̃a30 F̃a31 F̃a32 F̃a33

=


0 Ba1 Ba2 Ba3

−Ba1 0 −Ea3/c Ea2/c
−Ba2 Ea3/c 0 −Ea1/c
−Ba3 −Ea2/c Ea1/c 0

 . (4.56)

The homogeneous field equations are obtained by specific selection of indices, in the following
way. Eq. (4.55) consists of four equations (ν = 0, ...,3), each with four summands of µ on the
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left-hand side. The case µ = ν leads to diagonal elements of F , so these terms can be omitted. The
generalized Gauss law is obtained by choosing ν = 0, which leads to

∂1F̃a10 +∂2F̃a20 +∂3F̃a30 =−∂1Ba1−∂2Ba2−∂3Ba3 = µ0 ja0. (4.57)

In vector notation this is

∇ ·Ba =−µ0 ja0. (4.58)

The Faraday law of induction is obtained by choosing ν = 1,2,3 and consists of three component
equations:

∂0F̃a01 +∂2F̃a21 +∂3F̃a31 = µ0 ja1,

∂0F̃a02 +∂1F̃a12 +∂3F̃a32 = µ0 ja2, (4.59)

∂0F̃a03 +∂1F̃a13 +∂2F̃a23 = µ0 ja3.

These can be written, according to (4.56), as

∂0Ba1 +∂2Ea3/c−∂3Ea2/c = µ0 ja1,

∂0Ba2−∂1Ea3/c+∂3Ea1/c = µ0 ja2, (4.60)

∂0Ba3 +∂1Ea2/c−∂2Ea1/c = µ0 ja3.

Taking into account ∂0 =
1
c

∂

∂ t , these equations can be condensed into one vector equation, which is

∂Ba

∂ t
+∇×Ea = c µ0 ja. (4.61)

We see that these “homogeneous” equations are not actually homogeneous, because there is a
magnetic charge density ja0 and a magnetic current vector ja, in general. In nearly all practical
applications, however, we will set

ja0 = 0, (4.62)

ja = 0. (4.63)

The Coulomb and Ampère-Maxwell laws are derived in a completely analogous way from Eq.
(4.48):

∂µFaµν = µ0Jaν . (4.64)

According to Eq. (4.9), the contravariant field tensor (in Tesla units) is:

Faµν =


Fa00 Fa01 Fa02 Fa03

Fa10 Fa11 Fa12 Fa13

Fa20 Fa21 Fa22 Fa23

Fa30 Fa31 Fa32 Fa33

=


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 . (4.65)

We obtain the generalized Coulomb law by choosing ν = 0:

∂1F10 +∂2F20 +∂3F30 = µ0Ja0, (4.66)

which, in vector notation, is

∇ ·Ea = c µ0Ja0. (4.67)
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Because the 0-component of the current density is the charge density (see Eq. (4.53)) this equation
can also be written as

∇ ·Ea =
ρa

ε0
. (4.68)

The Ampère-Maxwell law follows from choosing ν = 1,2,3, giving three component equations:

∂0Fa01 +∂2Fa21 +∂3Fa31 = µ0Ja1,

∂0Fa02 +∂1Fa12 +∂3Fa32 = µ0Ja2, (4.69)

∂0Fa03 +∂1Fa13 +∂2Fa23 = µ0Ja3,

which with the aid of (4.65) become:

−∂0Ea01/c+∂2Ba3−∂3Ba2 = µ0Ja1,

−∂0Ea02/c−∂1Ba3 +∂3Ba1 = µ0Ja2, (4.70)

−∂0Ea03/c+∂1Fa2−∂2Ba1 = µ0Ja3.

These can be condensed into one vector equation again:

− 1
c2

∂Ea

∂ t
+∇×Ba = µ0 Ja. (4.71)

Ultimately, we arrive at the Maxwell-like field equations, in vector form:

∇ ·Ba =−µ0 ja0,

∂Ba

∂ t
+∇×Ea = c µ0 ja,

∇ ·Ea =
ρa

ε0
,

− 1
c2

∂Ea

∂ t
+∇×Ba,= µ0 Ja,

(4.72)

(4.73)

(4.74)

(4.75)

which correspond, according to Eqs. (4.13 - 4.16), to the Gauss law, the Faraday law, the Coulomb
law and the Ampère-Maxwell law. These equations are valid in a generally covariant spacetime.
Because of the four values for the polarization index a, the equation system consists of 4 ·8 = 32
equations. There are only 4 ·6 = 24 variables. It is known, however, that the Gauss law is dependent
on the Faraday law, and the Coulomb law is dependent on the Ampère-Maxwell law. Therefore,
there are only 24 independent equations, and the equation system is uniquely defined. In particular,
the equations for each a index separate. The meaning of the polarization index will be clarified
next through two detailed examples.

4.2.4 Examples of ECE field equations
The Coulomb law in Cartan geometry
� Example 4.1 In Chapters 2 and 3 we demonstrated, by examples, how all elements of a given
tetrad can be calculated within Cartan geometry. Now we extend this method to physical fields.

One of the simplest and most important cases in electrodynamics is the Coulomb potential. In
4-vector notation, the potential is the 0-component

A0 =
φ(r)

c
=

1
c

qe

4πε0r
, (4.76)
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where qe is the central point charge and r is the radial coordinate of a spherical coordinate system

(X µ) =


t
r
θ

φ

 . (4.77)

According to Eq. (4.2), the potential corresponds to the first diagonal element of the tetrad:

φ(r) = c A(0)q(0)0. (4.78)

Inserting the potential into the q matrix gives

(qa
µ) =

1
2
(Aa

µ)

A(0) =
1

A(0)


φ(r)

c 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (4.79)

which is a singular matrix. Cartan Geometry, however, is only defined with non-singular tetrads
(see Section 2.5.1). Therefore, a vector potential is necessarily required, in addition to a scalar
potential. We choose the simplest form, a constant vector potential, which gives no magnetostatic
field. The final form of the tetrad then is

(qa
µ) =

1
2


C0
r 0 0 0
0 −C1 0 0
0 0 −C2 0
0 0 0 −C3

 , (4.80)

where

C0 =
qe

A(0) c4πε0
(4.81)

and the Ci are arbitrary constants for i = 1,2,3. For simplicity of results, we assume Ci > 0 and
omit the factors A(0) and c. Then, the vector potential is

A =

C1
C2
C3

 . (4.82)

Cartan geometry is now applied as follows (we repeat the relevant equations):

Metric compatibility (2.149):

Dσ gµν = ∂σ gµν −Γ
λ

σ µgλν −Γ
λ

σνgµλ = 0 (4.83)

with an explicit antisymmetry requirement for all non-diagonal Γ elements (2.156):

Γ
ρ

µν =−Γ
ρ

νµ . (4.84)

The metric (2.204):

gµν = n qa
µqb

ν ηab, (4.85)

gµν =
1
n

qµ
aqν

b η
ab. (4.86)
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The spin connection (2.235):

ω
a
µb = qa

νqλ
bΓ

ν

µλ
−qλ

b∂µqa
λ
. (4.87)

The Λ connection and its spin connection (3.48-3.49):

Λ
λ

µν =
1
2
|g|−1/2

η
ρα

η
σβ

ερσ µν Γ
λ

αβ
, (4.88)

ω
a

(Λ) µb = qa
νqλ

bΛ
ν

µλ
−qλ

b∂µqa
λ
. (4.89)

The torsion and curvature tensors:

Rλ
µνρ = ∂µΓ

λ
νρ −∂νΓ

λ
µρ +Γ

λ
µσ Γ

σ
νρ −Γ

λ
νσ Γ

σ
µρ , (4.90)

T λ
µν = Γ

λ
µν −Γ

λ
νµ , (4.91)

and their forms:

Ra
bµν = qa

ρqσ

bRρ

σ µν , (4.92)

T a
µν = qa

λ
T λ

µν , (4.93)

and contravariant forms:

Ra µν

b = η
µρ

η
νσ Ra

bρσ , (4.94)

T aµν = η
µρ

η
νσ T a

ρσ . (4.95)

Now we evaluate the equations with the tetrad (4.80) (the Maxima code is in [127]). This gives
Γ connections with four unspecified parameters D1 to D4:

Γ
0

01 =
1
r

(4.96)

Γ
0

10 =−
1
r

Γ
0

12 =
D4C2

2r2

C0
2

Γ
0

13 =−
D3C1

2r2

C0
2

. . .

It is possible to set the Di to zero:

D1 = D2 = D3 = D4 = 0. (4.97)

Then, only three non-vanishing connections remain:

Γ
0

01 =
1
r
, (4.98)

Γ
0

10 =−
1
r
, (4.99)

Γ
1

00 =
C2

0

C2
1 r3 . (4.100)

The first pair is antisymmetric, while the third connection is a diagonal element which does not
contribute to torsion.
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Applying Eq. (4.87), the non-vanishing spin connections are

ω
(0)

0(1) =−
C0

C1 r2 , (4.101)

ω
(1)

0(0) =−
C0

C1 r2 , (4.102)

which are antisymmetric in indices in a and b. (Please notice that the upper index a has to be
lowered for comparison, which gives a sign change for the second connection element.) We have
written the Latin indices in parentheses in order to distinguish these numbers from those stemming
from Greek indices.

The Hodge duals of the Γ connection are

Λ
0

23 =−
1
r
, (4.103)

Λ
0

32 =
1
r
, (4.104)

and are complementary to the Γ’s in the lower indices. The non-zero Λ spin connections are

ω
(0)

(Λ) 1(0) =
1
r
, (4.105)

ω
(0)

(Λ) 2(3) =
C0

C3r2 , (4.106)

ω
(0)

(Λ) 3(2) =−
C0

C2r2 . (4.107)

It is important to note that the connection ω
(0)

(Λ) 1(0) has the form that was derived in early papers of
the UFT series. In those papers, the spin connections for Γ and Λ had not been discerned, and which
one was meant depended on the field equations used. In the inhomogeneous current (Coulomb and
Ampère-Maxwell laws), the Λ spin connections appear.

The non-vanishing torsion and curvature tensor elements are

T 0
01 =−T 0

10 =
2
r
, (4.108)

R0
101 =−R0

110 =
2
r2 , (4.109)

R1
001 =−R1

010 =
2C2

0

C2
1r4 , (4.110)

which are all antisymmetric in the last two indices. The same holds for the torsion and curvature
forms:

T (0)
01 =−T (0)

10 =
C0

r2 , (4.111)

R(0)
(1)01 =−R(0)

(1)10 =−
2C0

C1r3 , (4.112)

R(1)
(0)01 =−R(1)

(0)10 =−
2C0

C1r3 . (4.113)

The final results are obtained by inserting the torsion elements into Eq. (4.65) leading, e.g., to

Fa01 = A(0)T a01 =
Ea1

c
, (4.114)
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from which follows

Ea1 = cA(0)T a01, (4.115)

which is the r-component of the fields Ea. The field elements for all other a values are obtained in
the same way. This gives for the electric fields

E(0) = cA(0)

C0
r2

0
0

 , (4.116)

E(1) = E(2) = E(3) = 0, (4.117)

and for the magnetic fields

B(0) = B(1) = B(2) = B(3) = 0. (4.118)

Only the electric 0-component of polarization is not a zero vector, and all polarizations of the
magnetic field vanish. This is exactly the classical result

E(0) = E =
qe

4πε0 r2 . (4.119)

It is seen that - despite the purely classical result - there are non-vanishing spin connections and cur-
vature tensor elements. This shows that ECE theory gives results beyond classical electromagnetism.
The latter is based on special relativity only. �

Circularly polarized plane wave in complex basis - the B(3) field
� Example 4.2 In the early 1990s, Myron Evans developed what is known as the B(3) field, a
longitudinal field of electrodynamics [25–27] that describes a longitudinal component of electro-
magnetic waves. He then generalized this theory to O(3) electrodynamics [27,28], in the late 1990s,
and these two theories culminated in ECE theory, in 2003.

We will now present the basics of O(3) electrodynamics and show how circularly polarized
plane waves (Figs. 4.1, 4.2) can be attributed to different polarization vectors of the electric and
magnetic fields.

The usual orthonormal basis of the three-dimensional cartesian space is described by the unit
vectors i, j,k:

i =

1
0
0

 , j =

0
1
0

 , k =

0
0
1

 . (4.120)

Figure 4.1: Right-polarized wave [177]. Figure 4.2: left-polarized wave [178].



84 Chapter 4. The field equations of electrodynamics

These fulfill the circular relations

i× j = k, (4.121)

j×k = i, (4.122)

k× i = j. (4.123)

In O(3) electrodynamics, a complex circular basis in flat space is used, denoted by q(1),q(2),q(3).
The transformation equations from the cartesian to the complex circular basis are:

q(1) =
1√
2
(i− ij), (4.124)

q(2) =
1√
2
(i+ ij), (4.125)

q(3) = k, (4.126)

where i is the imaginary unit (not to be confused with the unit vector i). These vectors have a
spacial circular relation, which is characteristic for O(3) symmetry:

q(1)×q(2) = iq(3)∗, (4.127)

q(2)×q(1) = iq(1)∗, (4.128)

q(3)×q(1) = iq(2)∗. (4.129)

In contrast to (4.121 - 4.123), the cross products of two basis vectors do not lead directly to the
third vector, but to the conjugate vector, multiplied by the imaginary unit. Eqs. (4.124 - 4.126)
are basis transformations, therefore they can be interpreted directly as a Cartan tetrad qa

µ where
indices a and µ run from 1 to 3. Consequently, we can define vector potentials according to the
first ECE axiom (4.11), multiplying the q’s by the factor A(0):

A(1) = A(0)q(1), (4.130)

A(2) = A(0)q(2), (4.131)

A(3) = A(0)q(3). (4.132)

In so doing, we have defined potentials for three polarization directions, where these directions
coincide with the axes of the coordinate system. The polarization in Z direction is constant:

A(3) = A(0)k. (4.133)

In the absence of rotation around Z, we have:

∇×A(1) = ∇×A(2) = 0. (4.134)

Now we define a wave of A vectors rotating in the XY plane:

A(1) = A(0)q(1)ei(ωt−κZ), (4.135)

A(2) = A(0)q(2)e−i(ωt−κZ), (4.136)

A(3) = A(0)q(3), (4.137)

where ω is a time frequency, and κ is a wave number (the spatial frequency of a wave, measured in
cycles per unit distance) in the Z direction. The first two A vectors define a left and right rotation
around the Z axis. They are related by

A(1) = A(2)∗. (4.138)
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A(3) is a constant vector in the Z direction.
The magnetic field of O(3) electrodynamics is defined by

B(1)∗ =−i
κ

A(0) A(2)×A(3), (4.139)

B(2)∗ =−i
κ

A(0) A(3)×A(1), (4.140)

B(3)∗ =−i
κ

A(0) A(1)×A(2), (4.141)

(notice that conjugated quantities are defined on the left-hand side). These fields obey the B cyclic
theorem:

B(1)×B(2) = iA(0)
κ B(3)∗, (4.142)

B(2)×B(3) = iA(0)
κ B(1)∗, (4.143)

B(3)×B(1) = iA(0)
κ B(2)∗. (4.144)

This is proven using computer algebra [128], along with many other theorems. It is also possible to
define the first two polarizations in the same way as in conventional electrodynamics:

B(1) = ∇×A(1), (4.145)

B(2) = ∇×A(2). (4.146)

However, then there is no B(3) field, because A(3) is constant and therefore

∇×A(3) = 0. (4.147)

So B(3) can only be defined by Eq. (4.141):

B(3) = i
κ

A(0) A(1)∗×A(2)∗. (4.148)

The B(3) field

B(3) = A(0)
κ k (4.149)

has been studied in great detail [25,27]. It is a radiated magnetic field or flux density in the direction
of wave propagation. Such a field is not known in ordinary electrodynamics. When the wave
hits matter, it creates a magnetization in the propagation direction, which is known as the inverse
Faraday effect. Besides this, there are other effects in spectroscopy that can be explained by the
B(3) field, namely in optical NMR and in laser technology [25].

Interestingly, there is no electrical E(3) field. Electric field vectors of both left and right circular
polarization can be defined by

E(1) = E(0) 1√
2
(i+ ij)ei(ωt−κZ), (4.150)

E(2) = E(0) 1√
2
(i− ij)e−i(ωt−κZ), (4.151)

and are perpendicular to the magnetic fields. The E(3) field has to be the cross product of E(1) and
E(2), giving

E(3) =
1

E(0) E(1)×E(2) =−iE(0)k, (4.152)
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with a suitable constant E(0), and is purely imaginary. Therefore, no physical E(3) field exists (and
has never been observed).

There is another interesting relation for circular plane waves. By comparison with the results of
Eqs. (4.139 - 4.141) we find that

B(1) = κ1 A(1), (4.153)

B(2) = κ2 A(2), (4.154)

B(3) = κ3 A(3), (4.155)

which, by comparison with (4.145 - 4.147), gives three Beltrami conditions:

∇×A(1) = κ A(1), (4.156)

∇×A(2) = κ A(2), (4.157)

∇×A(3) = 0 ·A(3). (4.158)

These have to do with longitudinal waves, where electric and magnetic fields are not perpendicular
to each other, and will be discussed later in this book. All calculations in this example can be
verified by computer algebra code [128]. �

4.3 The wave equation
It was shown in Section 2.5.5 that a wave equation can be derived from the tetrad postulate. This is
called the Evans lemma, Eq. (2.258):

� qa
ν +Rqa

ν = 0. (4.159)

This is an equation for the tetrad and contains a scalar curvature R, which, according to Eq. (2.257),
is defined by the tetrad, spin connection and Γ connection terms of Cartan geometry:

R = qν
a

(
∂

µ(ωa
µb qb

ν)−∂
µ(Γλ

µνqa
λ
)
)
. (4.160)

The Evans lemma can easily be transformed into a physical equation by applying the first ECE
postulate (4.11), i.e., multiplying the equation by the constant A(0), to obtain physical units of a
potential:

� Aa
ν +RAa

ν = 0. (4.161)

The d’Alembert operator � was already introduced in Section 2.5.5. In cartesian coordinates it
reads:

�=
1
c2

∂ 2

∂ t2 −
∂ 2

∂X2 −
∂ 2

∂Y 2 −
∂ 2

∂Z2 . (4.162)

Eq. (4.161) is different from the wave equation of standard electrodynamics, which is

� Aa
ν = 0. (4.163)

This equation has no curvature term and follows from (4.161) by R = 0, which indicates in a flat
space without curvature and torsion. When the potential Aa

ν is derived as a solution of this equation,
it is not uniquely determined. Aa

ν may be changed by a tensorial function φ a
ν , whose derivatives

vanish:

� φ
a
ν = 0, (4.164)
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or, in a particular case,

∂φ a
ν

∂ t
= 0 and (4.165)

∇
2

φ
a
ν = 0,

so that

� (Aa
ν +φ

a
ν ) = 0. (4.166)

The particular case is called a gauge operation, which are the basis for quantum electrodynamics.
When we use the ECE wave equation (4.161) instead, a re-gauging of the vector potential is no
longer possible. Therefore, quantum electrodynamics is obsolete in the framework of ECE theory.
All well-known effects of quantum electrodynamics, for example the Lamb shift in atomic spectra,
can be explained by ECE theory directly, as a consequence of the fact that spacetime is not flat.

As a preview of ECE quantum mechanics, we state that the wave equation (4.161) can be
quantized and is the basis of the Fermion equation, which is comparable to the Dirac equation in
establishing relativistic quantum mechanics. The Fermion equation is not based on special relativity,
but general relativity, a spacetime with curvature and torsion. The non-relativistic Schrödinger
equation can be derived as an approximation of the Fermion equation, or, alternatively, from
Einstein’s relation for total energy. Thus, the ECE wave equation provides the foundation for all of
ECE quantum mechanics.

The curvature term R in the ECE wave equation describes a coupling between spacetime or even
gravitation and electromagnetism. Therefore, R may be replaced by a mass term and a dimensional
factor. In order to obtain curvature units (1/m2), we replace R by (m0c/h̄)2, where m0 may be
constant. This ensures that the dimensions are right, and we can write

� Aa
ν +
(m0c

h̄

)2
Aa

ν = 0. (4.167)

When applied to electromagnetic waves, it follows that photons have a rest mass m0. This equation
is identical to the Proca equation [29], which was derived by Proca independently before the
advent of ECE theory. In the standard model, the Proca equation is directly incompatible with
gauge invariance. The gauge principle is not tenable in a unified field theory such as ECE because
the potential in ECE is physically relevant and cannot be “re-gauged”. In ECE theory the tetrad
postulate is invariant under the general coordinate transform, and this is the principle that governs
the potential field in ECE.

4.4 Field equations in terms of potentials
The field equations of ECE theory are formally identical to Maxwell’s equations, augmented
by a polarization index, and are valid in a spacetime of general relativity. The connections of
spacetime are not directly visible in this representation for the electric and magnetic force fields.
However, we can make the underlying structure evident by replacing the force fields with their
potentials. Because the force fields are identical with Cartan torsion, within a factor, we use the
first Maurer-Cartan structure relation to express the force fields by their potentials and connections.
The first Maurer-Cartan structure, Eq. (2.283), is the 2-form:

T a = D∧qa = d∧qa +ω
a
b ∧qb, (4.168)

or written in tensor form:

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (4.169)
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Applying the ECE axioms

Aa
µ = A(0)qa

µ , (4.170)

Fa
µν = A(0)T a

µν , (4.171)

then leads to the equation

Fa
µν = ∂µAa

ν −∂νAa
µ +ω

a
µb Ab

ν −ω
a
νb Ab

µ . (4.172)

It is directly seen that this is an antisymmetric tensor consisting of the potential A and spin
connection terms. In classical electrodynamics, the field tensor Fµν is defined from the potentials
as

Fµν = ∂µAν −∂νAµ . (4.173)

There is no polarization index and there are no spin connection terms, indicating that this is an
equation of Minkowski space without curved spacetime. Eq. (4.172) is a generalized version of
this equation, introducing curvature and torsion.

In the preceding section we have introduced the vector representation of the ECE field equations.
Therefore, it is useful to replace the vectors Ea and Ba by their potentials according to Eq. (4.172).
In classical physics, we have

E =−∇φ − ∂A
∂ t

, (4.174)

B = ∇×A, (4.175)

where φ is the electric scalar potential and A is the magnetic vector potential. The mapping between
the elements of F and the electric and magnetic field was given by Eq. (4.65), but Eq. (4.56) can
also be used, if the Hodge dual of F is considered. Here we use Eq. (4.65):

Ea =

Ea1

Ea2

Ea3

=−c

 Fa01

Fa02

Fa03

 , (4.176)

Ba =

Ba1

Ba2

Ba3

=

Fa32

Fa13

Fa21

 . (4.177)

Then this follows from Eq. (4.172) for µ = 0, ν = 1,2,3:

Fa
01 = ∂0Aa

1−∂1Aa
0 +ω

a
0b Ab

1−ω
a
1b Ab

0, (4.178)

Fa
02 = ∂0Aa

2−∂2Aa
0 +ω

a
0b Ab

2−ω
a
2b Ab

0, (4.179)

Fa
03 = ∂0Aa

3−∂3Aa
0 +ω

a
0b Ab

3−ω
a
3b Ab

0. (4.180)

We raise Greek indices in F , A and ω , which gives sign changes for ν = 1,2,3:

−Fa01 =−∂0Aa1−∂1Aa0−ω
a
0b Ab1 +ω

a1
b Ab0, (4.181)

−Fa02 =−∂0Aa2−∂2Aa0−ω
a
0b Ab2 +ω

a2
b Ab0, (4.182)

−Fa03 =−∂0Aa3−∂3Aa0−ω
a
0b Ab3 +ω

a3
b Ab0. (4.183)
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Inserting (4.176), we obtain:

1
c

Ea1 =−∂0Aa1−∂1Aa0−ω
a
0b Ab1 +ω

a1
b Ab0, (4.184)

1
c

Ea2 =−∂0Aa2−∂2Aa0−ω
a
0b Ab2 +ω

a2
b Ab0, (4.185)

1
c

Ea3 =−∂0Aa3−∂3Aa0−ω
a
0b Ab3 +ω

a3
b Ab0. (4.186)

With

∂0 =
1
c

∂

∂ t
and Aa0 =

φ a

c
(4.187)

this follows in vector form:

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b. (4.188)

Please notice that ωa0
b is a scalar and ωa

b is a vector:

ω
a

b =

ωa1
b

ωa2
b

ωa3
b

 . (4.189)

The representation of the magnetic field vector is found from Eq. (4.177), using the corresponding
combinations of µ and ν :

Fa
32 = ∂3Aa

2−∂2Aa
3 +ω

a
3b Ab

2−ω
a
2b Ab

3, (4.190)

Fa
13 = ∂1Aa

3−∂3Aa
1 +ω

a
1b Ab

3−ω
a
3b Ab

1, (4.191)

Fa
21 = ∂2Aa

1−∂1Aa
2 +ω

a
2b Ab

1−ω
a
1b Ab

2. (4.192)

With Greek indices raised, we obtain

Fa32 =−∂3Aa2 +∂2Aa3 +ω
a3

b Ab2−ω
a2

b Ab3, (4.193)

Fa13 =−∂1Aa3 +∂3Aa1 +ω
a1

b Ab3−ω
a3

b Ab1, (4.194)

Fa21 =−∂2Aa1 +∂1Aa2 +ω
a2

b Ab1−ω
a1

b Ab2. (4.195)

In vector form this can be written as

Ba = ∇×Aa−ω
a

b×Ab. (4.196)

The first Maurer-Cartan structure equation leads to the complete set of field-potential relations in
ECE electrodynamics:

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b,

Ba = ∇×Aa−ω
a

b×Ab.

(4.197)

(4.198)
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Inserting these relations into the field equations (4.72 - 4.75) leads to

∇ ·
(

∇×Aa−ω
a
b×Ab

)
=−µ0 ja0, (4.199)

∂
(
∇×Aa−ωa

b×Ab
)

∂ t

+∇×
(
−∇φ

a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b
)
= c µ0 ja, (4.200)

∇ ·
(
−∇φ

a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b
)
=

ρa

ε0
, (4.201)

− 1
c2

∂

(
−∇φ a− ∂Aa

∂ t − cωa
0b Ab +ωa

bφ b
)

∂ t

+∇×
(

∇×Aa−ω
a
b×Ab

)
= µ0 Ja. (4.202)

These equations can be simplified by using the theorems of vector algebra, giving:

∇ ·
(

ω
a
b×Ab

)
= µ0 ja0

−c∇×
(

ω
a
0b Ab

)
+∇×

(
ω

a
bφ

b
)
−

∂
(
ωa

b×Ab
)

∂ t
= c µ0 ja,

∇ · ∂Aa

∂ t
+∇

2
φ

a + c∇ ·
(

ω
a
0b Ab

)
−∇ ·

(
ω

a
bφ

b
)
=−ρa

ε0
,

∇(∇ ·Aa)−∇
2Aa−∇×

(
ω

a
b×Ab

)
+

1
c2

(
∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
+∇

∂φ a

∂ t
−

∂
(
ωa

bφ b
)

∂ t

)
= µ0 Ja.

(4.203)

(4.204)

(4.205)

(4.206)

These are the field equations in potential form. They are much more complicated than those written
in terms of force fields. In the standard case of vanishing magnetic monopoles, we have ja0 = 0,
ja = 0, as usual. If there are no spin connections, the first two laws result in zero terms at the
left-hand side, indicating that non-vanishing magnetic monopoles are only possible in a spacetime
of general relativity.

If no polarization is present, we can omit the corresponding Latin indices. In this case, we only
have one scalar and one vector potential, and one scalar and one vector spin connection:

φ
a→ φ , (4.207)

Aa→ A, (4.208)

ω
a
0b → ω0, (4.209)

ω
a
b→ ω. (4.210)

Then, Eqs. (4.197 - 4.98) simplify to

E =−∇φ − ∂A
∂ t
− cω0 A+ωφ ,

B = ∇×A−ω×A.

(4.211)

(4.212)

Compared to their form of Maxwell-Heaviside theory, Eqs. ((4.174 - 4.175), both of the fields E
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and B contain additional spin connection terms. The field equations (4.203 - 4.206) simplify to

∇ · (ω×A) = µ0 j0,

−c∇× (ω0A)+∇× (ωφ)− ∂ (ω×A)

∂ t
= c µ0 j,

∇ · ∂A
∂ t

+∆φ + c∇ · (ω0A)−∇ · (ωφ) =− ρ

ε0
,

∇(∇ ·A)−∆A−∇× (ω×A)

+
1
c2

(
∂ 2A
∂ t2 + c

∂ (ω0A)

∂ t
+∇

∂φ

∂ t
− ∂ (ωφ)

∂ t

)
= µ0 J.

(4.213)

(4.214)

(4.215)

(4.216)

These are 8 component equations for 8 potential and spin connection variables. Formally, this
equation system is uniquely defined, but the Gauss law is not independent from the Faraday law,
and the Coulomb law is not independent from the Ampère-Maxwell law. This has to be taken into
account when solving the equation system. The solutions become unique (the equations become
independent) when the charge density and the current density are chosen in an unrelated way [33].





5. Advanced properties of electrodynamics

After having introduced ECE electrodynamics in Chapter 4, we complete the topic here by dis-
cussing special features and showing, through detailed examples, that they can be derived directly
and easily with ECE theory, but not at all (or only with difficulty and inconsistencies) using standard
physics.

5.1 The Antisymmetry laws

As shown in Section 2.5.4, the tetrad postulate can be written in form of Eq. (2.236) (with index
renaming):

qa
νΓ

ν
µν = ∂µqa

ν +qb
νω

a
µb . (5.1)

We can define a mixed-index Γ connection by

Γ
a

µλ
:= qa

νΓ
ν

µλ
= ∂µqa

ν +qb
νω

a
µb (5.2)

so that the antisymmetric Cartan torsion can be written as

T a
µν = Γ

a
µν −Γ

a
νµ . (5.3)

In Chapter 2 we have found that the Γ connection may contain non-vanishing elements for µ = ν

but only the antisymmetric parts for µ 6= ν are relevant. For a priori antisymmetric non-diagonal
elements of Γ we have

Γ
a

µν =−Γ
a

νµ (5.4)

so that for the torsion form (5.3) it follows that:

T a
µν = 2 Γ

a
µν = 2

(
∂µqa

ν +qb
νω

a
µb

)
. (5.5)
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On the other hand, torsion can be written according to Eq. (4.169) as

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (5.6)

Equating both expressions for T a
µν then gives the relation

2
(

∂µqa
ν +qb

νω
a
µb

)
= ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ , (5.7)

which can be rearranged to

∂µqa
ν +∂νqa

µ +ω
a
µb qb

ν +ω
a
νb qb

µ = 0. (5.8)

This is the antisymmetry condition of ECE theory.
Next, we will discuss how this impacts the vector notation of E and B fields. Applying the ECE

axioms (4.170 - 4.171) gives

∂µAa
ν +∂νAa

µ +ω
a
µb Ab

ν +ω
a
νb Ab

µ = 0. (5.9)

For µ = 0,ν = 1,2,3 we obtain

∂0Aa
1 +∂1Aa

0 +ω
a
0b Ab

1 +ω
a
1b Ab

0 = 0, (5.10)

∂0Aa
2 +∂2Aa

0 +ω
a
0b Ab

2 +ω
a
2b Ab

0 = 0, (5.11)

∂0Aa
3 +∂3Aa

0 +ω
a
0b Ab

3 +ω
a
3b Ab

0 = 0. (5.12)

The Greek indices of A and ω can be raised with sign change for ν = 1,2,3. In vector notation this
gives

−1
c

∂Aa

∂ t
+∇Aa

0−ω
a
0b Ab−ω

a
bAb

0 = 0, (5.13)

or, with Aa
0 = φ a/c,

−∂Aa

∂ t
+∇φ

a− cω
a
0b Ab−ω

a
bφ

b = 0. (5.14)

These are the electric antisymmetry conditions, because the terms of the ECE electric field appear.
For µ 6= 0 we obtain from (5.9):

∂3Aa
2 +∂2Aa

3 +ω
a
3b Ab

2 +ω
a
2b Ab

3 = 0, (5.15)

∂1Aa
3 +∂3Aa

1 +ω
a
1b Ab

3 +ω
a
3b Ab

1 = 0, (5.16)

∂2Aa
1 +∂1Aa

2 +ω
a
2b Ab

1 +ω
a
1b Ab

2 = 0, (5.17)

and with indices raised:

−∂3Aa2−∂2Aa3 +ω
a3

b Ab2 +ω
a2

b Ab3 = 0,

−∂1Aa3−∂3Aa1 +ω
a1

b Ab3 +ω
a3

b Ab1 = 0,

−∂2Aa1−∂1Aa2 +ω
a2

b Ab1 +ω
a1

b Ab2 = 0.

(5.18)

(5.19)

(5.20)

These equations are called the magnetic antisymmetry conditions, because they relate to the
magnetic vector potential Aa. These equations have a permutational structure and cannot be written
in vector form.
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The antisymmetry conditions are constraints for the fields Ea and Ba. Therefore, Equations
(4.188) and (4.196) can be reformulated. First, let us use Eq. (5.5) directly. With the ECE axioms,
we can write

Fa
µν = 2A(0)

Γ
a

µν = 2A(0)
(

∂µqa
ν +qb

νω
a
µb

)
(5.21)

= 2
(

∂µAa
ν +ω

a
µb Ab

ν

)
.

For µ = 0 we obtain the electric field:

Ea =−

Fa01

Fa02

Fa03

=

Fa
01

Fa
02

Fa
03

= 2c

∂0Aa
1 +ωa

0b Ab
1

∂0Aa
2 +ωa

0b Ab
2

∂0Aa
3 +ωa

0b Ab
3

=−2c

∂0Aa1 +ωa
0b Ab1

∂0Aa2 +ωa
0b Ab2

∂0Aa3 +ωa
0b Ab3

 (5.22)

=−2
(

∂Aa

∂ t
+ cω

a
0b Ab.

)
For the magnetic field we obtain:

Ba =

Fa32

Fa13

Fa21

=

Fa
32

Fa
13

Fa
21

= 2

∂3Aa
2 +ωa

2b Ab
3

∂1Aa
3 +ωa

3b Ab
1

∂2Aa
1 +ωa

1b Ab
2

 (5.23)

= 2

−∂3Aa2 +ωa2
b Ab3

−∂1Aa3 +ωa3
b Ab1

−∂2Aa1 +ωa1
b Ab2


This equation cannot be written in form of vector operators.

The electric antisymmetry condition (5.14) can be used to replace the two terms containing the
Aa field with terms of the potential φ a. Inserting this into Eq. (5.22), we obtain two formulations
for the electric field vector:

Ea =−2
(

∂Aa

∂ t
+ cω

a
0b Ab

)
=−2

(
∇φ

a−ω
a
bφ

b
)
. (5.24)

This is a remarkable result. The electric field is either defined by either the vector potential or the
scalar potential, in combination with the scalar and vector spin connections. There is no counterpart
in classical electrodynamics. If we omitted the spin connections, we would have ∂Aa

∂ t = ∇φ a, which
is not generally true in Maxwellian electrodynamics.

Finally, we can also rewrite the ECE magnetic field (5.23) by means of the magnetic antisym-
metry conditions (5.18 - 5.20):

Ba = 2

−∂3Aa2 +ωa2
b Ab3

−∂1Aa3 +ωa3
b Ab1

−∂2Aa1 +ωa1
b Ab2

= 2

∂2Aa3−ωa3
b Ab2

∂3Aa1−ωa1
b Ab3

∂1Aa2−ωa2
b Ab1

 . (5.25)

This is simply the application of an antisymmetry operation. The factor of 2 appears in Eqs. (5.24)
and (5.25) for the “missing terms” when compared with the original definitions (4.197, 4.198).

� Example 5.1 In this example we show that classical electrodynamics, which uses U(1) symmetry,
is not compatible with the antisymmetry laws of ECE theory. The antisymmetric field tensor is
defined in U(1) symmetry [30]- [33] by

Fµν = ∂µAν −∂νAµ , (5.26)
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and the antisymmetry of this definition requires

∂µAν =−∂νAµ . (5.27)

There is no polarization index and there are no spin connection terms. The electric and magnetic
field vectors, in terms of potentials, have the well-known form:

E =−∇φ − ∂A
∂ t

, (5.28)

B = ∇×A, (5.29)

From the antisymmetry law (5.27) it follows that

∇φ =
∂A
∂ t

, (5.30)

then, because the curl of a gradient field vanishes:

∇×∇φ =
∂

∂ t
(∇×A) = 0. (5.31)

Therefore:

∂B
∂ t

= 0. (5.32)

From Eq. (5.31) it follows that

∇×E = 0. (5.33)

On the other hand, the Faraday law is

∇×E+
∂B
∂ t

= 0. (5.34)

If E were a time-dependent field, we would have ∂B
∂ t 6= 0; therefore, E must be a static field. From

the antisymmetry equation (5.30) it follows that

∇φ =
∂A
∂ t

= 0 (5.35)

and so, in particular for a static electric field,

E =−∇φ = 0. (5.36)

In standard theory it is assumed A = 0 for static electric fields. Therefore, we have to exacerbate
Eq. (5.32) to

B = 0. (5.37)

This has severe consequences that are described in [31] as follows:
The catastrophic result is obtained that the [static] E and B fields vanish on the U(1) level.

All attempts at constructing a unified field theory based on a U(1) sector symmetry are incorrect
fundamentally. Even worse for the standard physics is that the method introduced by Heaviside of
expressing electric and magnetic fields through Eqs. (5.28) and (5.29) must be abandoned, so all
of twentieth century gauge theory is proven to be empty dogma. This conclusion reinforces many
other ways of showing that a U(1) gauge theory of electromagnetism is incorrect and that gauge
freedom in the natural sciences is an illusion.

Here no gauge freedom means that the potential cannot be shifted arbitrarily, because it has a
physical meaning. �
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5.2 Polarization and Magnetization
5.2.1 Derivation from standard theory

Standard electrodynamics theory has been extended to media which are polarizable by electric
fields and magnetizable by magnetic fields. These material properties evoke additional fields in
the media, polarization P and magnetization M. The resulting total electric field is the dielectric
displacement

D = ε0E+P. (5.38)

For magnetic materials, the induction is the sum of the magnetic field H and magnetization M:

B = µ0(H+M). (5.39)

ε0 is the vacuum permittivity and µ0 the vacuum permeability. They are related by the velocity of
light in vacuo c:

ε0µ0 =
1
c2 . (5.40)

In the case of isotropic materials with linear polarization/magnetization properties, the material
fields depend linearly on the electric and magnetic fields and can be written

D = ε0εrE, (5.41)

B = µ0µrH, (5.42)

where εr is the relative permittivity and µr is the relative permeability. In vacuo:

εr = 1, µr = 1. (5.43)

The material equations (5.41, 5.42) can be generalized to ECE equations in a spacetime of general
relativity, as we have done for the E and B fields. Since these are linear relations, the displacement
and magnetic field can be augmented by an ECE polarization index a1:

Da = ε0εrEa, (5.44)

Ba = µ0µrHa. (5.45)

The Faraday law in vacuo

∂Ba

∂ t
+∇×Ea = 0 (5.46)

can be rewritten with aid of (5.44, 5.45) and εr = 1,µr = 1 to

1
c2

∂Ha

∂ t
+∇×Da = 0. (5.47)

In matter, the H and D fields are changed according to Eqs. (5.38, 5.39). Using the simplified
relations (5.41, 5.42), we can express these fields by the vacuum fields E and B (but we would have
to use different variable names to be fully correct). Introducing the a index as before, we obtain:

1
µr

∂Ba

∂ t
+ εr∇×Ea = 0 (5.48)

1Please notice that this “polarization” is a spacetime property and does not have anything to do with dielectric
polarization.
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which is an alternative version of the Faraday law in matter. For the Ampère-Maxwell law, we
obtain (in the same way):

−c2 ∂Da

∂ t
+∇×Ha = Ja (5.49)

and

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja, (5.50)

where Ja is a “free” external current, independent of polarization and magnetization. The Gauss
law remains as is and the Coulomb law becomes

∇ ·Ea =
ρa

ε0εr
. (5.51)

Ultimately, we arrive at the ECE field equations for polarizable and magnetizable materials, in
vector form:

∇ ·Ba = 0,
1
µr

∂Ba

∂ t
+ εr∇×Ea = 0,

∇ ·Ea =
ρa

ε0εr
,

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja.

(5.52)

(5.53)

(5.54)

(5.55)

The refractive index n is defined in standard dielectric theory as

n2 := εrµr. (5.56)

Inserting this into the Faraday law (5.53) gives

∂Ba

∂ t
+n2

∇×Ea = 0 (5.57)

which is a law of optics. Thus, optical properties can also be described by the ECE polarization and
magnetization laws.

5.2.2 Derivation from ECE homogeneous current
Instead of assuming an isotropic, linear medium, we can base our derivation on the more general
laws for polarization and magnetization (5.38) and (5.39) directly. Since these are vector laws, we
can transfer the ECE polarization index a to P and M:

Da = ε0Ea +Pa, (5.58)

Ha =
1
µ0

Ba−Ma. (5.59)

We insert Da and Ha into the Faraday law in vacuum (5.47), introducing the changes of this law by
polarization and magnetization:

1
c2

∂ ( 1
µ0

Ba−Ma)

∂ t
+∇× (ε0Ea +Pa) = 0. (5.60)
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Rearranging the terms gives

∂Ba

∂ t
+∇×Ea = µ0

(
∂Ma

∂ t
− c2

∇×Pa
)
. (5.61)

This is the Faraday law of ECE theory with homogeneous current ja:

∂Ba

∂ t
+∇×Ea = µ0ja (5.62)

with

ja =
∂Ma

∂ t
− c2

∇×Pa. (5.63)

In this particular approximation it is seen clearly that the homogeneous current is equivalent to a
spacetime with polarization and magnetization. The effect is like a current of magnetic charges,
which may be observable only in cosmic dimensions, where it can be amplified by the path length
to measurable levels.

� Example 5.2 We show that the cosmological red shift can be described by optical properties of
spacetime. We cite from [34]:

The homogeneous current (5.63) may appear in cosmic dimensions and is the mechanism
responsible for the interaction of gravitation with the light beam as the latter travels from source
to telescope, a distance Z. Over this immense distance it is certain that the light beam encounters
myriad species of gravitational field before reaching the telescope and the observer. However
weak these fields may be in inter-stellar and inter-galactic ECE spacetime, the enormous path
length Z amplifies the current ja to measurable levels, and appears in the telescope as a red shift.
This inference is analogous to the well known fact that the absorption coefficient in spectroscopy
depends on the path length - the greater the path length the greater the absorption of the light
beam and the weaker the signal at the detector. Therefore, what is always observed in astronomy, is
the effect of gravitation on light through the current of Eq. (5.63) - in general an absorption (or
dielectric loss) accompanied by a dispersion (a change in the refractive index).

It is also well known in spectroscopy that the more dilute the sample the sharper are the
spectral features (the effect of collisional broadening is decreased by dilution). Since inter-stellar
and inter-galactic spacetime is very tenuous (or dilute), the stars and galaxies appear sharply
defined. This does not mean at all that the spacetime is empty or void as in Big Bang theory.
The empty inter-stellar and inter-galactic spacetime of Big Bang is defined by Einstein-Hilbert
theory alone, without any classical consideration of the classical effect of gravitation on a light
beam. The red shifts are defined in Big Bang by a particular solution to the Einstein-Hilbert field
equations using a given metric. No account is taken of the homogeneous current ja and so the
effect of gravitation on light is not considered classically. These are major omissions, leading to
the apparent conclusion that the universe is expanding - simply because the metric demands this
conclusion. This is, however, a circular argument - the conclusion (expanding metric deduced) is
programmed in at the beginning (expanding metric assumed).

It is to be stressed that this explanation strongly supports the tired light theory [35]. The
common argument against this theory is that light is dispersed by myriads of collisions with
particles of the interstellar medium or even quantum vacuum. This should lead to very diffuse
images in telescopes. However, according to the explanation above, dispersion does not appear
because the inter-stellar medium is very dilute. The red shift is fully explainable on a macroscopic
level. The Faraday law can be written for a permeability and permittivity of spacetime, which is
space- (and possibly time-) dependent, in the form:

∂

∂ t

(
Ba

µr

)
+∇× (εrEa) = 0. (5.64)
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Thus, regions with varying µr and εr alter the electromagnetic properties of light. The red shift is
made plausible in the following way: Assume an electromagnetic plane wave, given in cartesian
coordinates (with basis i, j,k) by

Ea = iE0eiφ , Ba = jB0eiφ (5.65)

with phase factor

φ = ωt−κZ. (5.66)

This is a wave propagating in the k direction with time frequency ω and wave number κZ = κ . We
insert this into the Faraday equation of free space (5.46):

∂Ba

∂ t
+∇×Ea = 0 (5.67)

and obtain

∂Ba

∂ t
= iωjB0eiφ , (5.68)

∇×Ea =−iκjE0eiφ , (5.69)

(see computer algebra code [129] for details). Therefore, we obtain from the Faraday law:

ωB0−κE0 = 0. (5.70)

In free space, without dispersion, is

ω

κ
= c (5.71)

and from Section 4.2.3 (the definition of the electromagnetic field tensor) we know that

E0

B0
= c. (5.72)

Therefore, the left-hand side of (5.67) gives 1−1 = 0, and the Faraday equation is fulfilled. Now
we want to know how we have to modify the definitions of the electric and magnetic fields so that
the Faraday equation for dielectric space (5.53) is fulfilled:

1
µr

∂Ba

∂ t
+ εr∇×Ea = 0. (5.73)

Inserting the fields (5.65) leads to

ω

µr
B0− εrκE0 = 0. (5.74)

Obviously, this equation comes out if we change the definition in the phase factor in the form:

ω → ω

µr
, (5.75)

κ → εrκ, (5.76)

leading to

φ =
ω

µr
t− εrκZ. (5.77)
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(see computer algebra code [129]). The frequency is lowered by a factor of 1/µr with µr > 1, and
this is the cosmological red shift. As explained above, this is an optical effect that has nothing to do
with an expanding universe.

From Eq. (5.74) it follows that

ω

κ
− εrµrc = 0 (5.78)

or

ω

κ
= n2c (5.79)

where

n2 = εrµr (5.80)

is the optical refraction index. In optics, n can be complex valued,

n = n′+ i n′′ (5.81)

with real part n′ and imaginary part n′′, describing absorption effects. Then, the frequency value in
Eq. (5.79) becomes complex:

ω = n2
ω0 (5.82)

where ω0 = κc is the frequency of the wave in vacuo. The frequency part of the phase factor
becomes

eiωt = ei n2ω0 t = ei(ωr+iωi)t (5.83)

with real and imaginary frequency parts

ωr = (n′2−n′′2)ω0, ωi = 2n′n′′ω0. (5.84)

This gives two phase factors

eiωt = ei(n′2−n′′2)ω0 t e−2n′n′′ω0 t . (5.85)

The first factor describes a frequency reduction, the second factor an exponential damping of
the wave. Many more details are given in [34]. We obtain a light wave that transfers energy to
spacetime, resulting in a lowering of the frequency. This is a red shift effect again. �

5.3 Conservation theorems
5.3.1 The Pointing theorem

In ECE theory, the Pointing theorem can be developed in the same way as in classical electrodynam-
ics. In addition, a coupling between electromagnetism and gravitation can be included, which is
more complete than in the classical theory, because gravitation is described much more completely,
compared to classical mechanics [36]. Here we restrict ourselves to the basic features of ECE
electrodynamics.

The total rate P of work in a volume V is given by

P =
∫

V
J ·Ed3x. (5.86)
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Since in ECE theory all electromagnetic quantities have a polarization index a, we can write this
directly as

Pa =
∫

V
Ja ·Ea d3x. (5.87)

All subsequent derivations follow the same path as in standard text books [37], except that there is
an additional polarization index for all quantities. The energy density of the force fields in materials
is

ua =
1
2
(Ea ·Da +Ba ·Ha) . (5.88)

We obtain the following from Eq. (5.86), by substituting terms using the field equations:

∂ua

∂ t
+∇ ·Sa =−Ja ·Ea. (5.89)

This is the Poynting theorem, in which the Poynting vector Sa is defined by

Sa := Ea×Ha. (5.90)

The Poynting vector has the dimensions of energy/(area·time) and describes the energy flow of
the fields. The term Ja ·Ea is the energy density originating in charges moving in an electric field.
Magnetic fields are irrelevant since the charges move perpendicularly to the magnetic field due
to the Lorentz force. The Poynting vector describes the energy flow and is proportional to the
electromagnetic momentum.

In standard theory, only the energy density and energy flow that originate from the force fields
are considered. In ECE theory, the potential also is physical. Spacetime itself can be considered
as a background potential. Therefore, a potential without fields is a kind of flux field and has a
field energy. This type of potential is not taken into account in the Poynting theorem. There is no
classical counterpart for the background potential. There are some possible approaches in [38], for
example, for the vector and scalar potential of ECE theory:

uAECE (r, t) =
1

2µ0
∑

i

(
1
c2 |ω0Ai|2 + |ωiAi|2

)
, (5.91)

uΦECE (r, t) =
1
2

ε0

(
1
c2 (ω0Φ)2 +∑

i
|ωiΦ|2

)
. (5.92)

The i index numbers the components of the vectors A and ω .

5.3.2 The continuity equation
In electrodynamics, charges and current densities are conserved. In ECE theory, both are geometri-
cal quantities, which are subject to change due to the structure of spacetime. Nevertheless, they are
conserved as in classical theory, indicating that the ECE approach is in agreement with essential
physics concepts. The second field equation (4.48) reads

∂µFaµν = µ0Jaν , (5.93)

where Jaν is the ECE 4-current density as given by Eq. (4.50). According to (4.172), the electro-
magnetic field tensor is rewritten to contravariant form:

Faµν = ∂
µAaν −∂

νAaµ +ω
aµ

b Abν −ω
aν

b Abµ . (5.94)
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The derivative in (5.93) can therefore be written:

∂µFaµν = ∂µ∂
µAaν −∂µ∂

νAaµ +∂µ(ω
aµ

b Abν)−∂µ(ω
aν

b Abµ). (5.95)

We apply an additional derivative ∂ν to both sides of (5.93). The left-hand side then becomes

∂ν∂µFaµν = ∂ν∂µ∂
µAaν −∂ν∂µ∂

νAaµ +∂ν∂µ(ω
aµ

b Abν)−∂ν∂µ(ω
aν

b Abµ). (5.96)

µ and ν are dummy indices, their names can be interchanged. Partial derivatives can also be
commuted:

∂ν∂µFaµν = ∂ν(∂µ∂
µ)Aaν −∂ν(∂µ∂

µ)Aaν +∂ν∂µ(ω
aν

b Abµ)−∂ν∂µ(ω
aν

b Abµ). (5.97)

The terms at the rigut-hand side of the last equation cancel out, resulting in

∂ν∂µFaµν = 0. (5.98)

Inserting this into Eq. (5.93) gives the continuity equation in generally covariant form:

∂νJaν = 0, (5.99)

which is the 4-divergence of the 4-current density. By applying Eq. (4.53), Ja0 = cρa, this can be
written in vector form:

∂ρa

∂ t
+∇ ·Ja = 0. (5.100)

This form of the continuity equation is identical to that of standard electrodynamics, but holds in a
spacetime with curvature and torsion. Thus, the range of validity has been expanded significantly.

5.4 Examples of ECE electrodynamics
5.4.1 Gravity-induced polarization changes

� Example 5.3 As shown in Example 5.2, the electromagnetic fields of spacetime have optical
properties, leading to magnetization and polarization. Here we apply this to polarization changes,
which are induced by gravity. Assume that a circularly polarized electromagnetic wave travels
through space in the Z direction. We assume only one polarization of the a index, therefore the
index can be omitted. According to Eqs. (4.150, 4.151) of Example 4.2, the electric and magnetic
field (induction) of the wave are then:

E =
E(0)
√

2
(i+ ij)eiφ , (5.101)

B =
B(0)
√

2
(i− ij)e−iφ (5.102)

with phase factor

φ = ωt−κZ. (5.103)

In an optically active region of spacetime with µr 6= 1 and εr 6= 1 the phase is changed to

φ1 =
ω

µr
t− εrκZ. (5.104)
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With the definition of the refraction index

n2 = µrεr (5.105)

the Faraday law in media, Eq. (5.73), then reads

1
n

∂Ba

∂ t
+n∇×Ea = 0. (5.106)

The force fields are changed according to

E→ nE, B→ 1
n

B. (5.107)

The real and physical part of Eq. (5.101) in vacuo is

E =
E(0)
√

2
(icos(φ)+ jsin(φ)) (5.108)

(see computer algebra code [130]). In an optically active spacetime the phase factor φ is modified
to φ1 as described above. Then:

E =
E(0)
√

2
(icos(φ1)+ jsin(φ1)) . (5.109)

Since E depends on the phase factor in a nonlinear way, the ratio between the X and Y components
changes. If

cos(φ1) = acos(φ), (5.110)

sin(φ1) = bsin(φ), (5.111)

we then have

E =
E(0)
√

2
(a icos(φ)+b jsin(φ)) . (5.112)

This is an elliptically polarized wave. For example, for φ = 45◦, φ1 = 60◦, we obtain the values
a = 0.707, b = 1.225 (see computer algebra code [130]).

It has been shown that changes of the optical properties of spacetime, due to matter, effect
a change of polarization in light passing through a region where these properties are affected by
gravitation. Such polarization changes from a white dwarf have been reported by Preuss et al. [39].
Details are discussed in [40]. The ECE theory for this example describes the change of polarization
qualitatively and straightforwardly, and a quantitative description could be developed for given
parameter functions µr(r) and εr(r) or, alternatively, for given curvature/torsion parameters of the
homogeneous current in the respective region. This effect is not present in Einsteinian general
relativity, so ECE is a preferred theory. �

5.4.2 Effects of spacetime properties on optics and spectroscopy
� Example 5.4 We show that the Sagnac effect is a consequence of rotating spacetime [41].
Consider the rotation of a beam of light of any polarization around a circle in the XY plane at an
angular frequency ω1 to be determined. The rotation is a rotation of spacetime described by the
rotating tetrad field vector

q(1) =
1√
2
(i− ij)eiω1t , (5.113)
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Figure 5.1: Sagnac interferometer [179].

i.e., rotation around the rim of the circular platform of the static Sagnac interferometer with the
beam of light, see Fig. 5.1. The ECE ansatz converts the geometry into physics as follows:

A(1) = A(0)q(1). (5.114)

This equation describes a vector potential field rotating around the rim of the circular Sagnac
platform at rest. Rotation to the left is described by:

A(1)
L =

A(0)
√

2
(i− ij)eiω1t , (5.115)

and rotation to the right by:

A(1)
R =

A(0)
√

2
(i+ ij)eiω1t . (5.116)

This can be seen by computing the real and physical parts:

Re(A(1)
L ) =

A(0)
√

2
(icos(ω1t)+ jsin(ω1t) , (5.117)

Re(A(1)
R ) =

A(0)
√

2
(icos(ω1t)− jsin(ω1t) , (5.118)

which are circular motions in the left and right directions (see computer algebra code [131]).
When the platform is at rest, a beam going around left-wise takes the same time to reach its

starting point on the circle as a beam going around right-wise. The time delay between the two
beams is:

∆t = 2π

(
1

ω1
− 1

ω1

)
= 0. (5.119)

Note carefully that Eqs. (5.115) and (5.116) do not exist in special relativity because electromag-
netism is thought of as an entity superimposed on a passive or static frame which never rotates.
Now consider the beam (5.115) rotating left-wise and spin the platform left-wise at an angular
frequency Ω. The result is an increase in the angular frequency of the rotating tetrad, (because the
spacetime is spinning more quickly):

ω1→ ω1 +Ω. (5.120)
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Similarly, consider the beam (5.115) rotating left-wise and spin the platform right-wise at the
same angular frequency Ω. The result is a decrease in the angular frequency of the rotating tetrad
(because the spacetime is spinning more slowly):

ω1→ ω1−Ω. (5.121)

The time delay between a beam circling left-wise with the platform and a beam circling left wise
against the platform is:

∆t = 2π

(
1

ω1−Ω
− 1

ω1 +Ω

)
=

4πΩ

ω2
1 −Ω2 (5.122)

and this is the Sagnac effect. Winding more turns of fiber on the interferometer, as indicated in Fig.
5.1, increases the time difference as a multiple of the number of windings.

In order to calculate the angular frequency ω1 of the rotating light, we start with the fact that
the time it takes for light to traverse an infinitesimal length element dl is

dt =
dl
c
. (5.123)

The apparatus rotates in this time by an angle Ωdt, and the radius of the interferometer is r. Then
the tangential velocity v of mechanical rotation at radius r is v = Ωr (in the case v << c). The
amount of increase or decrease in the path length of the beam, in a tangential direction, is

dx = Ω r dt =
Ω r
c

dl. (5.124)

For a complete rotation we obtain

x =
∮

dx =
∮

Ω r
c

dl =
Ω

c
·2πr · r = Ω

c
·2A, (5.125)

where A = πr2 is the area enclosed by a circular beam. The difference between the paths of both
circulating light beams is 2x, therefore from (5.123):

∆t =
2x
c

=
4Ω

c2 A (5.126)

and equating this with (5.122):

4Ω

c2 πr2 =
4πΩ

ω2
1 −Ω2 . (5.127)

For Ω << ω1 we obtain (see computer algebra code [131]):

ω1 =
c
r
= cκ (5.128)

with a wave number κ = 1/r. This is the angular frequency of the rotating tetrad, or rotating
spacetime. �

The Sagnac effect is an example of a geometrical phase effect, which is also called a Berry
phase. In quantum physics, the phase of the wave function changes when a quantum mechanical
object is moved on different paths from point A to point B, or from B back to point A. Prominent
examples are the Aharonov-Bohm effect (see later in this book) and the Tomita-Chiao effect. The
latter has been explained by ECE theory in [42]. The essential result of this effect is that light in an
optical fiber changes its phase, when the fiber is laid straight or in a curved way. This is not due to
differences in refraction when the fiber is bent or wound around a cylinder. In standard physics, a
Berry phase is explained by complicated quantum mechanical methods, but ECE theory is able to
give explanations on the classical level, as we did for the Sagnac interferometer.
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Figure 5.2: Principle of the homopolar generator (Faraday disk) [180].

5.4.3 The homopolar generator
� Example 5.5 The homopolar generator or Faraday disk is the first electric generator, invented by
Faraday in 1831. The original experiment by Faraday was recorded in his diary on Dec 26th 1831,
and consisted of a disc placed on top of a permanent magnet and separated from the magnet by paper.
The assembly was suspended by a string and the complete assembly rotated. An electro-motive
force (electric field) was observed between the center of the disc and the outer edge of the disc. The
electro-motive force vanished when the mechanical torsion (rotation) was absent.

The Faraday law of induction of the standard model (special relativistic electrodynamics) later
emerged to describe the induction seen when a magnet is translated with respect to a stationary
induction loop. This law does not cover the Faraday disk generator, in which the magnet is
stationary. In standard electrodynamics, the Faraday disk is explained by the Lorentz force law,
which is the translation law of charges moving in a magnetic field. Since the Lorentz force law is
not part of the Maxwell-Heaviside equations, it is sometimes stated that the homopolar generator is
not explainable by standard electrodynamics, although this point of view is more or less arbitrary.

In standard theory, any field is considered to be an entity distinct from the passive frame,
especially if the field is moving or spinning. When the Faraday disc is described by ECE theory, the
frame itself is spinning. This can be described by the circular complex basis as shown, for example,
in Eq. (5.113). The two transversal basis vectors q(1) and q(2) can be described by

q(1) = q(2)∗ =
1√
2
(i− ij)eiΩt . (5.129)

Ω is the frequency with which the disc is mechanically spun. According to the Evans ansatz (5.114),
this generates vector potentials

A(1) = A(0)q(1) =
A(0)
√

2
(i− ij)eiΩt , (5.130)

A(2) = A(1)∗ =
A(0)
√

2
(i+ ij)e−iΩt . (5.131)

Both vector potentials have the same real and physical part:

Re(A(1)) = Re(A(2)) =
A(0)
√

2
(icos(Ωt)+ jsin(Ωt)) . (5.132)
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According to Eq. (4.197), the ECE electric field is

Ea =−∇φ
a− ∂Aa

∂ t
− cω

a
0b Ab +ω

a
bφ

b. (5.133)

Since the electric potential φ and the spin connections are zero (there is no a priori given electric
structure), the electric field evoked by mechanical rotation is

Ea =−∂Aa

∂ t
. (5.134)

With (5.130, 5.131) this leads to the electric fields

E(1) =
A(0)Ω√

2
(−ii− j)eiΩt , (5.135)

E(2) =
A(0)Ω√

2
(ii− j)e−iΩt , (5.136)

whose real part is

E = Re(E(1)) = Re(E(2)) =
A(0)Ω√

2
(isin(Ωt)− jcos(Ωt)) , (5.137)

(see computer algebra code [132]). This electric field (with strength in volts per meter) spins around
the rim of the rotating disk. As observed experimentally, it is proportional to the product of A(0) and
Ω, and the factor A(0) stems from the permanent magnet. An electromotive force is set up between
the center of the disk and its rim, as first observed by Faraday, and this quantity is measured by a
voltmeter at rest with respect to the spinning disk.

The frequency Ω of mechanical rotation can be considered as a spin connection. Then Eq.
(5.133) can be written as

Ea =−∂Aa

∂ t
−ΩAa. (5.138)

The real part of E(1) and E(2) contains sin and cos terms, but gives a graph equivalent to (5.137)
(see computer algebra code [132]). In [43, 44] the spin connection was defined with a complex
phase factor:

Ea =−∂Aa

∂ t
− iΩAa. (5.139)

This gives the simpler result:

E = Re(E(1)) = 2
A(0)Ω√

2
(isin(Ωt)− jcos(Ωt)) , (5.140)

which is - except for a constant factor - identical to (5.137). �

ECE not only gives a consistent description of the Faraday disk through the field equations, but
also allows for resonance enhancements of the induced voltage. This is reported in detail in [44].
Typical simple resonance effects are described next.
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5.4.4 Spin connection resonance
� Example 5.6 We now consider the resonant Coulomb law. One of the most important con-
sequences of general relativity applied to electrodynamics is that the spin connection enters the
relation between the field and potential as described in Section 4.4. The equations of electrodynam-
ics, as written in terms of the potential, can be reduced to the form of Euler-Bernoulli resonance
equations. The method is most simply illustrated by considering the vector form of the Coulomb
law deduced in Section 4.2.3:

∇ ·E =
ρ

ε0
, (5.141)

where we have written the fields without polarization index. Assuming the absence of a vector
potential (absence of a magnetic field), the electric field in the standard model is

E =−∇φ , (5.142)

where φ is the electric potential. Under the same assumption, the electric field in ECE theory,
according to Eq. (4.197), is

E =−∇φ +ωφ , (5.143)

where ω is the vector spin connection. Therefore, Eq. (5.141) takes on the form

∇
2
φ −ω ·∇φ − (∇ ·ω)φ =− ρ

ε0
. (5.144)

The equivalent equation in the standard model is the Poisson equation, which is a limit of Eq.
(5.144) when the spin connection is zero. The Poisson equation does not give resonant solutions.
However, Eq. (5.144) has resonant solutions of Euler-Bernoulli type, as can be seen in the following
discussion. Restricting consideration to one cartesian coordinate, we have only the dependencies
φ(X) and the spin connection has only an X component ωX(X). Then Eq. (5.144) reads:

d2φ

dX2 −ωX
dφ

dX
− dωX

dX
φ =− ρ

ε0
. (5.145)

This equation has the structure of a damped Euler-Bernoulli resonance of the form

d2φ

dx2 +α
dφ

dx
+κ

2
0 φ = F0 cos(κx), (5.146)

if we assume ωX < 0. Below we will see that this is not a real restriction. Here, κ0 is the spatial
eigenfrequency, measured in 1/m, and α is the damping constant. At the right-hand side, there is
a periodic driving force with spatial frequency (wave number) κ . The particular solution of this
differential equation is

φ = F0
ακ sin(κx)+

(
κ0

2−κ2
)

cos(κx)
(κ2

0 −κ2)2 +α2κ2 . (5.147)

For vanishing damping, we have

φ → F0
cos(κx)
κ2

0 −κ2 . (5.148)

For κ → κ0 the amplitude of φ(x) approaches infinity. In the case of damping, the amplitude in the
resonance point remains finite (see examples in Fig. 5.3).
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Figure 5.3: Y axis: steady-state amplitude φ/φstatic of a damped driven oscillator with different
damping constants D = α/2. X axis: frequency ratio κ/κ0 [181].

By comparing Eqs. (5.145) and (5.146), it is seen that the Coulomb equation (5.144) has no
constant coefficients and thus is not an original form of the Euler-Bernoulli resonance. Therefore,
we can expect that the solutions may differ significantly from those of the original Euler-Bernoulli
equation. To investigate this, we consider an example in spherical polar coordinates. We assume
that the potential and the spin connection depend only on the radial coordinate r. For the radial
(and only) component of the spin connection we assume

ωr =
1
r
. (5.149)

The differential operators in (5.144) then take the form

∇
2
φ =

∂ 2φ

∂ r2 +
2
r

∂φ

∂ r
, (5.150)

∇φ =
∂φ

∂ r
· er, (5.151)

∇ · (ωr er) =−
1
r2 . (5.152)

Then Eq. (5.144), with the right-hand side replaced by an oscillatory driving term, reads:

∂ 2φ

∂ r2 +
1
r

∂φ

∂ r
− φ

r2 = F0 sin(κr). (5.153)

This equation can be solved analytically (see computer algebra code [133]). The solution contains
an expression −cos(κr)/r, leading to the limit φ(r)→−∞ in the case r→ 0, as graphed in Fig.
5.4. Other model examples for ω are listed in the code. Although the Coulomb law with the spin
connection term resembles a resonance equation with damping, there is no damping for r→ 0
because of the non-constant coefficients in the equation. �
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Figure 5.4: Solution of Eq. (5.153), κ = 1 and κ = 0.5, other constants normalized.

The spin connection has already been incorporated during the course of development of ECE
theory into the Coulomb law, which is the basic law used in the development of quantum chemistry.
This process has been illustrated with the hydrogen atom [45]. It serves as a model system for the
huge class of atomic, molecular and solid-state physics. (The most used method for computation
of electronic properties of solids is Density Functional Theory.) We will come back to this in the
quantum physics part of this book.

The ECE theory has also been used to design or explain circuits, which use spin connection
resonance to take power from spacetime, notably in papers 63 and 94 of the ECE series on
www.aias.us [45, 46]. In paper 63, the spin connection was incorporated into the Coulomb law
and the resulting equation in the scalar potential shown to have resonance solutions using an Euler
transform method. In paper 94, this method was extended and applied systematically to the Bedini
machine, which was shown to have the chance of producing energy from spacetime, although
nobody has succeeded in achieving this to date. In addition, spacetime effects in transformers have
been found by Ide and successfully explained by ECE theory [47].

� Example 5.7 As another important example, we consider resonant forms of the Ampère-Maxwell
law. In potential representation, see Eq. (4.206), it reads

∇(∇ ·Aa)−∇
2Aa−∇×

(
ω

a
b×Ab

)
+

1
c2

(
∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
+∇

∂φ a

∂ t
−

∂
(
ωa

bφ b
)

∂ t

)
= µ0 Ja. (5.154)

Ja is a current, which may have a polarization dependence. Assuming the simple case that there is
no scalar potential, and that the vector potential is independent of space location and has a pure
time dependence only, we obtain the equation

∂ 2Aa

∂ t2 + c
∂
(
ωa

0b Ab
)

∂ t
=

1
ε0

Ja. (5.155)



112 Chapter 5. Advanced properties of electrodynamics

Restricting this equation to one polarization index, we have

∂ 2A
∂ t2 + c

∂ (ω0A)

∂ t
=

1
ε0

J. (5.156)

This equation is formally identical to (5.145), except that it is a vector equation and the (only)
coordinate is the time coordinate. Here, the spin connection is the scalar spin connection ω0 with
units of 1/m. We replace it by a time frequency, subsuming the factor c:

ωt = c ω0 (5.157)

so that (5.156) can be written:

∂ 2A
∂ t2 +ωt

∂A
∂ t

+
∂ωt

∂ t
A =

1
ε0

J, (5.158)

in full analogy to (5.145). Therefore, the existence of the time spin connection makes the Ampère-
Maxwell law a resonance equation in the same way as discussed for the Coulomb law in the
preceding example.

Another resonance is possible, when we assume that the vector potential is only space-dependent
and there is no scalar potential, for example in magnetic structures. If A is divergence-free, we
obtain from Eq. (5.154), again for one direction of polarization:

−∇
2A−∇× (ω×A) = µ0 J. (5.159)

Here the vector spin connection ω appears again. Using the vector identity

∇× (a×b) = a(∇ ·b)−b(∇ ·a)+(b ·∇)a− (a ·∇)b (5.160)

and that A is divergence-free, we obtain

∇× (ω×A) =−A(∇ ·ω)+(A ·∇)ω− (ω ·∇)A (5.161)

so that Eq. (5.159) becomes

∇
2A+A(∇ ·ω)− (A ·∇)ω +(ω ·∇)A =−µ0 J. (5.162)

It can be seen that this equation contains differentiations of A in zeroth, first and second order.
Obviously, resonances are possible for this special form of the Ampère-Maxwell law. To show this,
we first define a special system, where A is restricted to two dimensions and the spin connection is
perpendicular to the plane of A. In cartesian coordinates, we then have

A =

AX

AY

0

 , ω =

 0
0

ωZ

 , J =

JX

JY

JZ

 , (5.163)

where all variables depend on coordinates X and Y . As shown in computer algebra code [134], it
follows that

∇
2A =

 ∂ 2AX
∂X2 + ∂ 2AX

∂Y 2

∂ 2AY
∂X2 + ∂ 2AY

∂Y 2

0

 , (5.164)

ω×A =

−AY ωZ

AX ωZ

0

 , (5.165)

∇× (ω×A) =

 0
0

∂ωZ
∂X AX + ∂ωZ

∂Y AY + ∂AX
∂X ωZ +

∂AY
∂Y ωZ

 . (5.166)
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Inserting this into Eq. (5.159), leads to three component equations:

∂ 2AX

∂X2 +
∂ 2AX

∂Y 2 =−µ0JX , (5.167)

∂ 2AY

∂X2 +
∂ 2AY

∂Y 2 =−µ0JY , (5.168)

∂ωZ

∂X
AX +

∂ωZ

∂Y
AY +

∂AX

∂X
ωZ +

∂AY

∂Y
ωZ =−µ0JZ. (5.169)

The first two equations decouple from the third, which is of first order in derivatives only. In order
to get an impression of how resonances can occur, we simplify this equation set further, so that
only one variable AX(X) is left:

A =

AX

0
0

 , (5.170)

where ω and J remain as in (5.163) but depend on the X variable only. Then the equation set
(5.167-5.169) simplifies to

∂ 2AX

∂X2 =−µ0JX , (5.171)

0 =−µ0JY , (5.172)
∂ωZ

∂X
AX +

∂AX

∂X
ωZ =−µ0JZ. (5.173)

From Eq. (5.172) follows JY = 0 as a constraint. Eqs. (5.171) and (5.173) are not compatible
any more, but we add both equations to obtain an analytically solvable equation that combines the
properties of both equations:

∂ 2AX

∂X2 +
∂AX

∂X
ωZ +

∂ωZ

∂X
AX =−µ0(JX + JZ). (5.174)

(Below, we will see that this is a meaningful operation.) This is a resonance equation with non-
constant coefficients, as were Eqs. (5.145) and (5.158). For demonstration, we present some
solutions for this equation in cartesian coordinates. In Table 5.1 we show four solutions of Eq.
(5.174) for given combinations of current density J and spin connection ωZ . These are graphed
in Fig. 5.5. All solutions have divergence points for X → 0, X →±∞, or elsewhere. Eq. (5.171)
has an oscillatory solution as expected, but Eq. (5.173), although only of first order, has diverging
solutions (solutions 5-7, see Table 5.1 and Fig. 5.6). Therefore, the combined equation (5.174) is
an approximation to a full-blown calculation where all components of A and ω are present, as in
Eq. (5.159). �

It is known from the work of Tesla, for example, that strong resonances in electric power can
be obtained with a suitable apparatus, and such resonances cannot be explained using the standard
model. One consistent explanation of Tesla’s well-known results is given by the incorporation of
the spin connection into classical electrodynamics.
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Equation Fig. ref. JX , JZ ωZ Solution

(5.174) solution 1 J0 1/X 2
3 J0µ0X2

solution 2 J0/X 1/X −J0µ0(X log(X)+ 1
2 X)

solution 3 J0 sin(aX) 1/X 2 J0µ0
a3 (sin(aX)+ cos(aX)

X )

solution 4 J0 X2 1/X 2
15 J0µ0X4

(5.171) solution 5 J0 cos(κ0X) µ0
κ2

0
cos(κ0X)

(5.173) solution 6 J0 cos(κ0X) κ0 cos(κX) −X µ0
κ2

0

sin(κ0X)
cos(κX)

solution 7 J0 cos(κ0X) 1/X −X µ0
κ0

sin(κ0X)

Table 5.1: Solutions of model resonance equations.

Figure 5.5: Solutions of Eq. (5.174), all constants normalized.

Figure 5.6: Solutions of Eqs. (5.171) and (5.173) with κ0 = 1.5 and κ = 0.7, other constants
normalized.



6. ECE2 theory

All developments of ECE theory, so far, have been based on the ECE axioms. The field equations
of electromagnetism have been derived from the Cartan-Bianchi and Cartan-Evans identities as
worked out in the preceding chapters. In this chapter, a new era of ECE theory is initiated from
the Jacobi-Cartan-Evans identity (Section 3.4.4) by defining a new type of curvature, which is
transformed directly into fields using a new ECE hypothesis. This identity gives field equations
for the four fundamental fields: electromagnetism, gravitation, weak and strong nuclear. The field
equations are exemplified in this chapter with electromagnetism, and it is shown that the Jacobi-
Cartan-Evans identity produces the Maxwell-Heaviside field equations in a space with non-zero
torsion and curvature, and with geometrically well-defined magnetic and electric charge-current
densities [48].

In this new era of ECE theory there are no indices of tangent space in the field equations, so for
electromagnetism, for example, their format is the same as for the Maxwell-Heaviside equations.
The field-potential relation can be defined without using the spin connections explicitly. However,
because of using Cartan geometry, the magnetic and electric charge-current densities are defined
geometrically, and the equations are those of a generally covariant unified field theory (ECE theory),
and not special relativity. The field equations of gravitation and of the weak and strong nuclear
fields have precisely the same format as the field equations of electromagnetism, and specialized
field equations for the interaction of the fundamental fields can be developed.

6.1 Curvature-based field equations
6.1.1 Development from the Jacobi-Cartan-Evans identity

To develop the field equations in ECE2 theory, we go back to Cartan geometry as introduced in
Chapter 3. The Jacobi-Cartan-Evans identity corrects the original 1902 second Bianchi identity for
torsion, and was inferred in [24]. It was written out in Eq. (3.97) with curvature and torsion tensors
R and T for the base manifold, i.e., with Greek indices only. As often demonstrated in Chapter 3,
the κ index of the curvature tensor in Eq. (3.97) can be replaced by the a index of tangent space:

DρRa
λ µν

+DνRa
λρµ

+DµRa
λνρ

= T α
µν Ra

λρα
+T α

ρµ Ra
λνα

+T α
νρ Ra

λ µα
, (6.1)



116 Chapter 6. ECE2 theory

where Ra
λ µν

is a mixed-index tensor [48]. This is a cyclic sum of covariant derivatives of curvature
tensors. In a space of four dimensions, a second form of the Jacobi-Cartan-Evans identity can be
written with Hodge-dual tensors:

Dρ R̃a
λ µν

+Dν R̃a
λρµ

+Dµ R̃a
λνρ

= T̃ α
µν Ra

λρα
+ T̃ α

ρµ Ra
λνα

+ T̃ α
νρ Ra

λ µα
. (6.2)

Using the methods of section 3.3.1, the last two indices of the tensors R and T can be pulled up by
Hodge-dual operations, giving sums of the form

Dµ R̃a µν

λ
= T̃ αµνRa

λ µα
, (6.3)

DµRa µν

λ
= T αµνRa

λ µα
. (6.4)

Now we define a new curvature tensor Rµν by

Rµν := qλ
aRa µν

λ
(6.5)

and its Hodge-dual by

R̃µν := qλ
aR̃a µν

λ
. (6.6)

These fundamentally new curvature definitions were designed to accomplished curvature tensors in
the base manifold while avoiding indices of tangent space.

Using the tetrad postulate

Dµqa
λ
= 0, (6.7)

it follows for the left-hand side of Eq. (6.3) that

Dµ R̃a µν

λ
= Dµ(qa

λ
R̃µν) = (Dµqa

λ
)R̃µν +qa

λ
Dµ R̃µν = qa

λ
Dµ R̃µν . (6.8)

Inserting this into (6.3) and multiplying with qλ
a, we obtain, with using the covariant version of

(6.5):

Dµ R̃µν = T̃ αµνRµα , (6.9)

and, using the same way procedure for (6.4):

DµRµν = T αµνRµα . (6.10)

From the definition of the covariant derivative (2.130) of a rank-2 tensor, it follows for both
equations that:

∂µ R̃µν +Γ
µ

µλ
R̃λν +Γ

ν

µλ
R̃µλ = T̃ αµνRµα , (6.11)

∂µRµν +Γ
µ

µλ
Rλν +Γ

ν

µλ
Rµλ = T αµνRµα . (6.12)

These equations can be abbreviated as

∂µ R̃µν = jν , (6.13)

∂µRµν = Jν , (6.14)

where:

jν = T̃ αµνRµα −Γ
µ

µλ
R̃λν −Γ

ν

µλ
R̃µλ , (6.15)

Jν = T αµνRµα −Γ
µ

µλ
Rλν −Γ

ν

µλ
Rµλ . (6.16)
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We now define new axioms for transforming the geometric elements Rµν and R̃µν into the electro-
magnetic fields Fµν and F̃µν :

Fµν :=W (0)Rµν , (6.17)

F̃µν :=W (0)R̃µν , (6.18)

where W (0) is a scalar with units of magnetic flux (Tesla·m2 or V·s or Weber). Then the equations
(6.13, 6.14) take the same form as (4.47, 4.48), but without the index a of tangent space:

∂µ F̃µν =W (0) jν , (6.19)

∂µFµν =W (0)Jν . (6.20)

The electromagnetic fields are defined as in standard theory (2.175, 2.188), with both being in Tesla
units here:

Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 , (6.21)

F̃µν =


0 B1 B2 B3

−B1 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0

 . (6.22)

We identify the contravariant tensor elements with the cartesian elements of the electric and
magnetic field, as usual. With the current vector definitions

( jµ) =


j0

jX
jY
jZ

=

[
j0

j

]
, (6.23)

(Jµ) =


J0

JX

JY

JZ

=

[
J0

J

]
(6.24)

we then obtain, as explained in examples (2.11) and (2.12) in all detail, the field equations in vector
form :

∇ ·B =W (0) j0, (6.25)

∇×E+
∂B
∂ t

= cW (0)j, (6.26)

∇ ·E = cW (0)J0, (6.27)

∇×B− 1
c2

∂E
∂ t

=W (0)J. (6.28)

Written in this form, the units of jν and Jν are 1/m3, so that all right-hand sides have the correct
physical units. These field equations, which are valid in a spacetime with torsion and curvature,
have thus taken the form that we developed in Chapter 5. The homogeneous current jν vanishes for
the case

T̃ αµνRµα = Γ
µ

µλ
R̃λν +Γ

ν

µλ
R̃µλ , (6.29)
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and the electric current Jν is zero for

T αµνRµα = Γ
µ

µλ
Rλν +Γ

ν

µλ
Rµλ . (6.30)

In this representation from pure curvature, the field equations do not have more indices than
Maxwell’s equations, in particular there is no index of tangent space. Because the axioms (6.17,
6.18) are based on curvature only, this is reminiscent of Einstein’s theory. However, the geometric
current definitions (6.15, 6.16) contain a torsion term, whereby Cartan geometry enters.

We now show, through an example, how a purely curvature-based theory has produced convinc-
ing numerical results.

� Example 6.1 In this example, we will discuss a unification between geometric and electromag-
netic equations. Such an approach was developed quite soon after Einstein’s general relativity, by
Rainich [49]. It is known under the name Einstein-Maxwell Equations. Its basis is the Einstein field
equation

Rµν −
1
2

Rgµν =−kTEµν , (6.31)

where Rµν is the Ricci tensor, R the Ricci scalar, k the Einstein constant, and TEµν the energy-
momentum tensor of the system under consideration. The Ricci tensor and Ricci scalar are defined
by

Rµν = Rλ

µλν
, (6.32)

R = gµνRµν . (6.33)

These are contractions of the Riemann tensor Rλ
µρν , which is derived from a symmetric Christoffel

connection in Einstein’s general relativity. It has been shown that the Einstein field equation,
although not directly compatible with ECE theory, can be considered as an approximation, at least
in cosmological problems [50].

The Einstein-Maxwell theory uses the electromagnetic energy-momentum tensor of the form
[51]:

TEµν = FµαF α
ν − 1

4
gµνFαβ Fαβ . (6.34)

Fµν is the covariant, antisymmetric electromagnetic field tensor as defined by Eq. (2.177), in
electric units. Its covariant form is given in Eq. (6.21). Bruchholz [52] neglected the scalar
curvature in Einstein’s field equation (6.31) and, consequently, equated the Ricci tensor with the
energy-momentum tensor:

Rµν =−kTEµν . (6.35)

Because of energy conservation, the covariant divergence of the energy-momentum tensor has to
vanish:

DνT ν
Eµ = 0, (6.36)

which implies

DνR ν
µ = 0. (6.37)

Rainich assumed that masses and charges are concentrated in point masses. He exempted these
points from the space to be considered. In these “vacuum” regions around the point masses, the
covariant divergence of the field tensor Fµν has to vanish also:

DνFµν = 0. (6.38)
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For the electromagnetic field in vacuo, the first two Maxwell equations can be written according to
example (2.11):

∂λ Fµν +∂µFνλ +∂νFλ µ = 0, (6.39)

or in form notation:

d∧F = 0. (6.40)

The other two Maxwell equations have to be expressed by the Hodge dual according to Eq. (2.185)
in example (2.12):

∂µ F̃µν = 0 (6.41)

and are not considered in the Einstein-Maxwell theory. Eq. (6.39) is automatically satisfied, if the
electromagnetic field tensor is expressed by potentials Aµ , as is done in Einstein-Maxwell-theory:

Fµν = ∂µAν −∂νAµ . (6.42)

It is seen that the field Fµν is defined by special relativity, in a spacetime without curvature and
torsion. In Einsteinian relativity, the energy-momentum tensor of the gravitational field vanishes in
regions of the vacuum, but the corresponding electromagnetic tensor does not. This is a deficiency
of Einstein-Maxwell theory, but it may be irrelevant here because electromagnetic forces are
stronger than gravitational forces by at least 21 orders of magnitude.

In total, the equations to be solved are (6.34, 6.35) and (6.38):

Rµν = k
(

1
4

gµνFαβ Fαβ −FµαF α
ν

)
, (6.43)

∂νFµν +Γ
µ

νλ
Fλν +Γ

ν

νλ
Fµλ = 0. (6.44)

where Fµν is defined by the potentials in (6.42). The Γ’s follow from the metric, and there are
10 independent components of the metric and 4 components of the electromagnetic potential
to be determined, in total. There are only 10 equations available, 4 of 14 components remain
undetermined. The corresponding result also holds in ECE theory (see example 4.1). The equations
are nonlinear in their variables. This fact always produces chaotic solutions.

Ulrich Bruchholz found an unrivaled way to determine properties of elementary particles from
the Einstein-Maxwell equations without having to solve them directly [53–55]. This is described
immediately below. Although elementary particles belong to the realm of quantum mechanics,
Bruchholz succeeded in describing their properties with a classical method.

He developed a computation scheme for elementary physical qualities like particle masses,
charges, spin and magnetic moments, using this classical method. Wave equations are used as first
approximations of the field equations. Non-zero solutions stem from integration constants of these
wave equations. The under-determinacy of solutions may lead to many different solutions, but
the integration constants do not change with variation of these additional choices. The integration
constants are defined by the particle qualities mentioned above.

When we try to solve the geometric equations numerically, the Einstein-Maxwell equations
might be fairly difficult to handle. Instead of this, Bruchholz used sampling methods, going from
known geometrical regions through unknown regions up to a geometric limit by finite steps. For
central problems, he integrated the solution from an outer starting radius to a certain inner radius.
The end radius is reached, when the solutions exceed a certain limit, i.e., when they begin to diverge.
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Figure 6.1: Bruchholz results for the electron neutrino, masses < 4eV [54].

The integration constants are parameters inserted into the wave solutions, to serve as initial
values for the numerical integration of the field equations. The initial metric elements for the
coordinates (t,r,θ ,φ) are defined by

g00 = 1− c1

r
+

1
2

((c3

r

)2
+
(c4

r2

)2
cos2

θ

)
, (6.45)

g11 = 1+
c1

r
− 1

2

(c3

r

)2
+

1
10

(c4

r2

)2 (
1+ sin2

θ
)
, (6.46)

g22 = r2
(

1+
(c4

r2

)2
(

1
3

sin2
θ − 3

10
,

))
, (6.47)

g33 = r2 sin2
θ

(
1+
(c4

r2

)2
(

sin2
θ

15
− 3

10
,

))
, (6.48)

g23 = r sin2
θ

(
c2

r2 −
1
2

c3c4

r3

)
, (6.49)

and the electromagnetic potentials are given by

A0 =
c3

r
, (6.50)

A3 = r sin2
θ

c4

r2 , (6.51)

with constants

c1 =
k

4π
m, (6.52)

c2 =
ks

4πc
, (6.53)

c3 =

√
kµ0

4π
Q, (6.54)

c4 =

√
kε0

4π
M (6.55)
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for mass m, spin s, charge Q and magnetic moment M. k is the Einstein constant.
The desired solutions are the discrete values of the integration constants that produce minima

with respect to the geometric limits (the inner end-radii mentioned above). One can numerically
determine these discrete values through repeated calculations. These results differ from experimen-
tally known values (e.g., of the electron, nuclei) by not more than 5%. While these differences may
be (comparatively) significant, the large number of constants of Nature that have been determined
in this way supports the validity of the method. Moreover, the masses of neutrinos have been
predicted [54]. An example is shown in Fig. 6.1. The abscissa describes the mass values, and the
thickness of points describes convergence strength. The more iterations that can be made until
divergence, the better the convergence, and the thicker the point. The initial radius was chosen to
be 5 ·10−15m. The horizontally stacked lines indicate different numbers of computational steps
(see right-most column). The results are in the range of assumed mass energies. Reliable values
still remain to be found through experiments that are being carried out by several institutions. �

6.1.2 Alternative development from the Jacobi-Cartan-Evans identity
In the preceding section, we defined new ECE axioms based on curvature only. This leads to a
formulation of ECE2 theory based on the tensors of the base manifold, without reference to the
tangent space. The benefit is that no interpretation of polarization indices of the tangent space
is required, and the Maxwell-like equations are formally identical to Maxwell-Heaviside theory.
However, there is no possibility for introducing potentials, which are essential for ECE theory
because they have a physical meaning. The potentials have been developed on the basis of the first
Maurer-Cartan structure equation (2.268), which only involves torsion. In this section we develop
a version of ECE2 theory where the second structure equation (2.282) is used, which relates to
curvature [56, 57]. This allows us to define potentials, and tangent space indices can be removed
for simplicity.

We again start with the Jacobi-Cartan-Evans identity (6.1) and its Hodge dual, Eq. (6.2). These
can be rewritten to covariant form, see Eqs. (6.3, 6.4):

Dµ R̃a µν

λ
= T̃ αµνRa

λ µα
, (6.56)

DµRa µν

λ
= T αµνRa

λ µα
. (6.57)

Then we define a new curvature 2-form Ra µν

b by

Ra µν

b := qλ
bRa µν

λ
(6.58)

and its Hodge-dual by

R̃a µν

b := qλ
bR̃a µν

λ
. (6.59)

The subsequent derivations are very similar to those in Section 6.1.1. By multiplying Eqs. (6.56,
6.57) by qλ

b and using the tetrad postulate, we can formally replace the λ index by the b index of
tangent space, giving:

Dµ R̃a µν

b = T̃ αµνRa
bµα , (6.60)

DµRa µν

b = T αµνRa
bµα . (6.61)

From the definition of the covariant derivative of a 2-form, it follows for both equations that:

∂µ R̃a µν

b +ω
a
µc R̃c µν

b −ω
c
µb R̃a µν

c = T̃ αµνRa
bµα , (6.62)

∂µRa µν

b +ω
a
µc Rc µν

b −ω
c
µb Ra µν

c = T αµνRa
bµα . (6.63)
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Now we define new axioms for transforming the geometric curvature 2-form Ra µν

b to a 2-form
of the electromagnetic field Fa µν

b . The Hodge dual is defined in the same way. The expression
“defined” for the Hodge dual is not precise because it is a consequence of the definition of Fa µν

b :

Fa µν

b :=W (0)Ra µν

b , (6.64)

F̃a µν

b :=W (0)R̃a µν

b . (6.65)

Again, W (0) is a scalar with units of magnetic flux (Tesla·m2 or Weber) as in the definitions (6.17,
6.18). Then, the electromagnetic field equations follow from (6.60, 6.61):

Dµ F̃a µν

b = T̃ αµνFa
bµα , (6.66)

DµFa µν

b = T αµνFa
bµα . (6.67)

From these equations, their vector form can be developed, but both the electric and magnetic field
vectors have two indices a and b, making physical interpretation quite difficult. However, there is a
method to get rid of these indices, as we will see later.

Torsion appears as a tensor of the base manifold, so the situation is different, compared to the
original derivation of the ECE field equations in earlier chapters, where the torsion 2-form was
used to define the physical fields.

Using the axioms (6.64, 6.65), Eqs. (6.62, 6.63) can be expressed by fields:

∂µ F̃a µν

b +ω
a
µc F̃c µν

b −ω
c
µb F̃a µν

c = T̃ αµνFa
bµα , (6.68)

∂µFa µν

b +ω
a
µc Fc µν

b −ω
c
µb Fa µν

c = T αµνFa
bµα . (6.69)

Again, these equations can be abbreviated as

∂µ F̃a µν

b = µ0 ja ν
b , (6.70)

∂µFa µν

b = µ0Ja ν
b , (6.71)

with current definitions

ja ν
b =

1
µ0

(
T̃ αµνFa

bµα −ω
a
µc F̃c µν

b +ω
c
µb F̃a µν

c

)
, (6.72)

Ja ν
b =

1
µ0

(
T αµνFa

bµα −ω
a
µc Fc µν

b +ω
c
µb Fa µν

c

)
. (6.73)

So far, these currents, the homogeneous and inhomogeneous currents, are 1-forms as before,
however, they are augmented by two indices of tangent space.

The electromagnetic fields are also defined as before, but with two indices of tangent space:

Fa µν

b =


0 −Ea 1

b /c −Ea 2
b /c −Ea 3

b /c
Ea 1

b /c 0 −Ba 3
b Ba 2

b
Ea 2

b /c Ba 3
b 0 −Ba 1

b
Ea 3

b /c −Ba 2
b Ba 1

b 0

 , (6.74)

F̃a µν

b =


0 Ba 1

b Ba 2
b Ba 3

b
−Ba 1

b 0 −Ea 3
b /c Ea 2

b /c
−Ba 2

b Ea 3
b /c 0 −Ea 1

b /c
−Ba 3

b −Ea 2
b /c Ea 1

b /c 0

 . (6.75)

The field equations (6.70, 6.71) can be expressed in vector form. This is fully analogous to the
procedure described in Sections 4.2.2 and 4.3.3. The results are the field equations in vector form
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(4.72-4.75), but with a twofold index of tangent space:

∇ ·Ba
b =−µ0 ja 0

b , (6.76)
∂Ba

b
∂ t

+∇×Ea
b = c µ0 ja

b, (6.77)

∇ ·Ea
b =

ρa 0
b

ε0
, (6.78)

− 1
c2

∂Ea
b

∂ t
+∇×Ba

b,= µ0 Ja
b. (6.79)

The current vectors are defined as in Eqs. (6.23, 6.24) by

( ja
b)

µ =


ja 0

b
ja

bX
ja

bY
ja

bZ

=

[
ja 0

b
ja

b

]
, (6.80)

(Ja
b )

µ =


Ja 0

b
Ja

bX
Ja

bY
Ja

bZ

=

[
Ja 0

b
Ja

b

]
. (6.81)

Removing tangent space indices
The indices a, b of tangent space in the field tensor Fa µν

b can be removed by multiplication with
the basis vectors. The basis vectors of tangent space are the covariant 4-vectors ea:

e(0) =


1
0
0
0

 , e(1) =


0
1
0
0

 , e(2) =


0
0
1
0

 , e(3) =


0
0
0
1

 (6.82)

and the contravariant vectors ea:

e(0) =


1
0
0
0

 , e(1) =


0
−1
0
0

 , e(2) =


0
0
−1
0

 , e(3) =


0
0
0
−1

 , (6.83)

where the lower indices have been pulled up by the Minkowski metric, as usual. The scalar product
of both is a constant:

ea ea = 1−1−1−1 =−2. (6.84)

We can apply this to remove the Latin indices in the torsion and curvature forms. In the original ECE
theory developed in Chapter 4, we can define a vector potential and field tensor by a contraction
process with unit 4-vectors:

Aµ = eaAa
µ = A(0)eaqa

µ = A(0)qµ (6.85)

where qµ is a 4-vector in the space of the base manifold, derived from the tetrad matrix qa
µ . For

the electromagnetic field we obtain

Fµν = eaFa
µν = A(0)eaT a

µν = A(0)Tµν , (6.86)
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which corresponds to a kind of reduced torsion form:

Tµν = T (0)
µν +T (1)

µν +T (2)
µν +T (3)

µν . (6.87)

In ECE2 theory, we have a double-indexed field tensor Fa
bµν

. Therefore, we have to apply
linear algebra to reduce this tensor to a conventional-looking field tensor:

Fµν = ea ebFa
bµν (6.88)

and also obtain a corresponding result for the contravariant tensor Fµν . Using axiom (6.64) we can
also write:

Fµν =W (0)ea ebRa µν

b , (6.89)

which relates F to the curvature form R.
We will now take a more detailed look at the summations in Eq. (6.88). Using the law of

associativity, we can write

Fµν = e T
a

(
Fa

bµν eb
)
, (6.90)

where e T
a is a transposed unit vector. This equation has the form (omitting indices µ,ν):

([
1,0,0,0

]
+ · · ·+

[
0,0,0,1

])Fa
(0)


1
0
0
0

+ · · ·+Fa
(3)


0
0
0
−1


 . (6.91)

Fa
b is a matrix, and the right parenthesis contains a sum of matrix-vector multiplications. Since the

vectors are unit vectors, they produce terms only from that line of the matrix where the unit vector
component is different from zero. Therefore, the matrix can be factored out and the unit vectors
can be summed up. The same holds true for the left-hand part:

[
1,1,1,1

]Fa
b


1
−1
−1
−1


 . (6.92)

Thus, when denoting the contracted unit vectors in this equation by e(ctr)a and e b
(ctr) , we can write

for (6.90):

Fµν = e T
(ctr)a Fa

bµν e
(ctr)b . (6.93)

� Example 6.2 We compute the values of Fµν by summing over indices a and b. For the one-
indexed torsion form, it is simply the sum of the elements over the a index, as was done in Eqs.
(6.86, 6.87). In the double-indexed case (6.93) it is more complicated.

The values of Fµν are computed using computer algebra code [135]. The evaluation of the
matrix-vector operations (omitting the indices µ,ν at the right-hand side again) leads to the result:

Fµν =F(0)
(0) −

(
F(0)

(1) +F(0)
(2) +F(0)

(3)

)
(6.94)

+F(1)
(0) −

(
F(1)

(1) +F(1)
(2) +F(1)

(3)

)
+F(2)

(0) −
(

F(2)
(1) +F(2)

(2) +F(2)
(3)

)
+F(3)

(0) −
(

F(3)
(1) +F(3)

(2) +F(3)
(3)

)
.
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This sum has been written in matrix form. It can be seen that the first column is taken as positive
summands and the other columns as negative summands. This is a consequence of the signs in the
contravariant unit vector eb. �

The above simplifications can be applied to both sides the field equations (6.70, 6.71), leading
to reduced 1-forms of current at the right-hand side. The field equations then take the familiar form:

∂µ F̃µν = µ0 jν , (6.95)

∂µFµν = µ0Jν . (6.96)

This set can be handled in the same way as in Section 6.1.1, leading to the familiar vector form
of electromagnetic field equations (6.25-6.28). In the present case, we have defined the currents
in units of A/m2 as usual, therefore the constants on the right-hand side differ. The results are the
well-known equations (6.25-6.28) without any indices of tangent space:

∇ ·B =−µ0 j0,

∂B
∂ t

+∇×E = c µ0 j,

∇ ·E =
ρ

ε0
,

− 1
c2

∂E
∂ t

+∇×B,= µ0 J.

(6.97)

(6.98)

(6.99)

(6.100)

If no magnetic monopoles are present, the homogeneous currents vanish. Then, these equations are
formally identical to the Maxwell-Heaviside equations, but they are valid in a space with torsion
and curvature, thus exceeding the range of validity of Maxwell-Heaviside theory by far.

6.1.3 ECE2 field equations in terms of potentials
The information contained in electromagnetic fields can be enlarged significantly by considering
the potentials, which are physical in ECE theory. In Section 4.4, the relationship between force
fields and potentials was derived from the first Maurer-Cartan structure equation, Eq. (4.169),
which connects the torsion with the tetrad and the spin connection:

T a
µν = ∂µqa

ν −∂νqa
µ +ω

a
µb qb

ν −ω
a
νb qb

µ . (6.101)

The force fields then follow from the first ECE axiom:

Fa
µν = A(0)T a

µν . (6.102)

In ECE2 theory, the force fields are derived from the axiom

Fa
bµν =W (0)Ra

bµν , (6.103)

which is based on curvature. Therefore, we have to use the second Maurer-Cartan structure equation,
which connects curvature with the spin connection (see Eq. (2.282)). In tensor notation this equation
reads:

Ra
bµν = ∂µω

a
νb −∂νω

a
µb +ω

a
µc ω

c
νb −ω

a
νc ω

c
µb . (6.104)

The left-hand side describes the field tensor according to ECE2 axiom (6.102) above. The right-
hand side has to be equated to potentials. To make a consistent definition of ECE2 potentials, we
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can compare Eq. (6.104) with Eq. (6.101). The left-hand sides give the fields according to the ECE
axiom

Fa
µν = A(0)T a

µν (6.105)

and the ECE2 axiom

Fa
bµν =W (0)Ra

bµν . (6.106)

Since the left-hand sides are physically equivalent, the right-hand sides must be as well. In ECE
theory, the potential is defined by

Aa
µ = A(0)qa

µ . (6.107)

In ECE2 theory, it must be defined in a compatible way. This can be accomplished through the
following identifications:

• index a→ indices a,b,
• qa

ν → ωa
νb .

Then the second Maurer-Cartan structure equation (6.104) can be transformed formally to the first
Maurer-Cartan structure equation (6.101), and, for consistency, the ECE2 potential named W a

bµ

has to be defined by

W a
bµ =W (0)

ω
a
µb , (6.108)

i.e., the ECE2 potential is the spin connection, augmented by the constant W (0). The lower indices
have been interchanged in order; for convenience, since this is only a definition. Then the ECE2
axioms read

W a
bµ =W (0)

ω
a
µb ,

Fa
bµν =W (0)Ra

bµν ,

(6.109)

(6.110)

and the ECE2 field-potential relationship is

Fa
bµν = ∂µW a

bν −∂νW a
bµ +ω

a
µcW c

bν −ω
a
νcW c

bµ . (6.111)

The remaining ωs are from the Maurer-Cartan structure equation. In order to give this equation a
unified structure, it makes sense to replace the remaining spin connections by the potenials as well:

Fa
bµν = ∂µW a

bν −∂νW a
bµ +

1
W (0)

(
W a

cµ W c
bν −W a

cν W c
bµ

)
. (6.112)

Remarkably, the fields depend on the potentials only, without explicit appearance of a spin connec-
tion, but in a non-linear way.

Next, we will transform this equation into a vector representation. Using the form of (6.111),
we can proceed in full analogy to Section 4.4, starting with Eq. (4.178). For µ = 0, we obtain

Fa
b01 = ∂0W a

b1 −∂1W a
b0 +ω

a
0cW c

b1 −ω
a
1cW c

b0 , (6.113)

Fa
b02 = ∂0W a

b2 −∂2W a
b0 +ω

a
0cW c

b2 −ω
a
2cW c

b0 , (6.114)

Fa
b03 = ∂0W a

b3 −∂3W a
b0 +ω

a
0cW c

b3 −ω
a
3cW c

b0 . (6.115)



6.1 Curvature-based field equations 127

We introduce a scalar potential φ a
W b in analogy to φ a:

W a
b0 =

φ a
W b
c

. (6.116)

Then it follows in vector form:

Ea
b =−∇φ

a
W b −

∂Wa
b

∂ t
− cω

a
0c Wc

b +ω
a
cφ

c
W b , (6.117)

where ωa
b is a vector as defined by Eq. (4.189). The magnetic field is computed in vector form in

full analogy to Eqs. (4.190 ff.), giving

Ba
b = ∇×Wa

b−ω
a

c×Wc
b. (6.118)

Replacing the ωs by W , we obtain the vector form of Eq. (6.112):

Ea
b =−∇φ

a
W b −

∂Wa
b

∂ t
+

1
W (0) (−φ

a
W c Wc

b +φ
c

W b Wa
c) ,

Ba
b = ∇×Wa

b−
1

W (0) Wa
c×Wc

b.

(6.119)

(6.120)

Now we can remove the indices a, b of tangent space as described in Section 6.1.2. The index c is
a dummy index, so that the procedure of multiplying with unit vectors ea and eb can be applied
directly. It follows that the nonlinear terms in W cancel out. The result is

E =−∇φW −
∂W
∂ t

,

B = ∇×W.

(6.121)

(6.122)

This remarkable result means that in ECE2 theory the potentials φW and W play the same role as the
scalar potential φ and vector potential A in Maxwellian theory. ECE2 can be applied formally in
the same way as standard theory, but with a much greater scope in generally relativistic spacetime.

6.1.4 Combining ECE2 and ECE theory
So far, we have used the current 1-forms (6.72, 6.73), which have two tangent space indices in the
same way as the ECE2 fields Ea

b and Ba
b. In the case, where we summed over these indices, we

obtained the Maxwell-like equations (6.97 - 6.100) with current vectors j and J, as well as charge
densities j0 and ρ . In the following discussion, we develop the charge and current expressions in
vector form. We will see that this leads to a combination of double-indexed vectors, like Ea

b, while
those of ECE theory will continue to have only one index, like Ea.

First we go back to the original ECE theory with one tangent space index. According to Eqs.
(4.49, 4.50), the 1-forms for currents are

jaν =
1
µ0

(
A(0)R̃a µν

µ −ω
a

(Λ) µb F̃bµν

)
, (6.123)

Jaν =
1
µ0

(
A(0)Ra µν

µ −ω
a
µb Fbµν

)
. (6.124)

The currents contain the spin connections, which could be transformed into ECE2 potentials as was
done in the previous section. The field tensor has one Latin index and can be replaced by electric
and magnetic field vector components according to Eqs. (4.56, 4.65). We develop the vector forms
of the currents as described in the notes of [57]. Computer algebra code for evaluating the current
components is available [136].
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We start with the homogeneous current jaν . First, the curvature tensor R̃a µν

µ needs to be
transformed by replacing the lower Greek index µ with an index of tangent space by writing

R̃a µν

µ = qb
µ R̃a µν

b . (6.125)

R̃a µν

b is a curvature element of ECE2 theory, corresponding to vector components of Ea
b and Ba

b
as defined in Eq. (6.75). With the ECE and ECE2 axioms

Aa
ν := A(0)qa

ν , (6.126)

F̃a µν

b :=W (0)R̃a µν

b , (6.127)

we obtain:

jaν =
1
µ0

(
Ab

µ R̃a µν

b −ω
a

(Λ) µb F̃bµν

)
(6.128)

=
1
µ0

(
1

W (0) Ab
µ F̃a µν

b −ω
a

(Λ) µb F̃bµν

)
.

To obtain vector representations, we proceed as in Section 4.2.3. For ν = 0, µ = 1,2,3, we obtain
the current component

ja0 =
1
µ0

(
1

W (0)

(
Ab

1F̃a 10
b +Ab

2F̃a 20
b +Ab

3F̃a 30
b

)
(6.129)

−ω
a

(Λ) 1b F̃b10−ω
a

(Λ) 2b F̃b20−ω
a

(Λ) 3b F̃b30
)
.

From (4.56) and (6.75) it follows that F̃a10 =−Ba1, ... and F̃a 10
b =−Ba 1

b , ... Therefore:

ja0 =
1
µ0

(
1

W (0)

(
−Ab

1Ba 1
b −Ab

2Ba 2
b −Ab

3Ba 3
b

)
(6.130)

+ω
a

(Λ) 1b Bb1 +ω
a

(Λ) 2b Bb2 +ω
a

(Λ) 3b Bb3
)
,

and pulling up the indices of the vector potential and the spin connection gives a sign change:

ja0 =
1
µ0

(
1

W (0)

(
Ab1Ba 1

b +Ab2Ba 2
b +Ab3Ba 3

b

)
(6.131)

−ω
a1

(Λ) b Bb1−ω
a2

(Λ) b Bb2−ω
a3

(Λ) b Bb3
)
.

In vector notation, this equation is

ja0 =
1
µ0

(
1

W (0) Ab ·Ba
b−ω

a
(Λ) b ·B

b
)
. (6.132)

All terms on the right-hand side contain a double sum over b. This could be simplified as described
in Example 6.2. Therein, all components of Fa

b were summed up. Alternatively, we can assume
that there is a common value of Fa

b for all a and b, say F . Then the double sum gives

Fa
b → ebFa

b =−2Fa. (6.133)

We can apply this to the scalar products in Eq. (6.132). The sum over a additionally gives

Fa→ eaFa = 4F (6.134)
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and is applied to both sides of the equation so that the factor of 4 cancels out. The result is then

j0 =− 2
µ0

(
1

W (0) A ·B−ω(Λ) ·B
)

(6.135)

with indexless vectors. The Gauss Law (6.97) then takes the form

∇ ·B = 2
(

1
W (0) A−ω(Λ)

)
·B. (6.136)

The magnetic charge density vanishes if

1
W (0) A = ω(Λ), (6.137)

which usually is the case, as is known from experiments. This means that the spin connection of
the Λ connection (the Hodge dual of the Christoffel connection) is parallel to the vector potential.
The Gauss law can be rewritten as

∇ ·B = 2

(
A(0)

W (0) q−ω(Λ)

)
·B = 2

(
1

r(0)
q−ω(Λ)

)
·B (6.138)

where

r0 =
W (0)

A(0) (6.139)

is a constant with dimension of length. In this notation, the magnetic charge density is described by
geometric quantities only, namely the tetrad and spin connection.

Next, we analyze the components of the homogeneous current (6.123) for ν = 1,2,3. From Eq.
(6.128), for ν = 1, we obtain:

ja1 =
1
µ0

(
1

W (0)

(
Ab

0F̃a 01
b +Ab

2F̃a 21
b +Ab

3F̃a 31
b

)
(6.140)

−ω
a

(Λ) 0b F̃b01−ω
a

(Λ) 2b F̃b21−ω
a

(Λ) 3b F̃b31
)
,

and by inserting the field components:

ja1 =
1
µ0

(
1

W (0)

(
Ab

0Ba 1
b +Ab

2Ea 3
b /c−Ab

3Ea 2
b /c

)
(6.141)

−ω
a

(Λ) 0b Bb1−ω
a

(Λ) 2b Eb3/c+ω
a

(Λ) 3b Eb2/c
)
,

and with lower indices raised (please notice that raising the index 0 does not give a sign change):

ja1 =
1
µ0

(
1

W (0)

(
Ab0Ba 1

b −Ab2Ea 3
b /c+Ab3Ea 2

b /c
)

(6.142)

−ω
a0

(Λ) b Bb1 +ω
a2

(Λ) b Eb3/c−ω
a3

(Λ) b Eb2/c
)
.

Proceeding in the same way for ν = 2,3, we obtain the following result in vector form:

ja =
1
µ0

(
1

W (0)

(
Ab0Ba

b−Ab×Ea
b/c
)
−ω

a0
(Λ) b Bb +ω

a
(Λ) b×Eb/c

)
. (6.143)
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Removing the indices a, b as before (see (CH06:EQ84)) gives a factor of -2 at the right-hand side:

j =− 2
µ0

(
1

W (0)

(
A0B−A×E/c

)
−ω

0
(Λ) B+ω(Λ)×E/c

)
. (6.144)

With

A0 =
φ

c
(6.145)

this is

j =− 2
µ0c

((
1

W (0) φ − cω
0

(Λ)

)
B−

(
1

W (0) A−ω(Λ)

)
×E
)
. (6.146)

The inhomogeneous current (6.124) can be evaluated in the same way. The Hodge-dual field tensors
F̃ have to be replaced by the original tensors F , and the Λ-based spin connection by the Γ-based
spin connection. The replacement rules, according to Eqs. (6.74) and (6.75), are:

F̃a 10
b =−Ba 1

b → Ea 1
b /c = Fa 10

b (6.147)

F̃a 20
b =−Ba 2

b → Ea 2
b /c = Fa 20

b

F̃a 30
b =−Ba 3

b → Ea 3
b /c = Fa 30

b

F̃a 01
b = Ba 1

b → −Ea 1
b /c = Fa 01

b

F̃a 21
b = Ea 3

b /c → Ba 3
b = Fa 21

b

F̃a 31
b =−Ea 2

b /c → −Ba 2
b = Fa 31

b

Therefore, we can transform Eq. (6.129) (with additional index raising) to

Ja0 =
1

µ0 c

(
1

W (0)

(
−Ab

1Ea 1
b −Ab

2Ea 2
b −Ab

3Ea 3
b

)
(6.148)

+ω
a
1b Eb1 +ω

a
2b Eb2 +ω

a
3b Eb3

)
=

1
µ0 c

(
1

W (0)

(
Ab1Ea 1

b +Ab2Ea 2
b +Ab3Ea 3

b

)
−ω

a1
b Eb1−ω

a2
b Eb2−ω

a3
b Eb3

)
,

which leads to the vector form representation

J0 =− 2
µ0 c

(
1

W (0) A−ω

)
·E. (6.149)

With

J0 = cρ (6.150)

the electric charge density is

ρ =−2ε0

(
1

W (0) A−ω

)
·E (6.151)

or, in geometric terms,

ρ =−2ε0

(
1

r(0)
q−ω

)
·E. (6.152)
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Then, the Coulomb law is

∇ ·E =
ρ

ε0
=−2

(
1

W (0) A−ω

)
·E. (6.153)

For the 1-component of the current vector J, it follows from Eqs. (6.124) and (6.147) that:

Ja1 =
1
µ0

(
1

W (0)

(
−Ab0Ea 1

b /c−Ab2Ba 3
b +Ab3Ba 2

b

)
(6.154)

+ω
a0

b Eb1/c+ω
a2

b Bb3−ω
a3

b Bb2
)
.

Please notice again that raising the index 0 does not give a sign change. Proceeding in the same
way for the two other components, we obtain the vector form of the electric current

J =− 2
µ0

(
1

W (0)

(
−A0E/c−A×B

)
+ω

0E/c+ω×B
)
. (6.155)

With

A0 =
φ

c
(6.156)

this is

J =
2
µ0

((
1

c2W (0) φ − 1
c

ω
0
)

E+

(
1

W (0) A−ω

)
×B
)
. (6.157)

The factors in front of E can be interpreted as conductivity terms, as discussed in connection with
Eq. (4.54).

The full set of ECE2 field equations with expanded current terms is:

∇ ·B = 2
(

1
W (0) A−ω(Λ)

)
·B,

∂B
∂ t

+∇×E = 2
((

1
W (0) φ − cω

0
(Λ)

)
B−

(
1

W (0) A−ω(Λ)

)
×E
)
,

∇ ·E =−2
(

1
W (0) A−ω

)
·E,

− 1
c2

∂E
∂ t

+∇×B = 2
((

1
c2W (0) φ − 1

c
ω

0
)

E+

(
1

W (0) A−ω

)
×B
)
.

(6.158)

(6.159)

(6.160)

(6.161)

Obviously, the Λ-based spin connection is connected with the homogeneous current (this spin
connection was introduced in Chapter 4 for the Hodge-dual field equation, see Eq. (4.89)). The
formulas for the inhomogeneous current are very similar but contain the “usual”, Γ-based spin
connection.

A sufficient condition for the magnetic charge density to vanish is Eq. (6.137). The magnetic
current density also becomes zero when the additional condition 1

W (0) φ = cω 0
(Λ) is true. In free

space, the electric charge density vanishes also, then we have 1
W (0) φ = cω0 and ω = ω(Λ).

The field equations can be simplified further by introducing wave numbers (in scalar and vector
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form) defined by

κ(Λ)0 =
1

cW (0) φ −ω
0

(Λ) , (6.162)

κ(Λ) =
1

W (0) A−ω(Λ), (6.163)

κ0 =
1

cW (0) φ −ω
0, (6.164)

κ =
1

W (0) A−ω. (6.165)

Then, Eqs. (6.158-6.161) can be written as

∇ ·B = 2κ(Λ) ·B, (6.166)

∂B
∂ t

+∇×E = 2
(

cκ(Λ)0 B−κ(Λ)×E
)
, (6.167)

∇ ·E =−2κ ·E, (6.168)

− 1
c2

∂E
∂ t

+∇×B = 2
(

1
c

κ0E+κ×B
)
. (6.169)

The homogeneous currents vanish, for example, when both Λ-based wave numbers are zero.
Another case is when κ(Λ) is parallel to E, and B is zero.

Instead of using the original spin connections of geometry in Eqs. (6.162-6.165), we can use
the W potentials of ECE2 theory, see Eqs. (6.109) and (6.116), with Latin indices removed:

ΦW = cW0 = cW (0)
ω

0, (6.170)

W =W (0)
ω. (6.171)

Then, Eqs. (6.162-6.165) take the form

κ(Λ)0 =
1

cW (0)

(
φ −φ(Λ)W

)
, (6.172)

κ(Λ) =
1

W (0)

(
A−W(Λ)

)
, (6.173)

κ0 =
1

cW (0) (φ −φW ) , (6.174)

κ =
1

W (0) (A−W) . (6.175)

Because we have two types of spin connections (with and without Λ), we have two types of W
potentials. However, the Λ-based potentials play a role only for the homogeneous currents. They
vanish if

φ = φ(Λ)W and (6.176)

A = W(Λ). (6.177)

In the same way, the inhomogeneous currents vanish if

φ = φW and (6.178)

A = W. (6.179)

In this case, we have an electromagnetic field in free space without charges and currents.
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� Example 6.3 The electromagnetic fields with one or two tangent space indices can be interpreted
as geometrical quantities with spin and orbital character [58]. We define the vector parts of torsion
and curvature by

Ba = A(0)Ta(spin), (6.180)

Ea = cA(0)Ta(orbital), (6.181)

Ba
b =W (0)Ra

b(spin), (6.182)

Ea
b = cW (0)Ra

b(orbital). (6.183)

The components of geometric spin and orbital vectors can then be derived from comparison with
the field tensors (4.65) and (6.74).

Faµν =


0 −Ea1/c −Ea2/c −Ea3/c

Ea1/c 0 −Ba3 Ba2

Ea2/c Ba3 0 −Ba1

Ea3/c −Ba2 Ba1 0

 (6.184)

= A(0)


0 −T a1(spin) −T a2(spin) −T a3(spin)

T a1(spin) 0 −T a3(orbital) T a2(orbital)
T a2(spin) T a3(orbital) 0 −T a1(orbital)
T a3(spin) −T a2(orbital) T a1(orbital) 0

 ,

Fa µν

b =


0 −Ea 1

b /c −Ea 2
b /c −Ea 3

b /c
Ea 1

b /c 0 −Ba 3
b Ba 2

b
Ea 2

b /c Ba 3
b 0 −Ba 1

b
Ea 3

b /c −Ba 2
b Ba 1

b 0

 (6.185)

=W (0)


0 −Ra 1

b (spin) −Ra 2
b (spin) −Ra 3

b (spin)
Ra 1

b (spin) 0 −Ra 3
b (orbital) Ra 2

b (orbital)
Ra 2

b (spin) Ra 3
b (orbital) 0 −Ra 1

b (orbital)
Ra 3

b (spin) −Ra 2
b (orbital) Ra 1

b (orbital) 0

 .
The field equations can be formulated in terms of these geometric representations of the field
tensors. Details can be found in [58]. �

Consequences for the ECE potentials

In Section 4.4 the ECE potentials were introduced by applying the first Maurer-Cartan structure.
This led to equation (4.172):

Fa
µν = ∂µAa

ν −∂νAa
µ +ω

a
µb Ab

ν −ω
a
νb Ab

µ . (6.186)

The last two terms are sums over the tangent space index b. This summation is retained in the vector
representations of the electric and magnetic fields, Eqs. (4.197-4.198). When no polarizations
are present, the Latin indices have been omitted, leading to the simplified field-potential relations
(4.211-4.212):

E =−∇φ − ∂A
∂ t
− cω0 A+ωφ , (6.187)

B = ∇×A−ω×A. (6.188)
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Alternatively, we can apply a summation process over the b index, as was done above in this section.
Then, a factor of -2 is obtained:

E =−∇φ − ∂A
∂ t

+2(cω0 A−ωφ) , (6.189)

B = ∇×A+2ω×A. (6.190)

Equating this with the ECE2 potentials (6.121-6.122), we obtain:

E =−∇φW −
∂W
∂ t

=−∇φ − ∂A
∂ t

+2(cω0 A−ωφ) , (6.191)

B = ∇×W = ∇×A+2ω×A, (6.192)

which defines the relationship between the ECE potentials φ ,A and the ECE2 potentials φW ,W.
For further consistency, the occurrences of spin connections in the ECE part can be replaced by the
ECE2 potentials. Using

φW =W (0)cω0, (6.193)

W =W (0)
ω (6.194)

we obtain:

E =−∇φW −
∂W
∂ t

=−∇φ − ∂A
∂ t

+
2

W (0) (φW A−Wφ) , (6.195)

B = ∇×W = ∇×A+
2

W (0) W×A. (6.196)

Under the free space conditions (6.178, 6.179), we see that the right-hand sides of these equations
reduce to the ECE2 equations, which are formally equal to the Maxwell-Heaviside case:

E =−∇φW −
∂W
∂ t

, (6.197)

B = ∇×W. (6.198)

From the Gauss law without magnetic monopoles follows

∇ ·B = ∇ ·
(

∇×A+
2

W (0) W×A
)
= 0 (6.199)

and from this:

∇ · (W×A) = 0, (6.200)

which, in geometric quantities and with indices re-inserted, is:

∇ ·
(

ω
a
b ×qb

)
= 0. (6.201)

This is an additional condition for the vanishing of magnetic monopoles.
Myron Evans writes in note 9 of [57]:

So everything that is known about electrodynamics can be derived from the Cartan geometry. The
fundamental philosophical difference is that ECE2 is a generally covariant unified field theory,
whereas Maxwell-Heaviside is special relativity. ECE2 has more information than Maxwell-
Heaviside, given by the relation between field and potential. The spin connection is the key
difference between ECE2 and Maxwell-Heaviside.
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� Example 6.4 We consider the Coulomb potential as an example. We want to determine the wave
vector κ , and some spin connections. The electric Coulomb field has only the radial component

Er =
q

4πε0r2 (6.202)

for the field at radial distance r from a point charge q. The Coulomb law (6.168) then reads:

∂Er

∂ r
=−2κrEr, (6.203)

where κr is the radial component of the wave vector κ . Evaluating the above equation gives

−2
q

4πε0r3 =−2κr
q

4πε0r2 , (6.204)

from which follows

κr =
1
r
. (6.205)

The full Cartan geometry of the Coulomb potential was exercised in example 4.1. The radial
Λ-based spin connection (the 1-component) for Latin indices a = b = 0 was listed in Eq. (4.105):

ω
(0)

(Λ) 1(0) =
1
r

(6.206)

and is identical to κr. By the condition of vanishing homogeneous currents we obtain from (6.158):

1
W (0) A−ω(Λ) = 0. (6.207)

For the radial component follows with Ar/W (0) = qr/r(0):

qr

r(0)
= ω(Λ)r , (6.208)

giving for the radial tetrad element:

qr =
r(0)

r
. (6.209)

For the Coulomb field, we have no magnetic field and no time dependence of the electric field.
Therefore, from the Ampère-Maxwell law (6.169), we see that

κ0 = 0, (6.210)

which implies φ = φW from (6.174). Hence

φ =
q

4πε0r
= φW = cW (0)

ω
0 (6.211)

and

ω
0 =

q
4πε0cW (0)r

, (6.212)

which has no direct counterpart in Example 4.1. �
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6.2 Beltrami solutions in electrodynamics
Towards the end of the nineteenth century, the Italian mathematician Eugenio Beltrami developed
a system of equations for the description of hydrodynamic flow, in which the curl of a vector is
proportional to the vector itself [60]. An example is the use of the velocity vector. For a long
time, this solution was not used outside the field of hydrodynamics, but in the 1950s it started
to be used by researchers such as Alfven and Chandrasekhar in the area of cosmology, notably
whirlpool galaxies. The Beltrami field, as it came to be known, has been observed in plasma
vortices and, as argued by Reed [61, 62], is indicative of the type of electrodynamics such as
ECE. Therefore, this section is concerned with the ways in which ECE electrodynamics reduces to
Beltrami electrodynamics. ECE theory is based on geometry and is ubiquitous throughout nature at
all scales, and so is Beltrami theory, which can be viewed as a sub-theory of ECE theory, see [59]
and Chapter 3 of [4].

In ordinary electrodynamics, it is assumed that electromagnetic waves are transverse. Then, the
electric field vector is always perpendicular to the magnetic field vector, and the curl of the fields is
perpendicular to the fields themselves:

∇×E ⊥ E, (6.213)

∇×B ⊥ B. (6.214)

Deviations from this property are commonly accepted only for fields in materials, in particular
where material properties are anisotropic, for example, where the permeability and permittivity are
tensors with directional dependence. However, we will see that the above property does not hold in
general, and that there are large classes of solutions of the field equations where the opposite is true.
These are the Beltrami solutions.

6.2.1 Beltrami solutions of the field equations
It has been known for more than a hundred years that the curl of a vector field and the field itself
need not be perpendicular to one another. In particular, they can be in parallel. Such solutions of
the Maxwell-Heaviside equations are called Beltrami solutions and have the properties

∇×E = κ E, (6.215)

∇×B = κ B. (6.216)

The curl of the electric field and of the magnetic field is proportional to the respective field itself. κ

is a scalar factor which has the dimension of inverse meters and is a wave number in principle1.
We consider the Faraday and Ampère-Maxwell laws of the field equations (6.97-6.100) without

polarization indices and homogeneous currents:

∂B
∂ t

+∇×E = 0, (6.217)

− 1
c2

∂E
∂ t

+∇×B = µ0J. (6.218)

For magnetostatics or a slowly varying electric field, the second equation becomes:

∇×B = µ0J. (6.219)

With the Beltrami condition for B this reduces to

B =
µ0

κ
J. (6.220)

1According to Beltrami theory, κ is allowed to be a non-constant function, but we restrict consideration to κ=const.
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Applying the curl operator gives

∇×B =
µ0

κ
∇×J, (6.221)

which, after again applying the Beltrami condition for B, results in

B =
µ0

κ2 ∇×J. (6.222)

Comparing Eqs. (6.220) and (6.222) shows that

∇×J = κJ, (6.223)

i.e., the current J obeys a Beltrami condition also.
Applying a reverse Beltrami condition to the Gauss law

∇ ·B = 0 (6.224)

gives

1
κ

∇ · (∇×B) = 0, (6.225)

which is always fulfilled for vanishing magnetic charge density, since the divergence of the curl of
a vector field must always be zero:

∇ · (∇×B) = 0. (6.226)

However, from the Coulomb law

∇ ·E =
ρ

ε0
(6.227)

follows

1
κ

∇ · (∇×E) =
ρ

ε0
. (6.228)

The above vector condition is only fulfilled for ρ = 0. Therefore, the electric field can only be a
Beltrami field in free space.

We will now show that the vector potential and vector spin connection in free space are also
Beltrami fields. In this case, we have

A = W =W (0)
ω. (6.229)

Therefore, ω is parallel to A, and the cross product ω ×A vanishes. Then, the magnetic field
(6.188) is simply

B = ∇×A. (6.230)

Applying the Beltrami condition to B gives

∇×B = ∇×∇×A = κB = κ∇×A = ∇× (κA). (6.231)

Comparing the second and last terms of the chain shows that

∇×A = κA, (6.232)
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i.e., the vector potential is a Beltrami field. From (6.229) it follows that the vector spin connection
is also a Beltrami field:

∇×ω = κω. (6.233)

This means that spacetime itself has a Beltrami structure. This may have consequences on what
is called “”aether flow” or “fluid spacetime” in later chapters. Another consequence is that the
magnetic field is parallel to the vector potential:

B = κA. (6.234)

From the definition of Beltrami fields, it follows directly that these fields are divergenceless in free
space:

∇ ·E = ∇ ·B = ∇ ·A = ∇ ·ω = 0. (6.235)

In addition, these fields (except the electric field), but including the current in magnetostatics, are
all in parallel:

B ‖ A ‖ ω ‖ J. (6.236)

In the case of longitudinal fields (see examples below), the electric field is also parallel to the fields
mentioned above. This follows from the Faraday law

∂B
∂ t

+∇×E =
∂B
∂ t

+κE = 0. (6.237)

If B is longitudinal, then ∂B/∂ t ‖ B, and it further follows that

E ‖ B. (6.238)

Another consequence of Beltrami solutions is the possibility of spin connection resonance. For
a fixed current J and vanishing scalar potentials:

φ = 0, φW = 0, (6.239)

Eq. (6.197) is

E =− ∂

∂ t
W. (6.240)

Assuming a complex-valued Beltrami vector potential with ∇×W = iκW, the Ampère-Maxwell
law then reads

− 1
c2

∂

∂ t
E+∇×B =− 1

c2
∂ 2

∂ t2 W−κ
2W = µ0J. (6.241)

If the current is of the form J = J0 cos(ωt), this is a three-component equation of Euler-Bernoulli
resonances

∂ 2

∂ t2 W+ω
2
0 W =− 1

ε0
J (6.242)

with resonance frequency

ω0 = cκ. (6.243)

However, a method has to be found to experimentally construct such a vector potential with
imaginary eigenvalue. A complex-valued W means that certain phase relations have to be provided.
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6.2.2 Continuity equation
The time derivative of the Coulomb law (6.227) is:

∂

∂ t
∇ ·E =

1
ε0

∂ρ

∂ t
. (6.244)

Applying the divergence operator to the Ampère-Maxwell law (6.100) gives

− 1
c2

∂

∂ t
∇ ·E+∇ ·∇×B = µ0∇ ·J. (6.245)

Rewriting the latter equation and observing that the divergence of a curl vanishes, this becomes

∂

∂ t
∇ ·E =−c2

µ0∇ ·J. (6.246)

Equating (6.244) with (6.246) gives

1
ε0

∂ρ

∂ t
=−c2

µ0∇ ·J (6.247)

and finally

∂ρ

∂ t
+∇ ·J = 0, (6.248)

which is the continuity equation. This holds for ECE and ECE2 theory in general, as well as for
special cases, such as the Beltrami fields.

6.2.3 Helmholtz equation
We now show that the Helmholtz equation can be derived directly from a Beltrami condition.
Applying the curl operator twice, we obtain

∇×∇×E = κ∇×E = κ
2E, (6.249)

∇×∇×B = κ∇×B = κ
2B, (6.250)

which are also called Trkalian equations. The left-hand sides can be rewritten by a vector-analysis
theorem:

∇×∇×E = ∇(∇ ·E)−∇
2E = κ

2E, (6.251)

∇×∇×B = ∇(∇ ·B)−∇
2B = κ

2B. (6.252)

In free space, all fields are divergence-free, and the equations become

∇
2E+κ

2E = 0, (6.253)

∇
2B+κ

2B = 0, (6.254)

which are the Helmholtz equations. These are wave equations with oscillating solutions, whose
time dependence is harmonic, i.e., is a multiplicative factor. For example, plane waves

E(r, t) = E0 ei(κ·r−ωt), (6.255)

B(r, t) = B0 ei(κ·r−ωt), (6.256)
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fulfill the Helmholtz equations, with a wave vector

κ =

κX

κY

κZ

 (6.257)

and constant amplitudes E0,B0. Applying the derivative twice gives:

∇
2E =−

(
κ

2
X +κ

2
Y +κ

2
Z
)

E, (6.258)

or

∇
2E =−κ

2E, (6.259)

and in the same way

∇
2B =−κ

2B. (6.260)

Inserting these expressions into Eqs. (6.253, 6.254) shows that the Helmholtz equations are fulfilled
by these solutions. The same procedure can be applied for the vector potential, giving the Helmholtz
equation

∇
2A+κ

2A = 0. (6.261)

6.2.4 Wave equation
The wave or d’Alembert equation is obtained for the magnetic field in the following way. In free
space, the curl of the Ampère-Maxwell law is

∇×∇×B− 1
c2

∂

∂ t
∇×E = 0. (6.262)

Replacing the curl of E by means of the Faraday law

∇×E =− ∂

∂ t
B (6.263)

gives

∇×∇×B+
1
c2

∂ 2

∂ t2 B = 0. (6.264)

Replacing the doubled curl by using the vector analysis theorem as before, leads to

1
c2

∂ 2

∂ t2 B−∇
2B = 0 (6.265)

or, written with the d’Alembert operator,

� B = 0. (6.266)

An analogous derivation can be performed to abtain the wave equation for the electric field:

� E = 0. (6.267)

The wave equation for the vector potential has already been derived in Section 4.3, which for the
standard theory reads

� A = 0. (6.268)
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An alternative form follows from applying the Trkalian equation for the doubled curl to (6.264):

1
c2

∂ 2

∂ t2 B+κ
2B = 0. (6.269)

This form of the wave equation is specific to Beltrami fields. The Helmholtz equation is for the
space part of the fields, while the wave equation includes the time development. In the same way,
the Beltrami wave equation for the electric field is

1
c2

∂ 2

∂ t2 E+κ
2E = 0. (6.270)

An equivalent equation for the vector potential is obtained by replacing the magnetic field in (6.269)
by

B = κA, (6.271)

which gives

1
c2

∂ 2

∂ t2 A+κ
2A = 0. (6.272)

Gauge invariance and additional properties
Gauge invariance is destroyed by Beltrami fields. The vector potential of Maxwell-Heaviside theory
has the property that the field equations are unaltered when the vector potential is augmented by
the gradient of a scalar function ψ(r):

A→ A′ = A+∇ψ, (6.273)

for example,

∇×A→ ∇× (A+∇ψ) = ∇×A, (6.274)

because the curl of a gradient field vanishes. However, for Beltrami fields, according to Eq. (6.271):

B = κA→ κ(A+∇ψ). (6.275)

The magnetic field depends on changes in the vector potential. This destroys the gauge invariance,
which is also called U(1) symmetry. Gauge invariance is also broken by the Proca equation, whose
space part, according to (4.167), is:(

�+
(m0c

h̄

)2
)

A = 0. (6.276)

There is a constant term of A therein, thus a Gauge operation on the vector potential gives a different
solution.

By adding the Proca equation and Helmholtz equation (6.261) we get:(
1
c2

∂ 2

∂ t2 +κ
2
0 +κ

2
)

A = 0 (6.277)

with

κ0 =
m0c

h̄
, (6.278)
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where m0 is a particle mass. In particular, this can be identified with the photon rest mass. A
solution of Eq. (6.277) is

A = A0ei(ωt−κ·x) (6.279)

with time frequency ω , wave vector κ , and space coordinate vector x. By inserting this solution
into Eq. (6.277) we get

ω
2 = c2(κ2

0 +κ
2). (6.280)

The energy of a particle with rest mass m0 and momentum h̄κ is

E = h̄ω = m2
0c4 + c2h̄2

κ
2. (6.281)

ω is the de Broglie frequency or, in the case of a photon, the frequency of its electromagnetic
oscillation. In this way, the ECE wave equation for Beltrami fields is connected with the quantum-
mechanical realm. In particular, the photon has a rest mass and U(1) symmetry of electrodynamics
does not exist.

The inhomogeneous d’Alembert equation of classical physics can be derived in the following
way. Inserting the potentials (6.197, 6.198) into Eq. (6.241) gives

κ
2W = µ0J+

1
c2

∂

∂ t

(
−∇φW −

∂

∂ t
W
)
, (6.282)

which can be rewritten as

κ
2W+

1
c2

∂ 2

∂ t2 W+
1
c2 ∇

∂φW

∂ t
= µ0J. (6.283)

In space regions outside of the current distribution, we can apply φW = φ and W = A, and use the
Helmholtz equation (6.261) to get

−∇
2A+

1
c2

∂ 2

∂ t2 A+
1
c2 ∇

∂φ

∂ t
= µ0J. (6.284)

The Lorenz condition of ECE theory is

∂µAaµ = 0, (6.285)

and its space part reads (without polarization index a):

1
c2

∂φ

∂ t
+∇ ·A = 0. (6.286)

Since A is a Beltrami field, ∇ ·A = 0, i.e., the scalar potential is static. Inserting this into (6.284)
gives (

1
c2

∂ 2

∂ t2 −∇
2
)

A = µ0J, (6.287)

which is the d’Alembert or classical wave equation with source term:

� A = µ0J. (6.288)

This equation is connected with the Proca equation [63] as follows. If we identify the inhomoge-
neous term in the Proca equation (6.276) with the current density:

J =− 1
µ0

(m0c
h̄

)2
A, (6.289)
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we directly obtain the classical wave equation (6.288) with a source term at the right-hand side.
The source term is proportional to the vector potential itself. In a similar way, we can proceed with
the 0-component of the Proca equation (4.167):(

�+
(m0c

h̄

)2
)

Aa0 = 0. (6.290)

In full analogy to (6.289), we define

Ja0 =− 1
µ0

(m0c
h̄

)2
Aa0, (6.291)

which, without a index, can be written as:

J0 =− 1
µ0

(m0c
h̄

)2
A0, (6.292)

or, with

A0 =
ρ

c
, J0 = cρ, (6.293)

becomes

ρ =− 1
µ0c2

(m0c
h̄

)2
φ =−ε0

(m0c
h̄

)2
φ . (6.294)

The scalar part of the Proca equation (6.290) then follows:

� φ =
1
ε0

ρ. (6.295)

This is an inhomogeneous wave equation for the electric potential.
In the discussion above, charge densities and currents have been defined via potentials, and

not via conventional charged masses. Therefore, they can be considered as vacuum structures,
conglomerating into matter with a rest mass m0. The vacuum potentials themselves are sources
of charges and currents. In a philosophical sense, matter may be considered to consist of vacuum
or spacetime structures. A photon with mass fits well into this approach, which is fundamentally
different from that of quantum electrodynamics (special relativity only).

6.2.5 Interpretation of Beltrami fields, with examples
After the theoretical aspects of Beltrami fields have been described, we will clarify their essential
properties using practical examples.

First, we consider Beltrami solutions in vacuo with harmonic time dependence. The Faraday
and Ampère-Maxwell laws in vacuo are

∂B
∂ t

+∇×E = 0, (6.296)

− 1
c2

∂E
∂ t

+∇×B = 0. (6.297)

We use the following two approaches for electric and magnetic fields:

1) Time dependence:

E(r, t) = E(r)eiωt , (6.298)

B(r, t) = B(r)eiωt , (6.299)
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with an angular time frequency ω .

2) Beltrami field assumptions for the space parts:

∇×E(r) = κ E(r), (6.300)

∇×B(r) = κ B(r). (6.301)

κ is a constant wave number.

Inserting both approaches into (6.296-6.297) gives

κE+ iωB = 0, (6.302)

κB− i
ω

c2 E = 0. (6.303)

From Eq. (6.302) it follows that

B = i
κ

ω
E, (6.304)

which, inserted into (6.303), gives

i
κ2

ω
E− i

ω

c2 E = 0 (6.305)

or

i
(

κ2

ω
− ω

c2

)
E = 0. (6.306)

Since E is not zero in general, the factor in parentheses must vanish:

κ2

ω
− ω

c2 = 0. (6.307)

This gives

κ
2 =

ω2

c2 (6.308)

or

κ =
ω

c
, (6.309)

which is the usual definition of the wave number belonging to the time frequency ω .
The time-dependence approach (6.298, 6.299) means that E and B describe standing waves.

For example, a wave of type

E0 cos(κX)cos(ωt) (6.310)

is a standing wave in the X direction, modulated by time. Thus, the space part of Beltrami fields
represents standing waves, if the time dependence can be separated, as in the above equation. An
example is graphed in Fig. 6.2.

It has even been shown that, using the potential-based approaches (6.289) and (6.294), the ECE
potential is a Beltrami field in general [59].

Next, we consider some concrete examples.
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Figure 6.2: Example of a standing wave: A = cos(X)sin(t) for different t values.

� Example 6.5 In example 4.2, circularly polarized plane waves were discussed, which are
fundamental to the B(3) field and O(3) electrodynamics. The three polarization vectors of the vector
potential, A(i), i = 1,2,3, represent a rotating circular basis. It was shown that these vectors obey
Beltrami conditions, see Eqs. (4.156 - 4.158):

∇×A(1) = κ A(1), (6.311)

∇×A(2) = κ A(2), (6.312)

∇×A(3) = 0 ·A(3). (6.313)

The third equation has the wave number κ = 0 and represents a special case. The reason is
that the magnetic field in Z direction, derived from these polarization vectors, is constant. The
non-vanishing κ values describe the space oscillation of the waves (see Eqs. (4.150-4.151) for
definitions). This shows that O(3) electrodynamics is essentially a Beltrami theory. �

� Example 6.6 Reed [61, 62] has shown that the most general Beltrami field v can be described by

v = κ ∇× (ψa)+∇×∇× (ψa) , (6.314)

where ψ is an arbitrary function, κ is a constant and a is a constant vector. We present two examples.
First we define (see computer algebra code [137])

ψ =
1
L3 XY Z (6.315)

with

a = [0,0,1]. (6.316)

The field resulting from Eq. (6.314) is graphed in Fig. 6.3. The field has only XY components and
describes a hyperbolic vortex. Nevertheless, the divergence is zero.

A second example is

ψ = sin(κX) sin(κY ) cos(κZ), (6.317)
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which has a more complicated structure (Fig. 6.4). The projection of several Z levels on the XY
plane is shown in Fig. 6.5. One can see that the vectors rotate around the Z axis. Such rotational
structures in all three dimensions are typical for Beltrami fields. �

Figure 6.3: General Beltrami field of Eqs. (6.314-6.316).

Figure 6.4: General Beltrami field of Eqs. (6.314, 6.316-6.317).

Figure 6.5: General Beltrami field of Eqs. (6.314, 6.316-6.317), projection on the XY plane.
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� Example 6.7 Marsh [64] defines a general Beltrami field with cylindrical geometry by

B =

 0
Bθ (r)
BZ (r)

 (6.318)

with cylindrical coordinates r, θ , Z. There is only an r dependence of the field components. For
this to be a Beltrami field, the Beltrami condition in cylindrical coordinates

∇×B =


1
r

∂BZ
∂θ
− ∂Bθ

∂Z
∂Br
∂Z −

∂BZ
∂ r

1
r

(
∂ (r Bθ )

∂ r −
∂Br
∂θ

)
= κ B (6.319)

must hold. The divergence in cylindrical coordinates is

∇ ·B =
1
r

∂ (r Br)

∂ r
+

1
r

∂Bθ

∂θ
+

∂BZ

∂Z
. (6.320)

Obviously, the field (6.318) is divergence-free, which is a prerequisite to be a Beltrami field. Eq.
(6.319) simplifies to

∇×B =

 0
− ∂BZ

∂ r
∂Bθ

∂ r + 1
r Bθ .

= κ

 0
Bθ

BZ

 . (6.321)

We consider the case for constant κ . From the second component of Eq. (6.321) we get

− ∂

∂ r
BZ = κ Bθ (6.322)

and from the third component

r
∂

∂ r
Bθ +Bθ = κ r BZ. (6.323)

Integrating Eq. (6.322) and inserting the result for BZ into (6.323) gives

∂

∂ r
Bθ +

Bθ

r
=−κ

2
∫

Bθ dr, (6.324)

and differentiating this equation leads to the second order differential equation

r2 ∂ 2

∂ r2 Bθ + r
∂

∂ r
Bθ +κ

2 r2 Bθ −Bθ = 0. (6.325)

Finally, we change the variable r to κr which leads to Bessel’s differential equation

r2 d2

d r2 Bθ (κ r)+ r
d

d r
Bθ (κ r)+

(
κ

2 r2−1
)

Bθ (κ r) = 0. (6.326)

The solution is the Bessel function

Bθ (r) = B0 J1(κr) (6.327)

(with a constant B0), and from (6.322) it follows that

BZ(r) = B0 J0(κr) (6.328)
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(see computer algebra code [138]). This is the known solution of Reed/Marsh, scaled by the wave
number κ , with longitudinal components. It is graphed in Fig. 6.6. It can be seen that the vector
field changes from transverse to longitudinal when approaching the Z axis. However, there are
always longitudinal components at certain distances, as well. This is obvious from Fig. 6.7, where
the decomposition into both components is plotted. According to the oscillating nature of the Bessel
functions (with zero crossings), the field changes periodically from transverse to longitudinal, with
increasing radius.

Figure 6.6: Beltrami field of Bessel functions.

Figure 6.7: Beltrami field of Bessel functions, decomposition into transversal and longitudinal
vectors.
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Figure 6.8: Beltrami field of Bessel functions, streamlines.

The flow of test particles in the field (if it is assumed to be hydrodynamic) can best be seen from
a streamline picture. The streamlines are shown in Fig. 6.8. Streamlines show how a test particle
moves in the vector field, which is considered to be a velocity field. The particle is transported
according to

x+∆x = x+v(x) ∆t (6.329)

with a velocity v. In Fig. 6.8, all streamlines start with nine points in parallel on the X axis. At the
center, the flow is fast and longitudinal, while at the periphery (near the first zero crossing of the
Bessel function J0) the flow is circling and has only a small Z component.

There is a remarkable similarity to the technical innovations of Nicola Tesla. In Fig. 6.8, the
transverse parts resemble the current distribution in a Tesla flat coil. The longitudinal part in the
middle corresponds to the current going to the sphere in a Tesla transmitter (for example, see a
Tesla patent [65]. According to Eq. (6.223), the current density for producing a Beltrami field is a
Beltrami field itself. Therefore, it should be possible to transmit free Beltrami fields by constructing
a transmitter that has a current distribution as shown, for example, in Fig. 6.8.

A flat coil is only a rough approximation, since therein the current density is constant and
does not depend on the radius. An improvement could be to use concentric conducting rings
with differing currents, and with a dipole-like structure perpendicular to the rings at the center.
The spatial dimensions are determined by the wave number, which enters Eq. (6.326) through
κ = 2π/λ . The wavelength λ is defined by the frequency, which should not be too high, otherwise
the Maxwell displacement current of Eq. (6.218) has to be taken into account. �

� Example 6.8 The last example shows a longitudinal vortex flow of Victor Schauberger (Fig. 6.9,
as cited by Reed [61]). Schauberger described natural phenomena that often consisted of vortex
phenomena. Similar vortex structures are mentioned by Reed in connection with interstellar
magnetic fields without forces. Fig. 6.9 is highly similar to the Beltrami flow of the Bessel function
example, Fig. 6.8. In addition, there are small toroidal counter-vortices near the surrounding pipe.
This is a transport phenomenon in fluids. �
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Figure 6.9: Helical flow according to Schauberger [61].

Some more interesting examples of Beltrami fields are described in [59] and [4]. These are
examples for longitudinal solutions of the field equations, even in the case of Maxwell-Heaviside
equations of special relativity. In particular, it is remarkable that standing waves can be generated
from only one side of a transmission. Normally, two sides with “fixed ends” are required for
this. It is not clear how communication mechanisms could be established by standing waves.
Mathematicians argue that changes in standing waves propagate instantaneously, and this could
even enable superluminal communication.
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7. ECE dynamics

7.1 ECE dynamics and mechanics
In the preceding part of this textbook, ECE electrodynamics has been worked out in great detail.
Now, we turn to the subject of mechanics, which includes a number of areas. Newtonian mechanics
is the area of dynamics, including Lagrange theory, where time-dependent processes are handled,
up to the special case of statics, for example, structural mechanics. One of the most important
mechanical forces is gravitation, which defines a realm of its own, with relativistic effects playing a
very significant role. Many books have been written about Einsteinian gravitation. The bases of
these areas are the mechanical equations of motion, and they will be derived first.

7.1.1 The field equations of dynamics
We start by reviewing how the field equations of electrodynamics were derived. They are based on
the alternative form of the Cartan-Bianchi and Cartan-Evans identities, Eqs. (4.40, 4.41):

Dµ T̃ aµν = R̃a µν

µ , (7.1)

DµT aµν = Ra µν

µ . (7.2)

These are equations of Cartan geometry, with torsion form T aµν and curvature form Ra µν

µ , in
contravariant representation. Electromagnetism is introduced by the ECE axioms, connecting the
tetrad qa

µ with the potential Aa
µ , and the torsion T a

µν with the electromagnetic field Fa
µν :

Aa
µ = A(0)qa

µ , (7.3)

Fa
µν = A(0)T a

µν , (7.4)

where A(0) is a constant with physical units. Then, the field equations follow directly from Eqs.
(7.1, 7.2) by inserting the axioms:

Dµ F̃aµν = A(0)R̃a µν

µ , (7.5)

DµFaµν = A(0)Ra µν

µ . (7.6)
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These are the electromagnetic field equations in contravariant form (see Eqs. (4.42, 4.43)). From
these, the vector equations in Maxwell-Heaviside notation can be derived, as has been fully worked
out in Chapter 4.

Since ECE is a unified field theory, we proceed in the same way for the mechanical sector. After
defining the appropriate axioms, we will eventually arrive at dynamics field equations equivalent to
(7.5, 7.6). We start by comparing Newton’s law of gravitation with the Coulomb law of electrostatics.
Both have the same radial dependence and are formally identical. Newton’s law must be a part of
the more general field equations of ECE dynamics. The Coulomb law is

E =
q

4πε0r2 r̂, (7.7)

while Newton’s gravitational law reads

g =−MG
r2 r̂. (7.8)

Here G the gravitational constant, q is the electric charge and M is the gravitational mass. r̂ is the
unit vector in the direction of a probe charge or mass, respectively, where r is its modulus. It can be
seen that M takes the role of a “gravitational charge” in this law. Both fields decrease with 1/r2

over distance. The force on a probe charge e or mass m is, correspondingly:

Fel = eE, (7.9)

Fgrav = mg. (7.10)

Newton’s equivalence principle (see Section 7.2.4) between gravitation and the dynamics force law,
“force equals mass times acceleration”, follows from the second law. E and g correspond to one
another and represent a unification of fields. The related field equation in the electromagnetic case
is the Coulomb law for distributed charges ρ , written in divergence form:

∇ ·E =
ρ

ε0
. (7.11)

Therefore, an equivalent equation should exist in the case of dynamics. Rewriting the Coulomb law
by use of the scalar potential φ ,

E =−∇φ , (7.12)

gives us

∇
2
φ =− ρ

ε0
, (7.13)

which is the Poisson equation. This equation is also present in classical mechanics, where the
acceleration field is derived from the mechanical potential Φ by

g =−∇Φ, (7.14)

in full analogy. Therefore, the Poisson equation of dynamics is

∇
2
Φ = αρm, (7.15)

where ρm is the mass density and α is a constant. This constant is found by comparison with
electrodynamics, in the following way. The electrostatic field can be computed from the charge
density ρ by

E(r) =
1

4πε0

∫
ρ(r′)

r− r′

|r− r′|3
d3r′ (7.16)
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(see [66]). This equation is derived from inserting what is called the Coulomb integral,

φ(r) =
1

4πε0

∫
ρ(r′)
|r− r′|

d3r′, (7.17)

into Eq. (7.12). In the case of mechanics, we write analogously to (7.16):

g(r) =−G
∫

ρm(r′)
r− r′

|r− r′|3
d3r′, (7.18)

with −G being a constant. This constant provides the right physical units for g, as the factor
1/(4πε0) does in the electric case. The minus sign stems from the fact that masses are always posi-
tive, but the force between them is attractive, not repulsive. This is different from electrodynamics,
and appropriate adjustments must be made. For a point mass, ρm takes a Dirac delta function,
which produces a factor of 4π so that this factor cancels out in the electrical Poisson equation [66].
In the case of mechanics, this factor is preserved, leading to α = 4πG in (7.15):

∇
2
Φ = 4πGρm (7.19)

or

∇ ·g =−4πGρm. (7.20)

This is one of the ECE field equations of dynamics. The factor G was experimentally found to be
Newton’s constant of gravitation.

For consistency with electrodynamics, there must be three additional field equations, so that a
set of Maxwell-like equations is obtained for dynamics. To derive these equations, we proceed in
the same way as we did for the field equations of electrodynamics. First, we define the ECE axioms
in analogy to Eqs. (7.3, 7.4). Instead of Aa

µ , we use the 4-potential Qa
µ , and instead of Fa

µν , we
use the field tensor Ga

µν . Both are defined to be identical with the tetrad and curvature, via a factor
Q(0):

Qa
µ = Q(0)qa

µ , (7.21)

Ga
µν = Q(0)T a

µν . (7.22)

Then, the field equations of dynamics in contravariant form read, in analogy to (7.5, 7.6):

DµG̃aµν = Q(0)R̃a µν

µ , (7.23)

DµGaµν = Q(0)Ra µν

µ . (7.24)

We have already seen from Eq. (7.20) that the gravitational acceleration field g corresponds to
E. The latter is of translational character, and so is g. In addition, there must be a mechanical
field of rotational character in the field tensor, corresponding to B. We call this Ω. Both of these
mechanical fields must have a polarization index a, as is the case in ECE electrodynamics. They
are designated ga and Ω

a, in ECE dynamics. Then, the gravitational field tensor, in analogy to Eq.
(4.65), has the form:

Gaµν =


Ga00 Ga01 Ga02 Ga03

Ga10 Ga11 Ga12 Ga13

Ga20 Ga21 Ga22 Ga23

Ga30 Ga31 Ga32 Ga33

=


0 −ga1/c −ga2/c −ga3/c

ga1/c 0 −Ωa3 Ωa2

ga2/c Ωa3 0 −Ωa1

ga3/c −Ωa2 Ωa1 0

 , (7.25)
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and its Hodge dual, corresponding to (4.56), is:

G̃aµν =


G̃a00 G̃a01 G̃a02 G̃a03

G̃a10 G̃a11 G̃a12 G̃a13

G̃a20 G̃a21 G̃a22 G̃a23

G̃a30 G̃a31 G̃a32 G̃a33

=


0 Ωa1 Ωa2 Ωa3

−Ωa1 0 −ga3/c ga2/c
−Ωa2 ga3/c 0 −ga1/c
−Ωa3 −ga2/c ga1/c 0

 . (7.26)

In analogy to the electromagnetic case, the ga field is divided by c, the velocity of light in vacuo,
so that all tensor elements have the same units, namely inverse seconds. Thus, it can be seen
directly that Ω

a is a rotational field. Since torsion has units of inverse meters, it follows from Eq.
(7.22) that the constant Q(0) has units of m/s, i.e., it is a velocity. From Eq. (7.21) we see that the
vector potential of dynamics, Qa

µ , has units of a velocity also. It can be interpreted as a velocity of
vacuum flux in classical mechanics. This property is completely unknown in standard theory.

The charge and current densities are defined in analogy to Eqs. (4.45-4.50) by

∂µG̃aµν = Q(0)R̃a µν

µ −ω
a

(Λ) µb G̃bµν =: jaν , (7.27)

∂µGaµν = Q(0)Ra µν

µ −ω
a
µb Gbµν =: Jaν . (7.28)

The field equations of dynamics can be transformed into vector form in the same way as was
worked out in Section 4.2.3, in all detail. We can use Eqs. (4.72-4.75) directly, by making the
following replacements:

Ea→ ga,

Ba→Ω
a,

ρ
a
h → ρ

a
mh, (7.29)

ρ
a→ ρ

a
m,

ja→ ja
m,

Ja→ Ja
m.

In addition, the potentials are replaced by

φ
a→Φ

a, (7.30)

Aa→Qa.

The constants on the right-hand sides are adapted to Newton’s law, as derived for Eq. (7.20). As
described above, we have a sign change compared to the constants of electrodynamics. Finally, we
arrive at the vector equations

∇ ·Ωa = 4πG ρ
a
mh, Gauss law of dynamics

∂Ω
a

∂ t
+∇×ga =−4πG

c
ja
m, Gravitomagnetic law

∇ ·ga =−4πG ρ
a
m, Newton’s law (Poisson equation)

− 1
c2

∂ga

∂ t
+∇×Ω

a =−4πG
c2 Ja

m. Ampère-Maxwell law of dynamics

(7.31)

(7.32)

(7.33)

(7.34)

The units of all components are listed in Table 7.1, together with the corresponding electromagnetic
components, for comparison. In the dynamics case, the homogeneous and inhomogeneous currents
have the same units. In the electromagnetic case, they differ by how they were defined in their
respective unit system.
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Electromagnetic Mechanics/Dynamics

Symbol Field/Constant Units Symbol Field/Constant Units

E electric field V/m g gravitational field m/s2

B magnetic field T=Vs/m2 Ω gravitomagnetic field 1/s
φ scalar potential V Φ gravitational potential m2/s2

A vector potential Vs/m Q grav. vector potential m/s
A(0) ECE constant Vs/m Q(0) grav. ECE constant m/s
ρ charge density C/m3 ρm mass density kg/m3

J current density C/(m2s) Jm mass current density kg/(m2s)
ρh hom. charge density A/m2 ρmh hom. mass density kg/m3

Jh hom. current density A/(ms) Jmh hom. mass current density kg/(m2s)
ε0 vacuum permittivity As/(Vm) G gravitational constant m3/(kg s2)
µ0 vacuum permeability Vs/(Am) k Einstein constant 1/N=s2/(kg m)

Table 7.1: Comparison between components of electromagnetism and gravitation.

The mechanical 4-currents are defined in detail by

( ja)ν =


cρa

mh
ja1

ja2

ja3

=

[
cρa

mh
ja

]
, (7.35)

(Ja)ν =


cρa

m
Ja1

Ja2

Ja3

=

[
cρa

m
Ja

]
. (7.36)

Usually, the homogeneous currents vanish, as is known by experiment for the electromagnetic case.
We define the 4-potential in analogy to Eq. (4.33):

(Qa)ν =


Φa/c
Qa1

Qa2

Qa3

=

[
Φa/c
Qa

]
. (7.37)

With this definition, we can write the field-potential relations of dynamics in the same form as
(4.197, 4.198):

ga =−∇Φ
a− ∂Qa

∂ t
− cω

a
0b Qb +ω

a
bΦ

b,

Ω
a = ∇×Qa−ω

a
b×Qb.

(7.38)

(7.39)

This is a significant difference when compared to standard theory, where only the gravitational
scalar potential Φ and the gravitational field g are known, and are connected by:

g =−∇Φ. (7.40)

ECE dynamics has a much richer structure. Specifically, it is a theory of general relativity with
spacetime torsion and curvature. Therefore, the spin connections appear in these equations as they
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do in electromagnetism. The gravitomagnetic field Ω has been observed experimentally. This will
be described in a few examples, later. Even in Einsteinian general relativity, some authors speak of
this field in terms of linear approximation to the Einstein field equations. In ECE theory, this is not
an approximation, but rather a genuine field of nature.

7.1.2 Additional equations of the mechanical sector
It has been shown that there is a full analogy between mechanics and electromagnetism in ECE
theory. Therefore, the mechanical sector can be developed further by adapting important laws of
electrodynamics to dynamics. In this way, new laws of nature can be found that were not completely
known hitherto.

An important equation, following from the field equations, is the generally covariant continuity
equation. When its electromagnetic counterpart, Eq. (5.100), is adapted to dynamics, it reads:

∂ρa
m

∂ t
+∇ ·Ja

m = 0. (7.41)

A variation of a mass density in time is connected with a divergence of the mass current density.
For example, removing mass from a volume results in a time-dependent density and, consequently,
an equivalent mass current density.

Next, we derive Lorentz force equations from the Lorentz transform of special relativity. If
an electromagnetic system (E, B) is observed in another frame of reference, moving with respect
to the original Frame 1 with a velocity vector v, then the electric and magnetic fields in Frame 2,
denoted by E′, B′, are obtained according to the transformation equations [67]:

E′ = γ (E+v×B)− γ2

1+ γ

v
c

(v
c
·E
)
, (7.42)

B′ = γ

(
B− 1

c2 v×E
)
− γ2

1+ γ

v
c

(v
c
·B
)

(7.43)

with the relativistic “gamma factor”

γ =
1√

1− v2

c2

. (7.44)

In the nonrelativistic approximation,

v� c, γ → 1, (7.45)

these equations reduce to

E′ = E+v×B, (7.46)

B′ = B− 1
c2 v×E. (7.47)

The first of these equations, when multiplied by a charge, is the well-known Lorentz force. The
second equation is the less used magnetic counterpart to it. If there is no original electric field in
the frame at rest, Eq. (7.46) can be written as

E′ = v×B, (7.48)

which is the form used in most applications.
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The ECE dynamics counterparts are the gravitational Lorentz force

g′ = g+v×Ω , (7.49)

and its gravitomagnetic equivalent

Ω
′ = Ω− 1

c2 v×g, (7.50)

also called the gravitomagnetic equation. Ω is quite small in general, and the effects of these
forces cannot be experienced in daily life, in contrast to the electromagnetic Lorentz force, which
is a basis of many kinds of technical applications. The term v× g in Eq. (7.50) is not as small,
but is weighted with 1/c2; therefore, it acts as a relativistic correction, and its scale also makes it
undetectable through standard measurement.

The ECE wave equation of dynamics follows from the geometrical Evans lemma (4.159) via
the postulate (7.21):

� Qa
ν +RQa

ν = 0 (7.51)

with a scalar curvature R as described in Section 4.3. It is also possible to write the Proca equation
with the mechanical potential Qa

ν :

� Qa
ν +
(m0c

h̄

)2
Qa

ν = 0. (7.52)

Finally, the equations of ECE2 theory can be formulated for mechanical fields and potentials.
Denoting the scalar and vector ECE2 potentials of Section 6.1.3 by ΦW and QW , we obtain for the
ECE2 field-potential relations of dynamics:

g =−∇ΦW −
∂QW

∂ t
,

Ω = ∇×QW .

(7.53)

(7.54)

The ECE2 field equations of electromagnetism, Eqs. (6.97-6.100), can be transformed directly into
the ECE2 field equations of dynamics. For vanishing homogeneous currents, they are:

∇ ·Ω = 0, Gauss law of dynamics
∂Ω

∂ t
+∇×g = 0, Gravitomagnetic law

∇ ·g =−4πG ρm, Newton’s law (Poisson equation)

− 1
c2

∂g
∂ t

+∇×Ω =−4πG
c2 Jm. Ampère-Maxwell law of dynamics

(7.55)

(7.56)

(7.57)

(7.58)

Compared to the field equations of dynamics, Eqs. (7.31-7.34), the only differences are that the
tangent space index a has disappeared and no gravitomagnetic charges have been assumed.

Since the Cartan geometry for electromagnetism and dynamics is the same, the same antisym-
metry laws for both field types exist. Therefore, we can directly translate the antisymmetry laws
(5.14) and (5.18 - 5.20) of the electric and magnetic case to the respective laws of dynamics. With
the replacement rules (7.30), the electric antisymmetry condition reads

−∂Qa

∂ t
+∇Φ

a− cω
a
0b Qb−ω

a
bΦ

b = 0, (7.59)
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and the magnetic antisymmetry condition consists of the three equations with permutational
structure:

−∂3Qa2−∂2Qa3 +ω
a3

b Qb2 +ω
a2

b Qb3 = 0,

−∂1Qa3−∂3Qa1 +ω
a1

b Qb3 +ω
a3

b Qb1 = 0,

−∂2Qa1−∂1Qa2 +ω
a2

b Qb1 +ω
a1

b Qb2 = 0.

(7.60)

(7.61)

(7.62)

� Example 7.1 Gravity Probe B [68, 69] was a satellite-based experiment designed to verify two
effects of general relativity. The satellite contained four gyroscopes, and the angular precession
of the gyro axes was measured by high-precision instruments. The larger effect is the geodetic
precession, which stems form the fact that the Earth creates a spherical, non-Newtonian gravitational
field. The second effect is a small additional effect, the Lense-Thirring effect, which describes the
frame dragging of spacetime. This should be observable also.

Figure 7.1: Polar satellite orbit around the Earth.

The satellite for Gravity Probe B was launched in 2004 and was operational until 2005. It
orbited at a height of 650 km above the Earth’s surface, i.e., it was a low-orbit satellite, whose mean
distance above the Earth’s surface was small compared with the Earth’s radius. The orbit was over
the poles (see Fig. 7.1).

There arose, however, big problems in evaluating the recorded data. The electromagnetic
interaction of the gyroscopic spheres with the walls of the satellite had not been taken into account
properly. In the first evaluation, the results were much less precise than expected; there was a
the precession angle variance (error bar) of 0.1 rad/year. This unexpected variance contained the
Lense-Thirring effect, which was not observable separately.

ECE theory explains the frame dragging directly, through the gravitomagnetic field. When
AIAS Paper 117 [68] was being written in about 2008, it seemed reasonable to expect a variance
of 0.1 rad/year from the corresponding ECE calculation. The ECE result turned out to be 0.099
rad/year, which provided a consistent explanation of the experimental variance. Later, in 2011,
a final report was published about Gravity Probe B, which stated that the precession result of
the Lense-Thirring effect was 0.0372±0.0072 rad/year [69]. To obtain this result, a lot of data
corrections had to be developed (and without grant support), which is why it took six years until the
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final results could be made available. There was a concomitant theoretical explanation, in which a
dipole approximation was made for the Earth’s mass. However, a sphere of uniform mass has no
multipoles except for the familiar monopole, the Newtonian potential. This makes the calculation
of the Lense-Thirring effect at least questionable.

In ECE theory, the part of gyroscopic precession that we are focusing on (the Lense-Thirring
effect of Einsteinian theory) is explained by the gravitomagnetic field. This is, according to Eq.
(7.50),

Ω =− 1
c2 v×g, (7.63)

where v is the velocity of the “observer” and g is the gravitational field of the Earth with mass M:

g =−MG
r3 r. (7.64)

Inserting this into Ω gives

Ω =− 1
c2 v×

(
−MG

r3 r
)
=−MG

c2r3 r×v. (7.65)

This looks similar to an angular momentum, which is defined for a position r and velocity v of a
mass m as

L = r×p = m r×v, (7.66)

where p is the linear momentum. Since the Earth is an extended body, the total angular momentum
is the sum of its single mass elements mi with their corresponding positions and velocities:

L = ∑
i

miri×vi, (7.67)

which describes the angular momentum of the Earth due to its rotating mass; it is a spin momentum.
Integration over all mass elements gives the well-known result

Lsph =
2
5

MR2
ω (7.68)

for a homogeneous sphere with radius R. The angular frequency ω = v/r is the rotational speed,
360 degrees in one day. The masses mi sum to M, therefore, from Eq. (7.65):

Ω =− G
c2r3 Lsph (7.69)

or

Ω =
2
5

MGR2

c2r3 ω. (7.70)

This is the gravitomagnetic field of the Earth’s spin. Using the parameters listed under Eq. (24.21)
in [68], the result becomes

Ω = 1.5878 ·10−14 rad/s. (7.71)

With t = 1 year, the angular precession of the gyroscopic axes in the satellite then becomes

θ = Ω · t = 0.0987 rad. (7.72)
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All calculations can be found in the computer algebra code [140].
In the previously mentioned AIAS Paper 117 (2008), this was interpreted as agreement with

experiment, which had given a variance in measurement of 0.1 rad per year (see discussion above).
When considering the newer result for the Lense-Thirring effect, which is 0.0372±0.0072 rad/year,
the ECE result is larger but of the same order of magnitude. For a precise comparison, we have to
take into account the approximations made in the calculation, for example the assumption that the
Earth is a homogeneous sphere with homogeneous density. Another example is where the angular
momentum vector is defined in space. Normally, it is assumed that this vector is valid at the position
of the rotation axis (origin of the coordinate system). This would mean that it has the assumed
value only when the satellite is over the poles. When it has moved to an angle of θ = 90◦ of the
spherical coordinate system, the local vector of the angular momentum should be minimal. If we
assume that it varies with the cosine function, the mean value of the gravitomagnetic field then is

Ωav = Ω · 1
π/2

∫
π/2

0
cosθdθ = Ω · 2

π
≈ 0.637 Ω. (7.73)

The angular precession of Eq. (7.72) then reduces to

θ = 0.063 rad, (7.74)

which comes closer to the experimental result. Given the lengthy calculations and assumptions that
led to the experimental value, this is a reasonable agreement. �

� Example 7.2 Equinoctial precession [70] is a case in which Eq. (7.50) plays a role. The
equinoxes are the two days during the year, one in spring and one in autumn, when day and night
are of equal length. (The other planets in our solar system also have their own equinoxes.) As can
be seen from Fig. 7.2, on these days the rotation axis of the Earth is perpendicular to the plane of
motion of the Earth around the sun, which is called the ecliptic. The appearance of seasons is a
consequence of the fact that the rotation axis of the Earth is not perpendicular to the ecliptic, but is
tilted by an angle of 23.5 degrees. The celestial equator is a projection of the Earth’s equator (see
Fig. 7.3), and its plane is inclined to the ecliptic by this angle.

The time between two vernal or autumnal equinoxes defines a year with respect to the ecliptic
orbit of the Earth, the tropical year. Another definition is the sideral year, which is the time that
elapses until the fixed stars are seen under the same angle again. If the axis of the earth were fixed,
both years would be identical, i.e., one would see the same background of the fixed stars during
equinoxes. There is, however, a difference between them because of a precession of the Earth’s axis.
The background of fixed stars changes by 50.25 arcsec per year. In the past, attempts were made to
explain this as influences by other planets in the solar system; however, this was contradictory and
led only to some empirical formulas to predict precession angles.

In [69] it is explained in detail that the true reason for equinoctial precession is the motion
of the sun in our galaxy. The sun orbits the galactic center in 230 million years. If the ecliptic is
dragged with this motion, we arrive at the picture shown in Fig. 7.4. After one Earth year, the same
position relative to the sun leads to a change in the background of fixed stars due to this orbital
motion of the sun. We can compute this “precession” for one year as

ε = 2π · 1
230 ·106 = 0.005 arcsec, (7.75)

which is smaller than the observed 50.25 arcsec by several orders of magnitude. The period of the
observed precession is only about 25,800 years. Therefore, another mechanism must be at work,
and this is the gravitomagnetic field described by Eq. (7.50). The velocity in this equation is the
orbital velocity of the sun in the galactic orbit. The distance from the galactic center is 8,178 parsec,
or 2.523 ·1020 m.
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Figure 7.2: Terrestrial equinoxes in spring and autumn [182].

Figure 7.3: Celestial equator and ecliptic in earth-centered view [183].

Figure 7.4: Direction effect due to motion of sun around the galactic center.
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The orbital velocity of the sun is then

v =
2π

230 ·106 y
·2.523 ·1020 m = 218 448 m/s, (7.76)

which is very close to the value of 220 km/s, known from other observations. All calculations are
available in the computer algebra code [141] for this example.

If there is no gravitomagnetic field in the rest system of the sun, the gravitomagnetic equation
(7.50) is simply

Ω =− 1
c2 v×g. (7.77)

Its modulus is

|Ω|= 1
c2 vgsin(θ), (7.78)

where θ is the angle between the orbital velocity and gravitational field, in which the Earth rotates,
mainly the acceleration field of the Earth. In [69] it is proposed that this is the gravitational field at
the position of the observer, but the precession of the Earth’s axis cannot depend on this position.
Instead, it needs to be an average value over all directions of g, and even over the radius of the
Earth, because each mass element will experience a different acceleration at its radius. With

v = 218 448 m/s, g = 9.81 m/s2, c = 2.9979 ·108 m/s, (7.79)

we obtain as a maximum value, when v and g are perpendicular to each other:

Ω = 2.38439 ·10−11/s. (7.80)

With this value, we would obtain a precession angle of

Ω ·1year = 155.2 arcsec/year, (7.81)

which is much more than the observed 55.25 arcsec/year. We conclude that the average angle
between v and g then would be

θ = arcsin
55.25
155.2

= 18.9◦, (7.82)

if we take the value of g = 9.81 m/s2 at the Earth’s surface. Alternatively, we can compute an
effective gravitational field

geff = gsinθ = 3.179 m/s2, (7.83)

or an effective orbital velocity

veff = vsinθ = 70 782 m/s. (7.84)

The result geff < g is reasonable. The gravitomagnetic field is a plausible, non-Newtonian explana-
tion for the equinoctial precession. It is based on a generally covariant theory of dynamics and not
on the general relativity of Einstein. �
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7.1.3 Mechanical polarization and magnetization
In Section 5.2, we introduced electrodynamic polarization and magnetization, which are well
known in standard physics. We can also transfer these concepts to dynamics: a polarization,
inferred from the gravitational field, and magnetization of matter, inferred from the gravitomagnetic
field. In dynamics, we have the special situation that no “charges” of different sign are present, so
polarization may work differently, if it even exists in the case of gravitation.

We define the analogs of electromagnetic displacement D and magnetic field H (not the
induction) in the same way as in Section 5.2. For this, we map the electromagnetic fields to the
fields of dynamics in the following way:

Ea→ ga
0,

Da→ ga, (7.85)

Ba→Ω
a,

Ha→Ω
a
0.

For convenience, g is associated with the displacement field D, and not with E. The counterpart
of the electric field E in the presence of polarization, is denoted by g0. The magnetic field H is
associated with Ω0, while the magnetic induction B is associated with Ω, as before.

The unit system of dynamics is simpler than that of electrodynamics, because there are no
existing conventions that must be accommodated. Therefore, we simply define a mechanical
polarization Pm and magnetization Mm so that (omitting the polarization index a)

g = g0 +Pm (7.86)

and

Ω = Ω0 +Mm. (7.87)

The resulting equations of motion are presented in Table 7.2, together with their electromagnetic
equivalents. In contrast to electrodynamics, the pairs of fields (g0, g) and (Ω0, Ω) have the same
units.

In the case of a linear dependence of polarization and magnetization, we can write (as in
electrodynamics):

g = εmg0, (7.88)

Ω = µmΩ0. (7.89)

Electromagnetic Mechanical

∇ ·Ba = 0
1
c2

∂Ha

∂ t
+∇×Da = 0

∇ ·Da =
ρa

ε0

−c2 ∂Da

∂ t
+∇×Ha = Ja

∇ ·Ωa = 0
∂Ω

a
0

∂ t
+∇×ga = 0

∇ ·ga =−4πGρ
a
m

− 1
c2

∂ga

∂ t
+∇×Ω

a
0 =−

4πG
c2 Ja

m

Table 7.2: Equivalent electromagnetic and gravitational equations for polarization and magnetiza-
tion.
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Electromagnetic Mechanical

∇ ·Ba = 0
1
µr

∂Ba

∂ t
+ εr∇×Ea = 0

∇ ·Ea =
ρa

ε0εr

−εr
∂Ea

∂ t
+

1
µr

∇×Ba = µ0Ja

∇ ·Ωa = 0
1

µm

∂Ω
a

∂ t
+ εm∇×ga

0 = 0

∇ ·ga
0 =−

4πG
εm

ρ
a
m

−εm

c2
∂ga

0
∂ t

+
1

µm
∇×Ω

a =−4πG
c2 Ja

m

Table 7.3: Equivalent electromagnetic and gravitational equations of polarization and magnetization
for linear materials.

We do not need constants like ε0 and µ0, as we did in the electromagnetic case. Instead, we
only need a relative mechanical permittivity εm and permeability µm, which we introduced in the
equations directly above. Then, the equations of motion can be formulated with these constants in
full analogy to the electromagnetic case, as listed in Table 7.3.

The question, when, or even if, these effects become evident is still open. It is not known
which types of matter could produce such effects, because the gravitational field depends only on
mass. However, the gravitational constant is known only to a few digits. This could be a hint that
certain local deviations may depend on gravitational polarization. These effects could also exist for
gravitational waves (see next section). Myron Evans has proposed that the spin connection term
ωa

b×Qb in Eq. (7.39) is a magnetization effect in the electromagnetic case [71]. It could also
appear in mechanics directly; a gravitomagnetic moment - the counterpart to the magnetic moment
- can be defined as in the following example.

� Example 7.3 We compute the gravitomagnetic field that the Earth generates on its path around
the sun. A general method would be to solve the static Ampère-Maxwell law

∇×Ω =−4πG
c2 Jm (7.90)

for the current density Jm evoked by the Earth. However, the current consists of motion of a single
mass and there is no continuous current. Therefore, we choose a different approach. The angular
momentum of the Earth’s motion is an orbital angular momentum, in contrast to the spin momentum
we considered in Example 7.1. The angular momentum of the Earth’s orbit is

L = r×p = m r×v, (7.91)

where m is the mass and v the orbital velocity of the Earth. r is the distance from the sun. Assuming
a circular orbit, we have

m = 5.972 ·1024 kg,

v = 2.978 ·104 m/s, (7.92)

r = 6.371 ·106 m,

which leads to an orbital angular momentum of

L = 1.133 ·1036 kg m2/s. (7.93)

From electrodynamics we know [72] that the angular momentum of an orbiting charge q, with mass
M, is connected with a magnetic moment m by

m =
q

2M
L. (7.94)
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This result can be transferred directly to dynamics by replacing the charge with the “charge of
dynamics” m so that the ratio of charge per mass is eliminated:

mm =
1
2

L. (7.95)

This gravitomagnetic moment is directly proportional to the angular momentum.
The gravitomagnetic field of the Earth’s orbit can be derived in a dipole approximation. In the

case of a magnetic dipole moment, the induction field is [72]:

B =
µ0

4π

(
3n(n ·m)−m

|r|3
+

8π

3
mδ (r)

)
, (7.96)

where n = r̂ is the unit vector in direction of r. The coordinate origin is assumed to be in the center
of the dipole, the location of the sun in our example. Dirac’s δ function gives a contribution for the
divergence at r = 0 and is required only for the correct volume integral over B [72].

The expression for B can be used directly for a gravitomagnetic dipole field. The factor µ0
comes from the current density used in the derivation of the dipole field. In our case, it has to be
replaced by

µ0→−
4πG
c2 , (7.97)

so that the gravitomagnetic field in dipole approximation is

Ω =−G
c2

(
3n(n ·mm)−mm

|r|3
+

8π

3
mmδ (r)

)
. (7.98)

The term with the δ function can be omitted if only the field outside of the origin is considered. A
graphical example of a dipole field is shown later in this textbook. At the earth’s position, it is of
the order of magnitude of 1.3 ·10−25/s. �

7.1.4 Gravitational waves
Physical waves of any kind can be described as solutions of respective wave equations. The wave
equations of dynamics are derived in analogy to the wave equations of electrodynamics. We
have already used this method of analogy several times. We start with the gravitomagnetic and
Ampère-Maxwell laws of dynamics, Eqs. (7.56, 7.58):

∂Ω

∂ t
+∇×g = 0, (7.99)

− 1
c2

∂g
∂ t

+∇×Ω =−4πG
c2 Jm, (7.100)

and apply the same procedure as in Section 6.2.4. We take the curl of the gravitomagnetic law:

∇× ∂Ω

∂ t
=−∇×∇×g (7.101)

and the time derivative of the Ampère-Maxwell law:

− 1
c2

∂ 2g
∂ t2 +∇× ∂Ω

∂ t
=−4πG

c2
∂Jm

∂ t
. (7.102)
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Inserting (7.101) into (7.102) gives

− 1
c2

∂ 2g
∂ t2 −∇×∇×g =−4πG

c2
∂Jm

∂ t
. (7.103)

Replacing the double curl and reversing the sign of the equation leads to

1
c2

∂ 2g
∂ t2 −∇

2g+∇(∇ ·g) = 4πG
c2

∂Jm

∂ t
. (7.104)

Assuming that no independent charge density is present, the divergence of g vanishes, and we
obtain:

1
c2

∂ 2g
∂ t2 −∇

2g =
4πG
c2

∂Jm

∂ t
, (7.105)

which is the inhomogeneous wave equation. With the d’Alembert operator (2.253), it can be written
in compact form:

� g =
4πG
c2

∂Jm

∂ t
. (7.106)

Applying the analogous procedure for the gravitomagnetic field gives the wave equation

� Ω =−4πG
c2 ∇×Jm. (7.107)

The electric counterpart of (7.106), which is derivable in the same way, is

� E =−µ0
∂J
∂ t

. (7.108)

Solutions of the wave equations are, for example, plane waves. By comparing Eqs. (7.106) and
(7.108), we see that gravitational waves obey the same laws and will show equivalent behavior.

By using our results, we can answer the question of why it is so difficult to find gravitational
waves experimentally. The answer can be found by comparing the numerical values of the factors
for the currents in Eqs. (7.106) and (7.108). For gravitational waves, we have

4πG
c2 = 9.332 ·10−27 m

kg
, (7.109)

while, for the electromagnetic case, we obtain

µ0 = 4π ·10−7 Vs
Am

= 1.257 ·10−6 Vs
Am

. (7.110)

Comparing the numerical values shows that there is a difference of 21 orders of magnitude!
The gravitational red shift, derived for electromagnetic plane waves in Example 5.2, can also

be considered as an effect of gravitational waves. The optical refraction index, according to Eq.
(5.56), is:

n2 = εrµr. (7.111)

We can define a gravitational refraction index in full analogy:

n2
m = εmµm. (7.112)
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Then, the gravitomagnetic equation is, for example,

∂Ω
a

∂ t
+n2

m ∇×ga
0 = 0. (7.113)

In Einsteinian general relativity, gravitational waves are difficult to describe. They follow from
a linear approximation of the field equations and require – at least – a quadrupole moment as a
source; there are no waves emanating from a dipole. This is completely different from the results of
ECE theory, wherein gravitational waves can arise from varying currents of any kind. Considering
the formal identity of electromagnetic and gravitational waves, we can say that each electromagnetic
wave is connected with a gravitational wave of the same form. Due to the large difference in factors,
however, the gravitational counterpart is normally not detectable. This unified behavior should be
observable in the universe where huge events, like a collision of heavy astronomical objects, lead to
detectable gravitational waves directly. Then, an electromagnetic pulse should be observable as a
simultaneous event.

Gravitational waves are oscillations of spacetime itself, an effect of the curving and spinning of
spacetime, as described by general relativity. They cannot be described by classical theory, because
it is limited to Newton’s gravitational law.

7.2 Generally covariant dynamics

Newton’s laws, which introduced dynamics to physics, hold for linear motion. If rotational motion
is considered, additional forces like the centrifugal force and the Coriolis force occur. In this
section, we show that these are examples of spin connections, in a framework of generally covariant
dynamics [74, 75].

7.2.1 Velocity
In classical dynamics, the velocity vector v is the time derivative of the position vector r:

v =
dr
dt

. (7.114)

The natural way to extend this law to make it generally covariant is by using the covariant derivative
as it appears, for example, in the first Maurer-Cartan structure. The torsion 2-form is defined as the
derivative of the tetrad (see Eq. (2.283)):

T a = D∧qa. (7.115)

In analogy, we define the covariant velocity to be

va = c(D∧ ra). (7.116)

The factor c (velocity of light in vacuo) is included to get the right units, namely m/s. Eq. (7.116) is
an equation of 2-forms, which in detail is

(va)µν = c(D∧ ra)µν , (7.117)

so the covariant velocity is a two-index tensor of the base manifold. The position vector can be
defined to be a tetrad of position, with the constant r(0) being a scaling factor with units of length:

ra
µ = r(0)qa

µ . (7.118)
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Eq. (7.117), when written out in tensor form, in analogy to Eq. (4.169), reads:

va
µν = c

(
∂µra

ν −∂νra
µ +ω

a
µb rb

ν −ω
a
νb rb

µ

)
. (7.119)

This is a valid equation of Cartan geometry. However, this tetrad is not the spacetime tetrad,
therefore, the spin connection is not that of spacetime but is specific to the velocity tensor.

As a result, we have the same situation as in electrodynamics or general dynamics. The field is
an antisymmetric two-dimensional tensor, but we are used to dealing with field vectors. Therefore,
we define two types of field vectors as in Eq. (7.25), for example. According to this equation, the
contravariant form of the velocity tensor can be written as

vaµν =


0 −va1 −va2 −va3

va1 0 −wa3 wa2

va2 wa3 0 −wa1

va3 −wa2 wa1 0

 . (7.120)

The tensor and, consequently, the tensor elements, have a polarization index a of Cartan geometry,
running from 0 to 3. As discussed earlier, the v elements are of translational character, while the w
elements have a rotational character. They define velocity vectors va and wa in the usual way. The
upper indices 1, 2, 3 denote the space components. Another notation is

va
X = va1, va

Y = va2, etc., (7.121)

and, with lower indices, there is a sign change:

va
X =−va

1, va
Y =−va

2, etc. (7.122)

All of this has been discussed in detail in Chapter 4. Overall, we have:

va =

va
X

va
Y

va
Z

=

va1

va2

va3

=

−va01

−va02

−va03

 , (7.123)

wa =

wa
X

wa
Y

wa
Z

=

wa1

wa2

wa3

=

−va23

va13

−va12

 . (7.124)

The spin connection has the vectorial form

ω
a

b =

−ωa
1b

−ωa
2b

−ωa
3b

=

ωa1
b

ωa2
b

ωa3
b

 , (7.125)

and the position 4-vector is, similarly,

(ra)ν =


ra0

ra1

ra2

ra3

=

[
ra0

ra

]
. (7.126)

Eq. (7.119) can be written as two vector equations like (7.38, 7.39):

va = c
(
−∇ra

0−
1
c

∂ra

∂ t
−ω

a
0b rb +ω

a
bra

0

)
, (7.127)

wa = c
(

∇× ra−ω
a

b× rb
)
. (7.128)
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Currently, it is not clear how to interpret the potential-like time component ra
0. The total velocity

vector is

va
tot = va +wa. (7.129)

In the case of a flat space, all spin connections vanish. There is no polarization, and if r is a
trajectory of a mass point as in classical mechanics, there is no “scalar” potential ra

0 and no curl of
r. The translational velocity then becomes

v =−∂r
∂ t

. (7.130)

The minus sign is a convention and can be avoided by defining the position tetrad (7.118) with a
negative sign:

ra
µ =−r(0)qa

µ . (7.131)

For trajectories of mass points, there is no spatial field dependence, and the partial time derivative
is equal to the total time derivative, so that we have in total:

v =
dr
dt

, (7.132)

in agreement with (7.114).
When the coordinate system is rotated, this corresponds to a spin connection vector ωa

b. This
vector can be transformed to a vector of angular velocity in classical mechanics by setting

cω
a

b→ ω, (7.133)

where ω has the units of 1/s, as usual. Under the approach described above, we now obtain a
rotational velocity vector

w = ω× r, (7.134)

and the velocity, observed in the rest frame, is

vtot =
dr
dt

+ω× r. (7.135)

This equation is identical to the result of rotational motion in classical mechanics, as we will see
later.

Both vectors va and wa are space-like components of 4-vectors (in covariant representation):

va
µ = (va

0,−va), (7.136)

wa
µ = (wa

0,−wa). (7.137)

The components va
0, wa

0 are time-like and have a special meaning in dynamics, which is not known
so far. According to the relativistic energy-momentum relation without rest mass,

Er = cp (7.138)

(where Er is the relativistic energy), the 4-momentum can be written in the form

pa
µ = (

Er

c
,−pa). (7.139)

The 4-velocity is connected with the 4-momentum by pa
µ = mva

µ . In particular, it is pa
0 = mva

0 =
Er/c.
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7.2.2 Acceleration
We define acceleration as the covariant external derivative of the velocity, in analogy to Eq. (7.116),
for both velocities:

aa = c(D∧ va), (7.140)

α
a = c(D∧wa). (7.141)

aa is the translational acceleration, and αa is the rotational acceleration. Both have an orbital part
and a spin part, according to Eqs. (7.127, 7.128). This gives four vector equations, which are
derived in full analogy to the velocities:

aa
orbital = c∇va

0 +
∂va

∂ t
+ cω

a
0b vb− cω

a
bva

0, (7.142)

aa
spin = c

(
−∇×va +ω

a
b×vb

)
, (7.143)

α
a
orbital = c∇wa

0 +
∂wa

∂ t
+ cω

a
0b wb− cω

a
bwa

0, (7.144)

α
a
spin = c

(
−∇×wa +ω

a
b×wb

)
. (7.145)

The zero components of the velocities va
0 and wa

0 are potentials, whose gradient gives mechanical
forces; in particular, we can identify va

0 with the gravitational potential Φa:

Φ
a = cva

0. (7.146)

If the factor c is omitted from the spin accelerations, they have the units of angular velocities and
correspond to the gravitomagnetic field. In ECE theory, the velocity is a tensor, consisting of vector
fields. For example, the equations of fluid dynamics are based on a velocity field. This will be
described later in this book.

Comparison with classical mechanics
The above equations for velocity and acceleration can be compared to the classical motion of mass
points in a rotating coordinate system. This is a subject of classical (or Newtonian) mechanics. The
basic explanations can be found, for example, in [73], and are briefly repeated and commented
in [74]. Her we will review only the results.

Figure 7.5: Rotating coordinate system.
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In Fig. 7.5, a mass point P is drawn with respect to two coordinate systems, where the primed
coordinates refer to the rest frame and the unprimed coordinates to the rotating frame. The origin
of the rotating frame is displaced from the origin of the fixed frame by R and may also move in
time with a velocity V. The point P has the coordinate r′ in the fixed frame and r in the rotating
frame. Velocities are assigned to these coordinates by

v f = Velocity relative to the fixed axes,
vr = Velocity relative to the rotating axes,
ω = Angular velocity relative to the rotating axes, and
V = Linear velocity of the moving origin.

The velocity in the fixed frame is

v f = V+vr +ω× r (7.147)

and is identical to Eq. (7.135), which was derived from ECE theory for a Minkowski space without
curvature and torsion. The term ω× r describes the rotation of P.

For acceleration, classical dynamics gives a more complicated result. With the total derivative
d/dt being denoted with a dot, as usual, the relative acceleration between the frames alone is

R̈ =
dV
dt

= V̇. (7.148)

The total force acting on the mass point with mass m in the fixed frame is

F = ma f = mR̈+mar +mω̇× r+mω× (ω× r)+2mω×vr. (7.149)

The effective force acting on m is, therefore,

Feff = mar = F−mR̈−mω̇× r−mω× (ω× r)−2mω×vr. (7.150)

In this equation, three force terms appear that are a consequence of the rotation of the local frame
of m. They are the force due to angular acceleration, the centrifugal force, and the Coriolis force
(the latter appears only if the mass point moves in the rotating frame with a velocity vr):

Frot.frame =−mω̇× r, (7.151)

Fcentrifugal =−mω× (ω× r), (7.152)

FCoriolis =−2mω×vr. (7.153)

These forces are sometimes called “virtual forces”, because they do not arise from a physical
potential; but they are real, as we know from daily life. This representation arises solely from
the attempt to extend the form of Newton’s force law to a non-inertial system. In ECE theory,
accelerations appear in the following way. The Coriolis force is part of Eq. (7.142) for vb = vr.
When we insert Eq. (7.134) into Eq. (7.145), we obtain a term identical with the centrifugal force.
The force of the rotating frame, (7.151), results as a part of Eq. (7.142), when we evaluate the time
derivative

dvr

dt
=

d(ω× r)
dt

= ω̇× r+ω×vr. (7.154)

This gives a Coriolis term, in addition to a term of the rotating frame.
We see that the ECE equations for acceleration (7.142 - 7.145) contain the terms of classical

dynamics, plus a lot of additional terms stemming from Cartan geometry of curving and twisting
spacetime. It should be noticed that these equations are generally covariant, that they hold in any
coordinate system. In contrast, this is not the case in Newtonian dynamics, in which one fixed
frame and one moving/rotating frame are assumed. ECE theory does not distinguish between rest
and moving frames, according to the principle of relativity.
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� Example 7.4 We compute the velocity and acceleration vectors in plane and spherical polar
coordinates, and compare the result of spherical polar coordinates with an expectation from general
covariance.

In two dimensions, the unit vectors of plane polar coordinates (r, φ ) are

er =

[
cosφ

sinφ

]
, eφ =

[
−sinφ

cosφ

]
(7.155)

(also see Fig. 2.1). The position vector of any point in space is determined by the direction of its
unit vector er and its length r:

r = rer. (7.156)

The velocity vector is

v = ṙ =
d
dt

(rer) = ṙer + rėr. (7.157)

Since the direction of er changes over time, this change has to be taken into account, in contrast to a
cartesian coordinate system, where all unit vectors remain fixed. From Eqs. (7.155) it follows that

ėr = φ̇eφ , (7.158)

ėφ =−φ̇er, (7.159)

therefore:

v = ṙer + rφ̇eφ . (7.160)

Similarly, the acceleration is

a = v̇ =
(
r̈− rφ̇

2)er +
(
2ṙφ̇ + rφ̈

)
eφ . (7.161)

In three dimensions, we use a spherical coordinate system (r, θ , φ ), as illustrated in Fig. 2.3.
The transformation of basis vectors has already been given in Eq. (2.32). Starting from unit vectors

er =

1
0
0

 , eθ =

0
1
0

 , eφ =

0
0
1

 , (7.162)

the cartesian unit vectors are the column vectors of the transformation matrix

(eX ,eY ,eZ) =

cosφ sinθ sinφ sinθ cosθ

cosφ cosθ sinφ cosθ −sinθ

−sinφ cosφ 0

=: S. (7.163)

In this example, we need the unit vectors of the spherical coordinate system, which are the column
vectors of the inverse transformation:

(er,eθ ,eφ ) = S−1 = ST =

cosφ sinθ cosφ cosθ −sinφ

sinφ sinθ sinφ cosθ cosφ

cosθ −sinθ 0

 . (7.164)

The position vector in a cartesian frame is

r = XeX +Y eY +ZeZ (7.165)
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with coordinate values, transformed to the polar frame, of

X = r sinθ cosφ ,

Y = r sinθ sinφ , (7.166)

Z = r cosθ

(see Eq. (2.29)). Then, the velocity in this frame is

v = ẊeX + Ẏ eY + ŻeZ. (7.167)

From (7.166), we have

Ẋ = ṙ sinθ cosφ + rθ̇ cosθ cosφ − rφ̇ sinθ sinφ ,

Ẏ = ṙ sinθ sinφ + rθ̇ cosθ sinφ + rφ̇ sinθ cosφ , (7.168)

Ż = ṙ cosθ − rθ̇ sinθ .

We insert this into Eq. (7.167) and substitute the cartesian unit vectors by Eq. (7.163). The lengthy
calculation has been carried out by computer algebra (see computer algebra code [142]) and gives
the result

v = vrer + vθ eθ + vφ eφ (7.169)

with

vr = ṙ,

vθ = rθ̇ , (7.170)

vφ = rφ̇ sinθ .

The acceleration vector in the cartesian frame is

a = ẌeX + Ÿ eY + Z̈eZ. (7.171)

In the same way, with the aid of computer algebra, an even more complicated calculation gives

a = arer +aθ eθ +aφ eφ (7.172)

with

ar = r̈− rθ̇
2− rφ̇

2 sin2
θ ,

aθ = 2ṙθ̇ + rθ̈ − rφ̇
2 sinθ cosθ , (7.173)

aφ = (rφ̈ +2ṙφ̇)sinθ +2rθ̇ φ̇ cosθ .

Now, we try to write the acceleration in the form of a covariant derivative. As can be seen from
Eqs. (7.172, 7.173), the acceleration is the partial derivative of the velocity plus additional terms,
which can be written by a matrix-vector product with a matrix Ω:

a =
D
Dt

v =
∂

∂ t
v+Ωv. (7.174)

By insertion, it can be verified that this equation reads

D
Dt

 ṙ
rθ̇

rφ̇ sinθ

=
∂

∂ t

 ṙ
rθ̇

rφ̇ sinθ

+
 0 −θ̇ −φ̇ sinθ

θ̇ 0 −φ̇ cosθ

φ̇ sinθ φ̇ cosθ 0

 ṙ
rθ̇

rφ̇ sinθ

 , (7.175)
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from which the form of Ω can be derived. It is an antisymmetric matrix of the form

Ω =

 0 Ω12 Ω13
−Ω12 0 Ω23
−Ω13 −Ω23 0

=

 0 −θ̇ −φ̇ sinθ

θ̇ 0 −φ̇ cosθ

φ̇ sinθ φ̇ cosθ 0

 . (7.176)

So far, we have shown that the acceleration in the spherical polar coordinate system has the form
of a covariant derivative, as shown by Eq. (7.174). However, comparison with the form of spin
accelerations (7.143, 7.145) leads us to expect a vector product of the form ω×v instead of the
matrix-vector operation Ωv:

D
Dt

v =
∂

∂ t
v+ω×v. (7.177)

This implies that

ω×v = Ωv, (7.178)

which gives a linear equation system for determining the components of ω , when written out:ω2 v3−ω3 v2
ω3 v1−ω1 v3
ω1 v2−ω2 v1

=

 Ω13 v3 +Ω12 v2
Ω23 v3−Ω12 v1
−Ω23 v2−Ω13 v1

 . (7.179)

The computer algebra code shows that this equation system is of rank 2, i.e., it is underdetermined.
The general solution is

ω1 =−
Ω23v3− (Ω12 +C1)v1

v3
,

ω2 =
Ω13v3 +(Ω12 +C1)v2

v3
, (7.180)

ω3 =C1,

with an arbitrary constant C1. We can set its value to C1 = −Ω12 so that the result becomes as
simple as possible:

ω1 =−Ω23,

ω2 = Ω13, (7.181)

ω3 =−Ω12.

Inserting this solution into (7.177) then gives the desired form of the covariant equation with the
cross product:

D
Dt

 ṙ
rθ̇

rφ̇ sinθ

=
∂

∂ t

 ṙ
rθ̇

rφ̇ sinθ

+
 φ̇ cosθ

−φ̇ sinθ

θ̇

×
 ṙ

rθ̇

rφ̇ sinθ

 . (7.182)

ω is the spin connection vector for acceleration. �

7.2.3 Angular momentum and torque
In a fixed frame, the classical torque N is the time derivative of the angular momentum L:

N =
dL
dt

= L̇. (7.183)



7.2 Generally covariant dynamics 177

In presence of a rotating frame, a term with the angular velocity vector is added:

Nfixed = L̇fixed +ω×L. (7.184)

This equation holds for any vector considered in both frames, and not just for angular momentum
[73]. It is close to the definition of the first Maurer-Cartan structure (2.283),

T a = d∧qa +ω
a
b ∧qb, (7.185)

where the term ωa
b ∧qb originates in the spinning of spacetime. We can define a generally covariant

angular momentum 1-form Ja and torque 2-form Na by

Ja
µ =−J(0)qa

µ , (7.186)

Na
µν = cJ(0)T a

µν , (7.187)

where T a is the torsion form. A sign change was introduced so that it would conform with the
classical result. This is in full analogy to Eqs. (7.118) and (7.116). As in (7.117), it then follows
that

(Na)µν = c(D∧ Ja)µν , (7.188)

which can be developed in two vectors of torque as before, a translational torque Na
orbital and an

intrinsic or spin torque Na
spin:

Na
orbital = c∇Ja

0 +
∂Ja

∂ t
+ cω

a
0b Jb− cω

a
bJa

0 , (7.189)

Na
spin = c

(
−∇×Ja +ω

a
b×Jb

)
. (7.190)

In a pure translational spacetime, the intrinsic torque vanishes. The classical limit of these equations
is

Na = Na
orbital +Na

spin → ∂Ja

∂ t
+ cω

a
b×Jb, (7.191)

where the polarization indices have to be reduced to a = b = 1, as before. Myron Evans writes [74]:
ECE theory has a great deal more inherent information than the classical and non-relativistic

Euler theory. The task is to reveal such information experimentally, using high accuracy experiments
in the laboratory or in astronomy. These would amount to rigorous experimental tests of Einsteinian
philosophy itself, because ECE theory completes the Einstein-Hilbert theory of 1916. They would
therefore be important experiments.

7.2.4 Equivalence principle
Newton introduced the law that gravitational mass and inertial mass are identical. This is called the
equivalence principle and has been proven experimentally to high precision. Here we derive this
principle from ECE theory. In Newtonian theory, the equivalence principle says that the dynamical
force of acceleration on a mass is identical to the force of the gravitational field:

ma = mg =−m∇Φ, (7.192)

where Φ is the gravitational potential. In ECE theory, we start with the orbital acceleration (7.142):

aa
orbital = c∇va

0 +
∂va

∂ t
+ cω

a
0b vb− cω

a
bva

0. (7.193)



178 Chapter 7. ECE dynamics

This equation is derived from the first Maurer-Cartan structure and, therefore, the acceleration form
can be written as a multiple of a torsion form [76]:

aa
µν = a(0)T a

µν = cv(0)T a
µν . (7.194)

For torsion, the antisymmetry laws were derived in Section 5.1, and we can transform Eq.
(5.13),

−1
c

∂Aa

∂ t
+∇Aa

0−ω
a
0b Ab−ω

a
bAb

0 = 0, (7.195)

into the equivalent equation of dynamics, directly. By substituting Aa→ va, cva
0→Φ, we obtain

−∂va

∂ t
+∇Φ

a− cω
a
0b vb−ω

a
bΦ

b = 0. (7.196)

For the flat space of classical mechanics, the spin connections vanish, and this equation reads

m
∂va

∂ t
= m∇Φ

a. (7.197)

This is, besides a sign convention change, the equivalence principle of classical mechanics. Alter-
natively, this equation follows, when it is assumed that the orbital acceleration in (7.193), i.e., the
sum of all forces, vanishes:

aa
orbital = 0. (7.198)

In this case, even the sign of the potential comes out in the usual form:

m
∂va

∂ t
=−m∇Φ

a. (7.199)

If no additional forces are present (no rotational forces, for example), a mass moves in a force-free
equilibrium. Examples are free fall or satellites, which are in “free fall around the Earth”.

The equivalence principle is a consequence of ECE theory, while Newton had to introduce it as
an axiom. In Einsteinian general relativity, the equivalence principle exists in two forms, weak and
strong. According to the weak equivalence principle, the mass of a body alone (i.e., the measure of
its inertia) determines which gravity acts on it in a given homogeneous gravitational field. Its other
properties, such as chemical composition, size, shape, etc., have no influence.

According to the strong equivalence principle, gravitational and inertial forces are equivalent
on small distance and time scales, in the sense that their effects cannot be distinguished from each
other by mechanical or any other observations. The weak equivalence principle follows from the
strong equivalence principle, which is founded on the fact that the Einsteinian Lagrange density is
independent of the choice of the coordinate system.

7.3 Lagrange theory
In classical mechanics, Lagrange theory plays a very important role for computing the dynamics
of mass points. It is based on Newtonian mechanics with the extensions of Euler for rotational
motion, so it is applicable to any “machine” that can be reduced to the motion of mass points with
constraints. We only give a short overview here. Relativistic extensions of this theory will be
developed later in this book. The basics of Lagrange theory can be found in textbooks of mechanics,
for example [77].

Lagrange theory uses generalized coordinates, denoted by qi. These can be length and angular
coordinates, connected with linear and angular momenta. Constraints of motion are used to reduce
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the number of coordinates so that only independent coordinates and their momenta remain, whose
number is identical to the degree of freedom of a mechanical system. There is no general method
for finding these coordinates, this is a task of the modeler. The equations of motion are obtained
from the Lagrange function or Lagrangian, which is the difference between kinetic energy T and
potential energy U :

L = T −U. (7.200)

Both energies have to be expressed by generalized coordinates qi. The kinetic energy will become
a complicated expression in most cases. Therefore, it is advisable to write the kinetic energy in
cartesian coordinates,

T =
1
2 ∑

i
miẋ2

i , (7.201)

and insert the coordinate transformations xi(q j), i, j = 1, ...N so that an expression for T (qi, q̇i) is
formed. This expression will be suitable for use in the Euler-Lagrange equations

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= 0. (7.202)

These are N equations for a system with degree of freedom N. They lead to differential equations
of motion with time derivatives of second order and can be transformed into 2N equations of first
order by replacing each time derivative of qi by a new variable vi,

vi = q̇i. (7.203)

The vi are handled as independent variables, as is done in the Hamilton equations, for example.
This is beneficial for numerical solution of the equations of motion, because numerical solvers like
Runge-Kutta are designed for solving ordinary differential equations of first order only.

The Euler-Lagrange theory was developed from the principle of energy conservation. Therefore,
energy is conserved for all solutions. It is possible, however, to introduce external forces. Then
energy is not conserved but added or extracted by these forces. They are called generalized forces
because they can be ordinary forces or torques, depending on the type of coordinates with which
they are connected. When denoted by Qi, the Lagrange equations take the generalized form

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= Qi. (7.204)

Terms that remain conserved during motion can be derived from the Lagrange equations. If the
time derivative of the Lagrangian according to a variable q̇i vanishes, it follows that

d
dt

∂L

∂ q̇i
= 0 → ∂L

∂ q̇i
= const. (7.205)

This describes constants of motion. Normally, these are linear momenta and angular momenta.
Although Newtonian theory says that linear momenta in free space are always conserved, this is
not the case for machines, in which, for example, only angular coordinates are present. There is,
however, no guarantee that all constants of motion of a system will be found, because there is the
freedom of choice for coordinates, and any “unfavorable” choice can veil some constants of motion.

� Example 7.5 As an example of Lagrange theory in classical mechanics, we consider the dynamics
of a gyroscope. Although this is to be described by a rigid body and not by mass points alone, it
still belongs to the class of Lagrangian mechanics. However, there are two problems. First, the
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equations of motion are so complicated that it is cumbersome to derive them by hand. Therefore,
the full equation set (for all coordinates), for a complete motion in three dimensions, is nowhere to
be found in textbooks. Second, analytical solutions are not known even for subsets of the equations.
Therefore, no analytical solutions exist for the general equation set, which is described in this
example. The equations have to be solved numerically on a computer. With the aid of computer
algebra and numerical solution methods, we were able to set up the full equation set, and present
solutions without approximations (see computer algebra code [143]).

We compute the motion of a symmetric top with one point fixed (for example, a spinning top
on a table), by a Lagrangian formulation based on ECE2 theory [78]. The basics are very extensive
and described in detail in [79]. In particular, there is a detailed description of how rigid bodies can
be modeled by point mechanics. Rigid bodies are characterized by their moments of inertia for
rotations about their major body axes. A symmetric spinning top has two such moments of inertia,
one for rotation around the vertical axis and two identical moments for rotations about the axes
perpendicular to the vertical axis. They are denominated I3 and I1 = I2. As explained in Section 7.2,
the motion in the body-fixed coordinate system has to be transformed to the observer’s coordinate
system. For the gyroscope, this is accomplished by introducing Eulerian angles (see Fig. 7.6).

Figure 7.6: Rotational axes and Eulerian angles of a gyroscope with one point fixed.

The fixed point is assumed to be the centre of a coordinate system consisting of three Eulerian
angles θ ,φ ,ψ . The latter describes the rotation around the Z axis x3 of the spinning top. θ and φ

are identical to angles of a spherical coordinate system (polar and azimuthal angle, see Fig. 2.3). ψ

is the rotation angle around the x3 body axis. The spinning top exhibits a rotation around the Z axis
by the angle φ , which is called the precession angle. In addition, there is a “nodding” described by
θ , the nutation angle.

According to the Lagrange calculus, the body coordinates are to be transformed to the (θ , φ ,
ψ) coordinate system. The kinetic energy then is purely rotational:

Trot =
1
2

I12
(
φ̇

2 sin(θ)2 + θ̇
2)+ 1

2
I3
(
φ̇ cos(θ)+ ψ̇

)2
, (7.206)

where I12 = I1 = I2 and I3 are the moments of inertia around the three principle axes (for details
see [79]). The potential energy is defined by the gravitational field at the Earth’s surface:

U = mgZ = mghcos(θ) (7.207)
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with constant gravitational acceleration g and gyro mass m. The Lagrangian is

L = Trot −U (7.208)

=
1
2

I12
(
φ̇

2 sin(θ)2 + θ̇
2)+ 1

2
I3
(
φ̇ cos(θ)+ ψ̇

)2−mghcos(θ).

The three Euler-Lagrange equations for the angular coordinates q j,

d
dt

(
∂L

∂ q̇ j

)
− ∂L

∂q j
= 0, (7.209)

lead to three equations containing first and second time derivatives of the angular coordinates,
which can be rearranged to give the ordinary differential equation system

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
, (7.210)

φ̈ =−
(
(2I12− I3) φ̇ cos(θ)− I3 ψ̇

)
θ̇

I12 sin(θ)
, (7.211)

ψ̈ =

(
(I12− I3) φ̇ cos(θ)2 + I12φ̇ − I3 ψ̇ cos(θ)

)
θ̇

I12 sin(θ)
. (7.212)

These equations can be solved numerically, in principle. Fortunately, here is additional informa-
tion contained in the Lagrange equations (7.209). There are two constants of motion representing
the angular momenta around the Z axis and the body axis:

Lφ = I12 φ̇ sin(θ)2 + I3 cos(θ)
(
φ̇ cos(θ)+ ψ̇

)
, (7.213)

Lψ = I3
(
φ̇ cos(θ)+ ψ̇

)
. (7.214)

These equations contain only the first time derivatives of φ and ψ . Using these equations instead of
Eqs. (7.211, 7.212) leads to the simpler differential equation system

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
, (7.215)

φ̇ =
Lφ −Lψ cos(θ)

I12 sin(θ)2 , (7.216)

ψ̇ =
Lψ − I3 φ̇ cos(θ)

I3
. (7.217)

The constants Lφ and Lψ have to be chosen appropriately for a solution. Even for this simpler
equation system, a numerical solution procedure is required. The difference from Eqs. (7.211,
7.212) is that no initial conditions for φ̇ and ψ̇ are required.

Equations (7.215 - 7.217) have been solved numerically in [143]. In Figs. 7.7 and 7.8, the 3D
motion of the center of mass is plotted for different parameter settings. Precession is always present,
and nutation may be either periodic (Fig. 7.7) or superimposed with a back-and-forth precession,
leading to a spiraling motion (Fig. 7.8).
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Figure 7.7: Precession of center of mass
for a gyroscope (spikes).

Figure 7.8: Precession of center of mass
for a gyroscope (spiraling).

External forces can be applied to a gyroscope in form of additional torques upon the rotation
axes. Then, the constants of motion are no longer valid, and one has to apply the original equation
set (7.210 - 7.212). With external torques Qθ , Qφ , Qψ , the equations read

θ̈ =

(
(I12− I3) φ̇ 2 cos(θ)− I3 φ̇ ψ̇ +mgh

)
sin(θ)

I12
+

Qθ

I12
, (7.218)

φ̈ =−
(
(2I12− I3) φ̇ cos(θ)− I3 ψ̇

)
θ̇

I12 sin(θ)
+

Qφ −Qψ cos(θ)
I12 sin(θ)2 , (7.219)

ψ̈ =

(
(I12− I3) φ̇ cos(θ)2 + I12φ̇ − I3 ψ̇ cos(θ)

)
θ̇

I12 sin(θ)
(7.220)

+

(
I12 sin(θ)2 + I3 cos(θ)2

)
Qψ − I3 Qφ cos(θ)

I12 I3 sin(θ)2 ,

as derived in computer algebra code [144]. It can be seen that the φ and ψ coordinate are coupled
by both Qφ and Qψ . For example, when a gyro is driven on its body axis, this will have an effect on
its precession and vice versa. The results for an external torque Qφ around the Z axis are graphed
in Figs. 7.9 and 7.10. The torque is negative, i.e., contrary to the “natural” direction of motion,
therefore the initial angular velocity φ̇ goes to zero in an oscillation (Fig. 7.9), and then makes a
strong spike and increases in the negative range with oscillations. Due to the coupling, the spike is
also there for ψ̇ . The effects are not so dramatic in the angular trajectories themselves (Fig. 7.10).
Mainly the direction of φ rotation is changed due to the external torque. The oscillations in all three
angles (and angular velocities) increase in frequency with increasing precessional speed.

The theory of gyros can be extended further for a free-falling gyro. For it, the typical precession
and nutation effects vanish. It can even be proven that a falling gyro can move upward for a short
period of time, if suitable initial conditions are given. There are points in time when the vertical
acceleration is zero. At these points, the gyro can be handled like a weightless mass, as was shown
in experiments by Laithwaite (see UFT Paper 369 [78] for details and equations of motion). An
example of the vertical motion is graphed in Fig. 7.11. It can be seen that the gyro rises briefly at
the beginning of motion. �



7.3 Lagrange theory 183

Figure 7.9: Time development of angular velocities for gyroscope driven by Qφ .

Figure 7.10: Time development of angles for a gyroscope driven by Qφ .
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Figure 7.11: Example curve of vertical velocity v(t) and vertical position R(t) for the Laithwaite
experiment.



8. Unified fluid dynamics

8.1 Classical fluid dynamics

We begin this chapter with a short overview of classical fluid dynamics, also called fluid mechanics.
After that, the fluid dynamics structures of electromagnetism and dynamics will be described, and a
unified view will be given.

8.1.1 Navier-Stokes equation
In the preceding chapter, we have described the motion of particles by Lagrangian mechanics. Par-
ticle dynamics is characterized by trajectories, i.e., the path of each particle in space, parametrized
by time. When an ensemble of particles is to be described as a whole, a more appropriate approach
is to consider all particles in the same instant of time. Fluids are thought to consist of small volume
elements, which behave continuously. They are handled mathematically as a continuum model.
The motion of each element is described by a velocity vector, and the vectors of all elements at
one instant of time define the vector field of the velocity, which is dependent on space and time
coordinates, as graphically demonstrated in Fig. 8.1. Trajectories of single volume elements can be
constructed by streamlines, which are also indicated in Fig. 8.1.

Figure 8.1: Velocity field.
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For the mathematical description [80], consider a vector field u(X , Y, Z, t) with components

u =

uX

uY

uZ

 . (8.1)

Since this is a vector-valued function of several variables, the total time derivative is:

du
dt

=
∂u
∂ t

+
∂u
∂X

∂X
∂ t

+
∂u
∂Y

∂Y
∂ t

+
∂u
∂Z

∂Z
∂ t

. (8.2)

This contains the components of the velocity field

v =

 ∂X
∂ t
∂Y
∂ t
∂Z
∂ t

 . (8.3)

Therefore, the total derivative of u can be written in the operator form

du
dt

=
∂u
∂ t

+

(
vX

∂

∂X
+ vY

∂

∂Y
+ vZ

∂

∂Z

)
u (8.4)

or, formally,

du
dt

=
∂u
∂ t

+(v ·∇)u. (8.5)

The total time derivative is also known as the material or convective derivative, and written as

Du
Dt

:=
du
dt

. (8.6)

When u is the velocity field itself, the material derivative is

Dv
Dt

=
∂v
∂ t

+(v ·∇)v. (8.7)

The equation of motion includes the mass of the moving body. In the case of a fluid, the mass
is distributed over the definition volume V , and the total mass is

m =
∫

V
ρdV. (8.8)

The relevant component for the description of the fluid is therefore the local mass density ρ(X , Y, Z, t).
The equation of motion for fluids can generally be written as

ρ
Dv
Dt

=−∇ · τ + f, (8.9)

where τ is the stress tensor, and f represents external “volume forces”. The stress tensor describes
the interaction of single volume elements. By means of elasticity theory, the stress tensor can be
expressed by deformations. For practical purposes, a number of simplifications have to be made,
for example, the fluid is assumed to be isotropic so that a viscosity constant µ can be introduced, as
well as a scalar pressure p [80]. The resulting equation is called the Navier-Stokes equation:

ρ
Dv
Dt

=−∇p+µ

(
∇

2v+
1
3

∇(∇ ·v)
)
+ f. (8.10)
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The volume forces usually consist of the gravitational acceleration g multiplied by the fluid density:

f = ρg. (8.11)

By inserting this into the Navier-Stokes equation and splitting the material derivative into its
constituents, we obtain

ρ
∂v
∂ t

=−ρ (v ·∇)v−∇p+µ

(
∇

2v+
1
3

∇(∇ ·v)
)
+ρg. (8.12)

The current density of mass transport is

J = ρv, (8.13)

therefore, the mechanical continuity equation (7.41) takes the form

∂ρ

∂ t
+∇ · (ρv) = 0. (8.14)

If the mass density ρ is constant, it follows that

∇ ·v = 0, (8.15)

i.e., the velocity field is divergenceless. Then, the Navier-Stokes equation (8.12) takes the simplified
form

ρ
∂v
∂ t

=−ρ (v ·∇)v−∇p+µ∇
2v+ρg. (8.16)

This is the incompressible Navier-Stokes equation. Using the vector identity

∇× (∇×v) =−∇
2v+∇(∇ ·v), (8.17)

it can be rewritten as

ρ
∂v
∂ t

=−ρ (v ·∇)v−∇p−µ∇× (∇×v)+ρg. (8.18)

The term ρg is constant. The double-curl term describes conservation of angular momentum, which
becomes predominant in turbulent flows. Disregarding the time derivative leads to an equation for a
stationary flow:

ρ (v ·∇)v =−∇p−µ∇× (∇×v)+ρg. (8.19)

The ratio between the material derivative and the double-curl term can be roughly estimated by
considering their orders of magnitude,

|(v ·∇)v| ∼ v2

a
, (8.20)

|∇× (∇×v)| ∼ v
a2 , (8.21)

where v is the modulus of the velocity and a is the linear dimension of an obstacle in the flow. Then,
the ratio of the material derivative term to the rotational term in Eq. (8.19) is

R :=
ρav
µ

, (8.22)

which is dimensionless and is called the Reynolds number. In principle, the Reynolds number is a
result of the solutions of the Navier-Stokes equation, but it has also been defined in slightly different
ways. For high Reynolds numbers, the flow becomes turbulent and more difficult to predict. In this
case, numerical calculations often have convergence problems and require an enormous effort.
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8.1.2 Euler’s equation
In a perfect fluid, there is no viscosity. This simplifies the stress tensor, and the equation of motion
(8.9) then takes the form

ρ
Dv
Dt

=−∇p+ f, (8.23)

which is called Euler’s equation. This equation follows from the Navier-Stokes equation (8.10),
by setting the viscosity to zero. This leads to high Reynolds numbers, so the described flow
may become turbulent very easily. On the other hand, this frictionless model of fluids allows a
wide analytical mathematical treatment of fluid dynamics, especially when it is restricted to two
dimensions.

The material derivative term can be rewritten by using the identity

(v ·∇)v =
1
2

∇v2−v× (∇×v) (8.24)

(for a proof of the identity, see computer algebra code [145]). Then, the material derivative is

Dv
Dt

=
∂v
∂ t

+(v ·∇)v =
∂v
∂ t

+
1
2

∇v2−v× (∇×v), (8.25)

and Eq. (8.23) takes the form

∂v
∂ t

= v× (∇×v)− 1
2

∇v2− 1
ρ
(∇p− f) . (8.26)

Based on this equation, it makes sense to define the vorticity w by

w = ∇×v. (8.27)

We can assume that the external force f is the gradient of a potential. Then the curl of the three last
terms in Eq. (8.26) vanishes. Taking the curl of the complete equation gives

∇× ∂v
∂ t

= ∇× (v× (∇×v)) (8.28)

or, written with the vorticity,

∂w
∂ t

= ∇× (v×w). (8.29)

This is called the vorticity equation. It can be shown [80, 145] that this equation, in the case of an
incompressible flow, can be rewritten as

Dw
Dt

= (w ·∇)v. (8.30)

It is possible to reinstate the viscosity into the vorticity equation (8.29). The viscosity term
µ∇2v from (8.16) can be added to Euler’s equation (8.23). Then, Eq. (8.28) takes the expanded
form

∇× ∂v
∂ t

= ∇× (v× (∇×v))+
µ

ρ
∇× (∇2v). (8.31)

The ratio µ/ρ can be replaced by the Reynolds number R through a rescaling of variables [81]. By
assuming an incompressible fluid, we obtain the vorticity equation with turbulence:

∂w
∂ t

= ∇× (v×w)+
1
R

∇
2w. (8.32)
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The circulation is defined as a line integral over the velocity for a closed path in the fluid:

Γ =
∮

v ds. (8.33)

For a perfect fluid with potential forces f, it can be shown that

DΓ

Dt
= 0, (8.34)

i.e., the circulation is a constant of motion. According Stokes’ theorem, the circulation can be
written as an integral over the enclosed surface spanned by the line integral

Γ =
∫
(∇×v)n dA =

∫
wn dA, (8.35)

where the curl is taken over the surface and dA is the infinitesimal area element. The index n
indicates the projection of the corresponding vectors to the surface normal. A non-vanishing
circulation means that the vector field v is non-conservative.

8.1.3 Potential flow
The following holds for an incompressible and vortex-free fluid:

∇ ·v = 0, (8.36)

∇×v = 0. (8.37)

From the second condition, it follows that v can be written as a gradient of a scalar potential Φ,
called the velocity potential:

v = ∇Φ. (8.38)

Then, from (8.36) follows directly that

∇
2
Φ = 0, (8.39)

which is the Laplace equation. At the boundaries of the fluid, the flow must be tangential, i.e., the
normal components have to vanish:

vn =
∂Φ

∂n
= 0. (8.40)

Often, the only boundaries possible are Φ = const., i.e.,

v = 0. (8.41)

In two dimensions, in cartesian coordinates, the Laplace equation reads:

∂ 2Φ

∂X2 +
∂ 2Φ

∂Y 2 = 0. (8.42)

Then, condition (8.37) is reduced to one equation:

∂vY

∂X
− ∂vX

∂Y
= 0, (8.43)
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and from (8.36) we obtain

∂vX

∂X
+

∂vY

∂Y
= 0. (8.44)

The existence of the velocity potential Φ follows from Eq. (8.43):

vX =
∂Φ

∂X
, vY =

∂Φ

∂Y
. (8.45)

Inserting these definitions into (8.44) gives the Laplace equation (8.42).
Eq. (8.43) allows the definition of a second potential, the stream function Ψ:

vX =
∂Ψ

∂Y
, vY =−∂Ψ

∂X
. (8.46)

Inserting these definitions into Eq. (8.43) results in the Laplace equation for Ψ:

∂ 2Ψ

∂X2 +
∂ 2Ψ

∂Y 2 = 0. (8.47)

When both definitions of vX , vY (8.45 and 8.46) are inserted into the gradients of Φ and Ψ, it follows
that

∇Φ ·∇Ψ = 0. (8.48)

Since the gradients of these functions are perpendicular, the lines for Φ = const. and Ψ = const.
are perpendicular to each other. The lines with Φ = const. are called the equipotential lines, and
the lines with Ψ = const. are called the stream lines.

Simple application cases can be handled analytically in two dimensions by this theory. In three
dimensions, this is nearly impossible and numeric calculations have to be performed. This field is
named Computational Fluid Dynamics (CFD).

� Example 8.1 We compute a simple example of a two-dimensional potential flow (see computer
algebra code [146]). The potential is defined by

Φ =−X2 +Y 2−2XY, (8.49)

resulting in

vX =−2X−2Y, vY =−2X +2Y. (8.50)

We have verified that the Laplace equation for this potential is fulfilled and the divergence and curl
of v vanish. The velocity field is graphed in Fig. 8.2, together with some stream lines. It is seen
that the potential describes a fourfold symmetric flow, rotated against the coordinate axes. Near the
coordinate origin, the flow goes to zero and there is no divergence. In this example, no boundary
conditions have been defined, for simplicity. In Fig. 8.3, the equipotential lines are shown, together
with the stream lines. It can be seen clearly that they are perpendicular to each other.

We include a second computation to demonstrate a turbulent flow (see computer code [146]
also). We define the velocity field directly as

vX = X +
Y 2

2
, vY = X2−Y. (8.51)

This field is divergenceless, but has a curl of 2X−Y . In Fig. 8.4, the graph of the field lines shows
that there is a center of rotation in the second quadrant. For such a velocity field, no scalar potential
can be defined. �
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Figure 8.2: Velocity field and stream lines. Figure 8.3: Stream lines2 (blue) and equipo-
tential lines (red).

Figure 8.4: Velocity field of a vortex flow with stream lines.

8.2 Fluid electrodynamics

In this section, the field equations of fluid electrodynamics are introduced. This is a new subject
area that is derived from Cartan geometry, using equations that were originally derived by Tsutomu
Kambe. They have been extended by including the effects of viscosity and turbulence. The
unification of electromagnetism and fluid dynamics is achieved, which allows new insights into the
structure of spacetime itself and its interaction with matter. The foundational ECE papers for this
section are listed in [82]. The impact of the fluid aspects of spacetime on dynamics and gravitation
will be discussed in the next sections.

8.2.1 Kambe equations

In this section, the Kambe formulation of the equations of fluid dynamics [83–85] has been
translated into equations of ECE2 electrodynamics. This unification of two very large subject
areas, which we are calling “fluid electrodynamics”, was achievable because ECE2 is a unified field
theory.

2The direction of stream lines is indicated in inverse direction to the velocity field of Fig. 8.2, because the internal
graphics procedure defines the velocity field with a negative sign: v =−∇Φ.
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Original Kambe equations
The starting points of Kambe’s development are Euler’s equation (8.23) without external force and
the vorticity equation (8.29):

∂v
∂ t

+(v ·∇)v =− 1
ρ

∇p (8.52)

and

∂w
∂ t

= ∇× (v×w), (8.53)

with vorticity

w = ∇×v. (8.54)

The pressure term can be replaced by the enthalpy per unit mass h. In thermodynamics, the equation

dh =
1
ρ

d p+T ds (8.55)

holds, where s is the entropy and T is the temperature. Initially, the entropy in the fluid field is
uniform, and it is assumed that the fluid is isentropic, meaning that entropy is conserved in the fluid,
i.e., ds = 0. Then, we have

dh =
1
ρ

d p (8.56)

or, written in differential vector form,

∇h =
1
ρ

∇p. (8.57)

Thus, the Euler equation takes the form

∂v
∂ t

+(v ·∇)v =−∇h. (8.58)

Next, we define the counterparts of the electric field and magnetic induction, named EF and
HF , and show that these obey Maxwell’s equations. The index F stands for “Fluid”. We identify
the vector potential with the velocity field v and the scalar potential with the enthalpy per unit mass
h so that we have, in analogy to the electric case:

EF =−∂v
∂ t
−∇h. (8.59)

We identify the magnetic induction with the vorticity:

HF = w = ∇×v. (8.60)

The Gauss law follow directly from these definitions:

∇ ·HF = 0. (8.61)

We compute the terms

∇×EF =−∇× ∂v
∂ t

, (8.62)

∂HF

∂ t
= ∇× ∂v

∂ t
(8.63)
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and immediately obtain the Faraday law by summing both equations:

∇×EF +
∂HF

∂ t
= 0. (8.64)

From Euler’s equation (8.58) we find that

(v ·∇)v =−∂v
∂ t
−∇h. (8.65)

The right-hand side is exactly the definition of EF ; therefore, we have an alternative equation for
the electric field,

EF = (v ·∇)v, (8.66)

which depends on the velocity field only, as does the magnetic field. Then, the Coulomb law can be
written as

∇ ·EF = ∇ · ((v ·∇)v) . (8.67)

From this, we define the fluid charge density qF by

qF = ∇ · ((v ·∇)v) , (8.68)

so that the Coulomb law can be expressed in the well-known form

∇ ·EF = qF . (8.69)

Finally, we have to derive the Ampère-Maxwell law. Differentiating Eq. (8.59) by time, we obtain

−∂EF

∂ t
=

∂ 2v
∂ t2 +∇

∂h
∂ t

. (8.70)

Adding the term a2
0 ∇×HF = a2

0 ∇× (∇×v) to both sides, where a0 is a constant, after rearranging
gives:

∇×HF −
1
a2

0

∂EF

∂ t
=

1
a2

0
J (8.71)

with

J =
∂ 2v
∂ t2 +∇

∂h
∂ t

+a2
0 ∇× (∇×v). (8.72)

From comparison with the electromagnetic Ampère-Maxwell law, we see that a0 is the expansion
velocity of the fields, which in this case is the speed of sound. A more thorough definition of the
sound velocity follows from thermodynamics where, for a fixed entropy s, we obtain for changes of
pressure and density:

∆p =

(
∂ p
∂ρ

)
s=const

∆ρ. (8.73)

If the pressure changes in proportion to the density, the partial derivative is constant, and the ratio
of these quantities is the squared sound velocity:

∆p
∆ρ

= a2
0. (8.74)
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For convenience, the Maxwell-like field definitions and equations are listed below:

EF =−∂v
∂ t
−∇h = (v ·∇)v

HF = w = ∇×v
qF = ∇ · ((v ·∇)v)

∇ ·HF = 0

∇×EF +
∂HF

∂ t
= 0

∇ ·EF = qF

∇×HF −
1
a2

0

∂EF

∂ t
=

1
a2

0
JF

JF =
∂ 2v
∂ t2 +∇

∂h
∂ t

+a2
0 ∇× (∇×v)

(8.75)

(8.76)

(8.77)

(8.78)

(8.79)

(8.80)

(8.81)

(8.82)

In Table 8.1, an update of Table 7.1, the units of electromagnetism, mechanics and flid dynamics
are compared. The units of components of the mechanics and fluid dynamics sectors are identical,
but for the material quantities (mass and current densities) they are different.

Electromagnetism Mechanics Fluid Dynamics

Field Symbol Units Symbol Units Symbol Units

electric field E V/m g m/s2 EF m/s2

magnetic induction B T=Vs/m2 Ω 1/s HF 1/s
scalar potential φ V Φ m2/s2 h m2/s2

vector potential A Vs/m Q m/s v m/s
charge density ρ C/m3 ρm kg/m3 ρF 1/s2

current density J C/(m2s) Jm kg/(m2s) JF m/s3

pressure p N/m2 p N/m2

Table 8.1: Comparison among components of electromagnetism, mechanics and fluid dynamics.

Sound wave equations
In analogy to the electromagnetic case, we derive wave equations for EF and HF . Proceeding as in
Section 6.2.4, we compute the curl of Eq. (8.79):

∇× (∇×EF)+∇× ∂HF

∂ t
= 0. (8.83)

Taking the time derivative of Eq. (8.81) gives

∇× ∂HF

∂ t
− 1

a2
0

∂ 2EF

∂ t2 =
1
a2

0

∂JF

∂ t
. (8.84)

Using the identity

∇× (∇×EF) =−∇
2EF +∇(∇ ·EF) (8.85)

and inserting this into (8.83), we obtain

−∇
2EF +∇(∇ ·EF)+∇× ∂HF

∂ t
= 0. (8.86)
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Now, solving Eq. (8.84) for ∇× ∂HF
∂ t and inserting the result into (8.86) gives the wave equation

1
a2

0

∂ 2EF

∂ t2 −∇
2EF =−∇qF −

1
a2

0

∂JF

∂ t
, (8.87)

where we have replaced the divergence of EF with the fluid charge qF , in accordance with Eq.
(8.80). The source term (right-hand side) of this wave equation contains the gradient of the fluid
source. This is a new term not appearing in the corresponding electrodynamic wave equation. A
non-constant fluid charge produces sound waves.

The second wave equation follows by proceeding as in the electromagnetic case. We take the
curl of (8.81) and the time derivative of (8.79). This gives us the wave equation for HF :

1
a2

0

∂ 2HF

∂ t2 −∇
2HF =

1
a2

0
∇×JF . (8.88)

Extension to viscosity and turbulence effects

Eq. (8.82) for the current contains a double-curl describing an angular momentum, which is a
rotation within the current. Kambe has shown that this is a source for a vortex sound wave. The
same holds for the current density qF .

Kambe’s derivation does not include the effects of viscosity. He only mentions them in an
example. Nevertheless, viscosity is the cause of turbulence, as we know from the Navier-Stokes
equation and the vorticity equation (8.32):

∂w
∂ t

= ∇× (v×w)+
1
R

∇
2w (8.89)

The momentum in the “minimal prescription” of quantum mechanics in ECE and ECE2 theory is

p = mv = eA = eW (8.90)

for a moving particle with mass m and charge e. A and W are the vector potentials of ECE and
ECE2 theory. It follows from this equation that the aether velocity field can be expressed by the
ECE2 potential:

v =
e
m

W, (8.91)

and the hydrodynamic vorticity field (using (8.32)) is

w =
e
m

∇×W =
e
m

B. (8.92)

In this way, we obtain a unification of the aether, or background velocity field, with electromagnetic
induction. Inserting this into Eq. (8.32) gives the vorticity equation for electrodynamics:

∂B
∂ t

= ∇× (v×B)+
1
R

∇
2B. (8.93)

This will be developed further, below. The Reynolds number is that of the aether, and the magnetic
flux density is induced in a circuit. The fluid velocity becomes turbulent at a certain Reynolds
number.
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Fluid dynamics effects in electrodynamics
So far, we have shown that the equations of fluid dynamics can be written in the form of the ECE2
field equations, which are formally identical to Maxwell’s equations. In the following, we will
proceed in reverse and reformulate electrodynamics in the form of Kambe’s fluid dynamics.

We have seen that Kambe’s equations (8.75-8.82) are formally identical to those of electro-
dynamics, with some extensions, for example the definition of the fluid source (8.77). Now let
us reformulate these equations with electrodynamic properties. For this, we need a relation that
connects both fields of physics. This relation is the force density. The electric field of a charge q
originates a mechanical force

F = qE, (8.94)

and the fluid dynamics field EF , which is a mechanical acceleration field creates, according to
Newton’s law, the force action on a mass m of

F = mEF . (8.95)

Since we are working with continuous fields, we have to replace charge and mass by their corre-
sponding volume densities ρ and ρm. The above equations then read(

F
V

)
e
= ρE, (8.96)(

F
V

)
m
= ρmEF , (8.97)

where the forces have now become force densities. The Navier-Stokes equation (8.10), for example,
is an equation of force density, as is Euler’s equation (8.23). By equating the force densities, we
obtain

E =
ρm

ρ
EF (8.98)

and, similarly,

B =
ρm

ρ
HF (8.99)

for the magnetic induction field.

� Example 8.2 As a small example, we show that the units of Eq. (8.99) are the same on both
sides. We write this equation in the form of force densities:

ρB = ρmHF . (8.100)

As can be seen directly, the right-hand side has units of

[ρmHF ] =
kg
m3 ·

1
s
. (8.101)

This is a kind of frequency density. For the left-hand side, we use the unit relations
1 T = 1 Vs/m2

and
1 V = 1 J/C = 1 Nm/C:

[ρB] =
C

m3 ·
Vs
m2 =

C
m3 ·

Nms
Cm2 =

C
m3 ·

kgm2 s
s2 Cm2 =

kg
m3 ·

m2 s
s2 m2 =

kg
m3 ·

1
s
. (8.102)

Both sides have the same units. �
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Returning to our discussion of fluid dynamics effects, we compare the definitions of electric
fields:

E =−∂W
∂ t
−∇φW , (8.103)

EF =−∂v
∂ t
−∇h. (8.104)

According to Eq. (8.98), the terms on the right-hand side can be multiplied by the ratio of densities.
In the most general case, they have to be included in the arguments of the differential operators.
This leads to the equivalence of potentials:

W =
ρm

ρ
v, (8.105)

φW =
ρm

ρ
h. (8.106)

From the equivalence of Coulomb laws

ρ∇ ·E = ρm∇ ·EF (8.107)

we see that

ρ = ε0
ρm

ρ
qF (8.108)

or

ρ2

ε0
= ρm qF . (8.109)

The continuity equation of Kambe fields can be derived by taking the divergence of Eq. (8.81):

− ∂

∂ t
∇ ·EF = ∇ ·JF . (8.110)

With the Coulomb law (8.80), it follows that

∂qF

∂ t
+∇ ·JF = 0. (8.111)

The continuity equation of electrodynamics is

∂ρ

∂ t
+∇ ·J = 0. (8.112)

Replacing ρ by qF via (8.108), we obtain a consistent equation by setting

J = ε0
ρm

ρ
JF . (8.113)

In summary, the fields of fluid dynamics are coupled to the fields of electrodynamics by

v =

(
ρ

ρm

)
W, (8.114)

h =

(
ρ

ρm

)
φW , (8.115)

BF = w =

(
ρ

ρm

)
B, (8.116)

EF =

(
ρ

ρm

)
E, (8.117)

qF =
1
ε0

ρ2

ρm
. (8.118)
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Inserting these into the Kambe equations (8.78-8.81) gives us the ECE2 field equations in fluid
dynamics form:

∇ ·
(

ρ

ρm
B
)
= 0

∂

∂ t

(
ρ

ρm
B
)
+∇×

(
ρ

ρm
E
)
= 0

∇ ·
(

ρ

ρm
E
)
=

1
ε0

ρ2

ρm

− 1
a2

0

∂

∂ t

(
ρ

ρm
E
)
+∇×

(
ρ

ρm
B
)
=

1
a2

0 ε0

ρ

ρm
J

(8.119)

(8.120)

(8.121)

(8.122)

The Gauss law (8.119) can be written as

ρ

ρm
∇ ·B+∇

(
ρ

ρm

)
·B = 0 (8.123)

or

∇ ·B =−ρm

ρ
∇

(
ρ

ρm

)
·B, (8.124)

which allows for magnetic monopoles, if the charge densities are varying in space. The factor
in front of J in the Ampère-Maxwell law can be written in the following way. In analogy to
electrodynamics, we define an acoustic permeability µ by the relation

a2
0 =

1
ε0µ

. (8.125)

Then, the factor in front of J in the Ampère-Maxwell law becomes a2
0ε0 = 1/µ , leading to

− 1
a2

0

∂

∂ t

(
ρ

ρm
E
)
+∇×

(
ρ

ρm
B
)
= µ

ρ

ρm
J, (8.126)

which is similar to how it is in electrodynamics. The equations of fluid electrodynamics contain
more information than both of standard and ECE2 electrodynamics. In the case of constant electrical
and mechanical densities, Eqs. (8.119-8.122) revert to those of ECE2 electrodynamics.

8.2.2 Additional equations with turbulence and wave equations
In Section 8.2.1, we derived the vorticity equation for electrodynamics (with turbulence expressed
by the Reynolds number), Eq. (8.93), from Eq. (8.89) using only conventional expressions of charge
and mass. We will repeat this using the fully unified theory, through the relations (8.114-8.118).
From the vorticity equation, we obtain

∂

∂ t

(
ρ

ρm
B
)
= ∇×

(
ρ

ρm
v×B

)
+

1
R

∇
2
(

ρ

ρm
B
)
. (8.127)

This equation, which contains the Lorentz force term v×B, turns into the original equation (8.93),
when charge densities are constant. In a more precise derivation [86], it has been shown that a
baroclinic term proportional to the gradients of ρ and p has to be added to the vorticity equation:

∂w
∂ t

= ∇× (v×w)+
1

ρ2
m

∇ρm×∇p+
1
R

∇
2w. (8.128)
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The baroclinic term can be rewritten to
1

ρ2
m

∇ρm×∇p =
1

ρm
∇ρm×∇h (8.129)

with

∇h = (v ·∇)v− ∂v
∂ t

. (8.130)

Further development of fluid electrodynamics is possible on a very detailed level.

� Example 8.3 As an example of further development, in this case without the inclusion of
turbulence, we derive an alternative expression for the field EF . We combine the curl of Eq. (8.75),

∇×EF =−∂ (∇×v)
∂ t

, (8.131)

with the vorticity equation without turbulence, Eq. (8.29),

∂w
∂ t

= ∇× (v×w). (8.132)

The right-hand side of (8.131) is the time derivative of w. Inserting this into Eq. (8.132), we obtain

∇×EF = ∇× (w×v). (8.133)

A particular solution of this equation is

EF = w×v. (8.134)

However, by this procedure the information of the scalar potential h has been lost. �

Beltrami flows
For a Beltrami flow, the curl of the fluid velocity is parallel to the fluid field itself:

∇×v = kv (8.135)

with a wave vector k. It follows from (8.134), with w = kv, that

EF = (v ·∇)v = 0. (8.136)

From Eqs. (8.75-8.82), we obtain these additional properties for a Beltrami flow:

HF = kv, (8.137)

qF = 0, (8.138)

∇h = 0, (8.139)

∇ ·v = 0, (8.140)
∂v
∂ t

= 0, (8.141)

∇×v =
1

a2
0 k

JF , (8.142)

JF = a2
0 k2 v. (8.143)

Furthermore, for a Beltrami flow,

Dv
Dt

=
∂v
∂ t

. (8.144)

A Beltrami flow is incompressible and inviscid. These properties are depicted in the example of
Fig. 6.9. It can be seen that the flow is source-free and divergence-free. The direction of the flow
current is identical to that of the velocity field. All non-vanishing fields are parallel to each other,
as was explained in Section 6.2.
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Wave equations
It is possible to derive wave equations of fluid electrodynamics in 4-vector form [86]. However, we
present only the results here, because the calculation is complex and beyond the scope of this book.
We can define a 4-current as

Jµ

F = (a0 qF ,JF) (8.145)

and a 4-derivative as

∂µ =

(
1
a0

∂

∂ t
,∇

)
. (8.146)

The continuity equation (8.111) can be written as

∂µJµ

F = 0. (8.147)

We now define the velocity four vector as

vµ =

(
Φ

a0
,v
)
, (8.148)

where Φ is a sum of the enthalpy per unit mass and additional terms derived from viscosity. We
assume that

∂µvµ =
1
a2

0

∂Φ

∂ t
+∇ ·v = 0. (8.149)

This is the Lorenz gauge assumption of fluid electrodynamics. With this assumption, wave equations
for Φ and v can be derived:

�Φ = qF , (8.150)

�v =
1
a2

0
JF , (8.151)

which can be combined into the single wave equation:

�vµ =
1
a2

0
Jµ

F (8.152)

From the continuity equation and (8.150, 8.151), we get the equation

�

(
1
a2

0

∂Φ

∂ t
+∇ ·v

)
= 0. (8.153)

The Lorenz condition (8.149) is a possible solution of Eq. (8.153), which shows that the analysis
is rigorously self-consistent. It has been shown that the entire subject of fluid dynamics can be
reduced to a single wave equation that, like all wave equations of physics, is an example of the ECE
wave equation

(�+R)vµ = 0 (8.154)

of Cartan geometry, provided that the scalar curvature is defined by

Rvµ :=− 1
a2

0
Jµ

F . (8.155)

In the case of Beltrami flows, R is constant, which follows directly from Eq. (8.143):

R =−k2, (8.156)

and Eq. (8.154) is transformed into a conventional eigenvalue equation.
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8.2.3 Connection to Cartan geometry
The convective derivative is an example for the covariant derivative of Cartan geometry. For a
vector V a, the covariant derivative is defined by

DV a

dxµ
=

∂V a

∂xµ
+ω

a
µbV b (8.157)

with indices of tangent space a, b. We choose cartesian coordinates

(xµ) = (ct,X ,Y,Z). (8.158)

The convective derivative is

Dv
Dt

=
∂v
∂ t

+(v ·∇)v =
∂v
∂ t

+

(
vX

∂

∂X
+ vY

∂

∂Y
+ vZ

∂

∂Z

)
v, (8.159)

and its X component is

DvX

Dt
=

∂vX

∂ t
+ vX

∂vX

∂X
+ vY

∂vX

∂Y
+ vZ

∂vX

∂Z
. (8.160)

For µ = 0, Eq. (8.157) reads

DV a

dt
=

∂V a

∂ t
+ cω

a
0bV b. (8.161)

Now define a contravariant velocity 4-vector of Cartan geometry vµa with polarization index a of
tangent space. We choose the coordinate system of tangent space to be identical with that of the
base manifold for each point with cartesian coordinates xµ . Then, the coordinate components of
vµa are the same for each µ = a, and we can write the 4-vector simply as va. According to the
definition (8.148), we have:

(va) =

(
Φ

a0
,vX ,vY ,vZ

)
=

(
Φ

a0
,v
)
, (8.162)

where the 0-component contains the flow potential Φ and sound velocity a0. By comparing (8.160)
with (8.161) for V a = va, we see that the spin connection for µ = 0 is:

c ω
a
0b =

∂va

∂xb . (8.163)

This expression is identical with the Jacobian J = (Jab) defined by Eq. (2.62) earlier in this book.
ωa

0b is the scalar spin connection. The factor c in Eq. (8.161) appears because the original
coordinate is x0 = ct. The expression cωa

0b is a time frequency as required for dimensional reasons.
In addition to the scalar spin connection, a vector spin connection appears in fluid dynamics,

when a scalar function is used instead of a vector V a in Eq. (8.157), which then is called the Stokes
derivative (see [82], 351st paper notes 351, 6-7).

8.2.4 Vacuum fluid and energy from spacetime
We will show that energy from spacetime is a direct consequence of fluid electrodynamics, and that
spacetime acts as a richly structured fluid, which has also been called the “aether” or “vacuum”. In
conventional electrodynamics, the vacuum is defined by

ρ = 0, J = 0, (8.164)



202 Chapter 8. Unified fluid dynamics

but in fluid electrodynamics the vacuum is not empty, and has the ability to create electromagnetic
fields in space itself. These fields can be “wiretapped” by electric circuits.

From Eq. (8.98), the Kambe field EF is equivalent to an electric vacuum field E. Both are
connected by a mass density ρm and charge density ρ , which are both properties of the vacuum:

ρE = ρmEF . (8.165)

A non-vanishing electric vacuum field and charge density may appear unusual at a first glance,
but they are familiar from the quantum mechanical vacuum, which is different from the classical
vacuum described by Eqs. (8.164).

When a circuit is placed into the vacuum, which is automatically the case since the vacuum
aether is everywhere, this electric field appears in the circuit (making it detectable by instruments):

E(electr) =
ρm(vac)

ρ(vac)
EF(vac). (8.166)

The random noise in a circuit can be considered to be a signal originating from such a field. In the
same way, a magnetic field

B(electr) =
ρm(vac)

ρ(vac)
BF(vac) (8.167)

is induced in the circuit. Both are generated by the aether flow v:

E(electr) =

(
ρm

ρ

)
(vac)

(v ·∇)v =

(
ρm

ρ

)
(vac)

(
−∂v

∂ t
−∇Φ

)
(vac)

, (8.168)

B(electr) =

(
ρm

ρ

)
(vac)

∇×v, (8.169)

where Φ is the potential of fluid dynamics as introduced in (8.148).

Coulomb law
The Coulomb law can be formulated in a way that the electric field is that which is induced in the
circuit, but the generating charge density is that of spacetime or vacuum:

(∇ ·E)(electr) =
ρ(vac)

ε0
. (8.170)

Inserting the definition of the circuit electric field (8.103) and that of the vacuum charge density
(8.109),

E(electr) =−
∂W
∂ t
−∇φW , (8.171)

ρ(vac) =
√

ε0 ρm qF , (8.172)

leads to the form of the Coulomb law(
∂

∂ t
∇ ·W+∇

2
ΦW

)
(electr)

=−
(√

ρm

ε0
qF

)
(vac)

(8.173)

with the fluid charge density qF , according to (8.68):

qF = ∇ · ((v ·∇)v) . (8.174)

Obviously, the square root expression gives real-valued results only for qF ≥ 0. The last equation
shows that, if v changes sign, the result for qF remains the same and should be positive for reasons
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of consistency. When the velocity field is given, the right-hand side of Eq. (8.173) is defined. Only
the vacuum matter density remains a parameter, which has to be determined experimentally.

To simplify the above equation, we can assume the Lorenz gauge

1
c2

∂ΦW

∂ t
+∇ ·W = 0. (8.175)

Then Eq. (8.173) becomes the wave equation(
∂ 2ΦW

∂ t2 −∇
2
ΦW

)
(electr)

=

(√
ρm

ε0
qF

)
(vac)

. (8.176)

With the d’Alembert operator,

�=
1
c2

∂ 2

∂ t2 −∇
2, (8.177)

this can be written as

(�ΦW )(electr) =

(√
ρm

ε0
qF

)
(vac)

. (8.178)

ΦW can be determined by solving this equation. The vacuum electric field EF(vac) is computed
from the given velocity field v via

EF(vac) = (v ·∇)v. (8.179)

Then, the ratio of vacuum matter density to charge density is obtained from Eq. (8.166):

ρm(vac)

ρ(vac)
=
|EF(electr)|
|EF(vac)|

. (8.180)

Turbulence in spacetime can be explored by solving the vorticity equation (8.32) (starting with the
simplest case) and using the resulting velocity field in the equations of this section.

Wave equations
Eq. (8.178) is already a wave equation for energy from spacetime. From the Ampère-Maxwell law
of electrodynamics,

− 1
c2

∂E
∂ t

+∇×B = µ0J, (8.181)

by inserting the potentials for E and B,

E =−∇φW −
∂W
∂ t

, (8.182)

B = ∇×W, (8.183)

we obtain the equation

− 1
c2

∂

∂ t

(
−∇φW −

∂W
∂ t

)
+∇× (∇×W) = µ0J. (8.184)

Replacing the double-curl gives

1
c2

∂

∂ t

(
∇φW +

∂W
∂ t

)
+∇(∇ ·W)−∇

2W = µ0J. (8.185)
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We can use the Lorenz gauge again to simplify this equation. Taking the gradient of the Lorenz
gauge (8.175), we obtain

1
c2

∂∇ΦW

∂ t
+∇(∇ ·W) = 0. (8.186)

Inserting this into (8.185) gives

1
c2

∂W2

∂ t2 −∇
2W = µ0J, (8.187)

which can be written in short form as in (8.178):

�W = µ0J. (8.188)

The wave equation for the ECE2 potential ΦW is (Eq. (6.295)):

�ΦW =
ρ

ε0
. (8.189)

We define 4-vectors

W µ = (
ΦW

c
,W), (8.190)

Jµ = (cρ,J). (8.191)

Then, the Lorenz condition reads

∂µW µ = 0 (8.192)

and, using this condition, the wave equation for W µ is

�W µ = µ0Jµ . (8.193)

This is an inhomogeneous equation and has a source term on the right-hand side, as does Eq.
(8.178).

Applying the same interpretation as we did for the Coulomb law, the right-hand side is the
vacuum current, and the fields on the left-hand side are fields induced in the circuit. Then, we
obtain

(�W µ)(electr) = (µ0Jµ)(vac) . (8.194)

The equation for the 0-component (µ = 0) has already been derived and is Eq. (8.178). Writing Eq.
(8.113) in this notation gives:

J(electr) = ε0

(
ρm

ρ

)
(vac)

JF . (8.195)

Therefore, the wave equation for the vector potential W created by spacetime flow reads

(�W)(electr) =
1
c2

(
ρm

ρ

)
(vac)

JF . (8.196)

So far, we have considered electromagnetic effects as being directly equivalent to vacuum
structures. These electromagnetic effects can be detected in devices that serve as measuring
instruments. The inverse effect is also present. An electromagnetic structure created by standard
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technical methods produces a corresponding vacuum structure. Electromagnetic fields generate a
vacuum flow. This is a re-interpretation of Eq. (8.165):

ρE = ρmEF . (8.197)

Now, the charge density is that of the circuit, as is the electric field. Therefore, as a variation of
(8.166), we have:

E(circuit) =
ρm(vac)

ρ(circuit)
EF(vac). (8.198)

This raises the question what the aether flux looks like, when an electromagnetic device is in
operation. Inserting the Kambe fields gives us

E(circuit) =
ρm(vac)

ρ(circuit)
(v ·∇)v, (8.199)

B(circuit) =
ρm(vac)

ρ(circuit)
∇×v. (8.200)

For the potentials, we have from Eqs. (8.114, 8.115):

W(circuit) =
ρm(vac)

ρ(circuit)
v, (8.201)

φW (circuit) =
ρm(vac)

ρ(circuit)
h. (8.202)

Thus, we can replace every solution for electromagnetic properties with the corresponding spacetime
properties. Since differential operators appear on the right-hand sides of the above equations, we
will obtain a differential equation in general. As an example, we consider the Coulomb field or,
more precisely, the attractive force field between two point-like particles with charge. This is

E(circuit) =
q

4πε0r2 er, (8.203)

where er is the radial unit vector in spherical polar coordinates. Therefore, Eq. (8.199) has to
be solved in spherical polar coordinates. The operator (v ·∇)v is listed in polar and cylindrical
coordinates in Example 8.4.

� Example 8.4 We present the vector operator (a ·∇)b in cartesian, cylindrical and spherical
coordinates for arbitrary vector functions a and b [87]:

(acart ·∇)bcart =

aX
∂bX
∂X +aY

∂bX
∂Y +aZ

∂bX
∂Z

aX
∂bY
∂X +aY

∂bY
∂Y +aZ

∂bY
∂Z

aX
∂bZ
∂X +aY

∂bZ
∂Y +aZ

∂bZ
∂Z

 , (8.204)

(acyl ·∇)bcyl =

ar
∂br
∂ r + aθ

r
∂br
∂θ

+aZ
∂br
∂Z −

aθ bθ

r
ar

∂bθ

∂ r + aθ

r
∂bθ

∂θ
+aZ

∂bθ

∂Z + aθ br
r

ar
∂bZ
∂ r + aθ

r
∂bZ
∂θ

+aZ
∂bZ
∂Z

 , (8.205)

(asph ·∇)bsph =


ar

∂br
∂ r + aθ

r
∂br
∂θ

+
aφ

r sinθ

∂br
∂φ
− aθ bθ+aφ bφ

r

ar
∂bθ

∂ r + aθ

r
∂bθ

∂θ
+

aφ

r sinθ

∂bθ

∂φ
+ aθ br

r −
aφ bφ cotθ

r

ar
∂bφ

∂ r + aθ

r
∂bφ

∂θ
+

aφ

r sinθ

∂bφ

∂φ
+

aφ br
r +

aφ bθ cotθ

r

 . (8.206)

�
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For the Coulomb field, there is no angular dependence, so only the radial part of the velocity
field has to be considered. Computer algebra gives the result (see code [147]):

vr =±
√

q
2πε0x

√
1
r
− c (8.207)

with

x =
ρm(vac)

ρ(circuit)
(8.208)

and an integration constant c. If q is negative, then the factor 1/r also changes sign, so that the
solution remains real-valued (see computer algebra code [147]). To obtain the right asymptotic
behavior of vr for r→ ∞, we have to set c = 0.

For the Coulomb law, we have to note that the charge density is a δ function, which is different
from zero only for r = 0. Therefore, there is no charge density ρ in the Coulomb field for r > 0,
and the factor x is

x =
ρm(vac)

ρ(vac)
, (8.209)

like in the regions outside of a circuit, in earlier discussion. In these regions, according to the ECE2
Coulomb law (6.153), we have

∇ ·E =
ρ

ε0
=−2

(
1

W (0) A−ω

)
·E = 0, (8.210)

where ω is the vector spin connection. It follows that

1
W (0) A−ω = 0. (8.211)

The vector potential of ECE2 theory is defined as

W =W (0)
ω, (8.212)

therefore, it is identical to the vector potential A in free space:

W = A. (8.213)

This property allwos us to rewrite the E field by the the vector potential A in the following way.
The antisymmetry law of electrodynamics, Eq. (5.24), with polarization indices omitted, has the
form:

E =−2
(

∂A
∂ t

+ cω0 A
)
=−2(∇φ −ωφ) . (8.214)

Therein, ω0 is the scalar spin connection and ω is the vector spin connection. Using the left identity,
and taking into account that E is a static field, we obtain

E =−2cω0 A, (8.215)

and after applying (8.114), this becomes

E =−2cxω0 v. (8.216)

It follows that the static electric field of a charge is a velocity field of aether or vacuum flow. To the
best of our knowledge, Tom Bearden [88] was the first to come to this conclusion. This result of
ECE theory is the first theoretical foundation for this statement. It cannot be obtained from standard
physics, and is a fundamentally new insight into the nature of electromagnetism.
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8.2.5 Graphical examples
A number of examples, in particular the fluid fields of vector potentials of given material fields, will
be described and graphed in this section. These examples will also further develop the methodology
for describing spacetime fluid effects.

Examples of Kambe Fields
� Example 8.5 We investigate the dynamic charge density qF derived from the velocity field v by
Kambe (Eq. 8.77):

qF = ∇ · (v ·∇)v. (8.217)

For an incompressible fluid, it is required that the velocity field is divergence-free:

∇ ·v = 0. (8.218)

We will inspect some velocity models by specifying v analytically. We use plane polar coordinates
that are identical with cylindrical coordinates with Z = 0. Therefore, we can use the differential
operators of cylindrical coordinates (r,θ ,Z):

∇ψ =


∂ψ

∂ r
1
r

∂ψ

∂θ
∂ψ

∂Z

 , (8.219)

∇ ·v =
1
r

∂ (r vr)

∂ r
+

1
r

∂vθ

∂θ
+

∂vZ

∂Z
, (8.220)

∇×v =

 1
r

∂vZ
∂θ
− ∂vθ

∂Z
∂vr
∂Z −

∂vZ
∂ r

1
r

∂ (r vθ )
∂ r −

1
r

∂vr
∂θ

 (8.221)

for a scalar function ψ and vector v.
We choose an example where the divergence vanishes, although this is not obvious from the

velocity field:

v1 =

 acosθ

r2
asinθ

r2 +b
0

 (8.222)

with constants a and b. Computer algebra gives the results:

∇ ·v1 = 0, (8.223)

EF = (v1 ·∇)v1 =−
a
r5

asin2
θ +br2 sinθ +2acos2θ

cosθ
(
asinθ −br2

)
0

 , (8.224)

W = ∇×v1 =

0
0
b
r

 , (8.225)

q1 =
a
r6

(
5asin2

θ +br2 sinθ +7acos2
θ
)
. (8.226)

The vector field (8.222) is shown in Fig. 8.5. There is a center of rotation below the coordinate
center. The velocities are much higher above the center than below. This leads to partially
asymmetric electric field components Er and Eθ , Eq. (8.224). The field EF has been converted to
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Figure 8.5: Velocity model v1.

Figure 8.6: Velocity model v1, directional vectors of field EF .
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Figure 8.7: Velocity model v1, charge distribution q1.

vector form in the XY plane and its (normalized) directional vectors are graphed in Fig. 8.6. In the
lower center of Fig. 8.5 we see a “hole” in the electric field, and there is a kind of flow along the Y
axis that would not be expected from the form of the velocity field. Despite these asymmetries, the
charge distribution of this velocity model is mainly centrally symmetric, as can be seen in Fig. 8.7.
This result was not obvious from the formulas. �

� Example 8.6 A more general example can be constructed by using

v2 =

 a
rn

f (r,θ)
0

 (8.227)

with a general function f (r,θ). It then follows that

∇ ·v2 = r−n−1
(

rn ∂

∂ θ
f(r,θ)−a(1−n)

)
, (8.228)

(v2 ·∇)v2 =

 −a2 nr−2n−1

r−n−1
(

rn f(r,θ) ∂

∂ θ
f(r,θ)+ar ∂

∂ r f(r,θ)
)

0

 , (8.229)

∇×v2 =

 0
0

∂

∂ r f(r,θ)+ 1
r f(r,θ)

 , (8.230)

and the charge distribution takes the form

q2 = r−2n−2
(

r2n f(r,θ)
∂ 2

∂ θ 2 f(r,θ) (8.231)

+r2n
(

∂

∂ θ
f(r,θ)

)2

+arn+1 ∂ 2

∂ r ∂ θ
f(r,θ)+2a2 n2

)
.
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The divergence of this velocity model vanishes, if

r−n−1
(

rn
(

∂

∂ θ
f(r,θ)

)
−a(1−n)

)
= 0, (8.232)

which is a differential equation for f (r,θ) with the solution

f(r,θ) =
a(n−1) θ

rn + c, (8.233)

where c is an integration constant. For n = 1, f reduces to a constant function and the divergence
(8.228) vanishes. �

Solutions of fluid dynamics equations
� Example 8.7 Four equations of fluid dynamics have been solved numerically by the finite
element program FlexPDE [89]. The 3D volume that was chosen is typical for Navier-Stokes
applications: a plenum box with a circular inlet at the bottom and an offset circular outlet at the top
(see Fig. 8.8). The boundary conditions were set to v = 0 at the borders of the box and a directional
derivative perpendicular to the opening areas was assumed. This allows for a free-floating solution
of the velocity field. As a test, a solution for the static Navier-Stokes equation (8.16),

(v ·∇)v+∇p−µ ∇
2v = 0, (8.234)

was computed, with µ being a viscosity. The pressure term was added because the equation is
otherwise homogeneous, which means that there is no source term, leading to a solution that does
not guarantee conservation of mass. The divergence of the pressure gradient is assumed to be in
proportion to the divergence of the velocity field:

∇ ·∇p = P∇ ·v (8.235)

with a constant P for “penalty pressure”. This represents an additional equation for determining the
pressure. The result for the velocity is graphed in Fig. 8.9, which shows a straight flow through
the box. The flow is perpendicular to the inlet and outlet surfaces as required by the boundary
conditions.

Next, the vorticity equation (8.29) was solved, in a static form derived in [90], and again with
the pressure term to guarantee solutions:

∇
2w+∇× (∇×w)+∇p = 0. (8.236)

It is difficult to define meaningful boundary conditions, because this is a pure flow equation for
the vorticity w. We used the same boundary conditions that we had used for the Navier-Stokes
equations, and the result is graphed in Fig. 8.10. There is a flow-like structure with a divergence at
the left, where the flow is not symmetric. There should not be a divergence because the vorticity is
divergenceless by definition. We conclude that these boundary conditions are not adequate for this
type of equation.

This approach is more meaningful for the vorticity equation with turbulence, which can be
written as a static equation in the form that was discussed in [90]:

∇×w+R((v ·∇)v−v×w)+∇p = 0. (8.237)

The solution for R = 1 gives an inclined input and output flow (see Fig. 8.11). At a medium height
in the box, the flow drifts more over the sides, therefore, the intensity of the velocity is low in the
middle plane, as shown. The divergence (not graphed) is practically zero in this region. Fig. 8.12
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shows a divergent and convergent flow in the XY plane at Z = 0; the flow runs over the full width
of the box. Results for higher Reynolds numbers do not reveal any significant difference.

Finally, we solved an equation that holds for a Beltrami flow [90]:

∇
2v−R(v ·∇)v−∇(∇ ·v)+∇p = 0. (8.238)

Here, the flow is strongly enhanced in the middle region (Fig. 8.13). In the perpendicular plane, a
similar effect can be seen (Fig. 8.14). The field is not divergence-free there. For a Beltrami field,
we should have

w×v = kv×v = 0. (8.239)

The vorticity w corresponding to Fig. 8.14 has been graphed in Fig. 8.15. There are indeed large
regions where both w and v are parallel or antiparallel. The factor k seems to be location dependent.
We did not constrain the Beltrami property by further means. Therefore, the result is satisfactory.
For larger R values the results remain similar. �

Figure 8.8: Geometry of FEM calculations.

Figure 8.9: Velocity solution for the Navier-Stokes Equation (8.234), plane Y = 0.
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Figure 8.10: Vorticity solution for Eq. (8.236), plane Y = 0.

Figure 8.11: Velocity solution of Eq. (8.237) for R = 1, plane Y = 0.

Figure 8.12: Velocity solution of Eq. (8.237) for R = 1, plane Z = 0.
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Figure 8.13: Beltrami solution of Eq. (8.238) for R = 1, plane Y = 0.

Figure 8.14: Beltrami solution of Eq. (8.238) for R = 1, plane Z = 0.

Figure 8.15: Vorticity of Beltrami solution for Eq. (8.238) for R = 1, plane Z = 0.
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Wave equations of fluid electrodynamics
� Example 8.8 In this example, the wave equation of the fluid electrodynamics velocity (8.151)
is developed further. In the presence of a current density JF , which is an external component in
standard physics, this wave equation reads

1
a2

0

∂ 2v
∂ t2 −∇

2v =
1
a2

0
JF . (8.240)

Assuming a harmonic time dependence, we define

v(r, t) = vS(r)exp(iωt) (8.241)

and

JF(r, t) = JS(r)exp(iωt), (8.242)

with a time frequency ω and only space-dependent velocity vS and current density JS. Then, Eq.
(8.240) reads

−ω2

a2
0

vS−∇
2vS =

1
a2

0
JS, (8.243)

which is an eigenvalue equation. For vanishing current density, it can be written in the standard
form

∇
2vS +λvS = 0 (8.244)

with positive eigenvalues

λ :=
ω2

a2
0
, (8.245)

which correspond to acoustic eigenfrequencies, for example. This equation can be solved numeri-
cally by the finite element method. In our example, we re-adopt the 3D flow box of the preceding
section with corresponding boundary conditions, irrespective of further aspects of the flow. The
first six eigenvalues (with unspecified units) are listed in Table 8.2. There is a degeneracy between
the first and second eigenvalues, and between the fifth and sixth eigenvalues due to the internal
symmetry of the flow box. For both pairs, a third value is close to these. The modulus of the first
and sixth velocity eigenstates has been graphed in Figs. 8.16 - 8.19 for two planes of symmetry
(Z = 0 and Y = 0). The sixth eigenstate has a node in the middle plane of symmetry. This symmetry
is also present in the vorticity vectors, see Figs. 8.20 and 8.21.

For a correct treatment of the wave equation within fluid electrodynamics, we have to include
the current density (8.82), which can be written as [90]:

JF = a2
0∇× (∇×v)− ∂

∂ t
((v ·∇)v) . (8.246)

The second term is not linear in v, so the time-harmonic approach is only possible for the first term.
From (8.243), this gives the more general eigenvalue equation

∇
2vS +∇× (∇×vS)+λvS = 0. (8.247)

As a result, the eigenvalues are very small, compared to Eq. (8.244), and there are a lot more
turbulences. The numerical calculation takes half an hour on a standard PC, but converges. The
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numerical precision, however, is not satisfactory; therefore, these results can only show a tendency.
The first six eigenvalues are listed in Table 8.3. There is no longer any degeneration. In Figs. 8.22
and 8.23, the vorticity in the plane Y = 0 has been graphed. If we compare them to Figs. 8.20
and 8.21, we see that Eq. (8.247) incurs structures that are much more turbulent. One can see that
eigenstate n possesses n+1 vortices. This seems to be a particularity of Eq. (8.247).

A time-dependent calculation has been tried by assuming that the second-order time derivative
in (8.240) can be neglected against the first-order time derivative in the current density:

∇
2vS =−∇× (∇×v)+

∂

∂ t
((v ·∇)v) . (8.248)

Adding a pressure term ∇p as described in the previous example gives a non-singular equation but
no time solution. Obviously, the nonlinearity prevents a solution – at least for this special category
of boundary values.

Coming back to the solution of Eq. (8.247), this seems to be the first time that an ECE2 wave
equation of type

(�+R)v = 0 (8.249)

(see Eq. (8.154)) has been solved for a curvature R that in turn depends on the variable v. This is
certainly a step beyond contemporary standard equations of physics, e.g., the Dirac equation, where
a constant curvature has always been assumed. The numerical problems, however, are complex and
a lot of work will be required to develop this field of ECE2 physics.

No. Eigenvalue
1 12.1031274
2 12.1031274
3 12.1919561
4 13.2402655
5 13.3685992
6 13.3685992

Table 8.2: Eigenvalues of Eq. (8.244).

No. Eigenvalue
1 2.56351677e-3
2 2.68244759e-3
3 4.08141046e-3
4 6.27378404e-3
5 7.79542935e-3
6 8.34876355e-3

Table 8.3: Eigenvalues of Eq. (8.247).

�



216 Chapter 8. Unified fluid dynamics

Figure 8.16: Velocity modulus of Eq. (8.244) on Z=0, eigenstate 1.

Figure 8.17: Velocity modulus of Eq. (8.244) on Z=0, eigenstate 6.

Figure 8.18: Velocity modulus of Eq. (8.244) on Y=0, eigenstate 1.
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Figure 8.19: Velocity modulus of Eq. (8.244) on Y=0, eigenstate 6.

Figure 8.20: Vorticity of Eq. (8.244) on Y=0, eigenstate 1.

Figure 8.21: Vorticity of Eq. (8.244) on Y=0, eigenstate 6.

Figure 8.22: Vorticity of Eq. (8.247) on Y=0, eigenstate 1.



218 Chapter 8. Unified fluid dynamics

Figure 8.23: Vorticity of Eq. (8.247) on Y=0, eigenstate 4.

Examples of applied fluid electrodynamics

In the following examples, we will consider given material fields that give rise to spacetime fluid
effects as described in Section 8.2.4, and present graphics for selected cases.

Electric Coulomb field

� Example 8.9 We start by revisiting and expanding Example 8.4. The velocity field of an electric
Coulomb field is the solution of the equation

q
4πε0r2 er =

ρm(vac)

ρ(circuit)
(v ·∇)v (8.250)

(see computer algebra code [147]). For spherical symmetry, the operator (8.206) has to be evaluated
and the differential equation for the remaining radial velocity component vr has to be solved. The
result is Eq. (8.207):

vr =±
q√

2πε0x

√
1
r
− c (8.251)

with an integration constant c. This is a function of type 1/
√

r and has been graphed in Fig. 8.24
for three values of c. Setting c > 0 gives imaginary solutions, and c < 0 gives asymptotes different
from zero for r→ ∞, therefore, c = 0 is the most physically meaningful choice. For comparison,
the Coulomb field −1/(4πr2) is also graphed in the figure. It is descending much more steeply
than the velocity fields. �
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Figure 8.24: Radial velocity component
(8.251) of the solution for Eq. (8.250),
and Coulomb field Er.

Figure 8.25: Simple rotating velocity field
(8.253).

Simple rotating field
� Example 8.10 We consider a rotating vector potential in cartesian coordinates:

W =
B(0)

2

 Y
−X
0

 . (8.252)

This gives a spacetime velocity field

vF =
ρ

ρm
W =

B(0)ρ

2ρm

 Y
−X
0

 (8.253)

and a resulting vacuum electric field

EF = (vF ·∇)vF =
(B(0))2ρ2

4ρ2
m

−X
−Y
0

 . (8.254)

Eq. (8.253) describes a rigid mechanical rotation, since the rotation velocity rises linearly with
the radius (see Fig. 8.25). The total derivative operator transforms this into a central electric field,
which is also increasing linearly with radial distance (Fig. 8.26). The velocity field is that of a rigid
body, but there is no classical counterpart for the induced electric field. The spacetime velocity
further induces both a magnetic field

BF = ∇×vF =
B(0)ρ

ρm

 0
0
−1

 (8.255)
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that is constant everywhere, and a constant Kambe charge density

qF = ∇ ·EF =−(B(0))2ρ2

2ρ2
m

. (8.256)

The stationary part of the fluid electric current vanishes:

JF = a2
0∇× (∇×vF) = 0. (8.257)

�

Figure 8.26: Central electric field (8.254),
derived from (8.253).

Figure 8.27: Vectors vF , BF , and JF of the plane
wave potential (8.258).

Plane wave potential

� Example 8.11 A potential for plane waves in the circular cartesian basis is given by Eqs. (4.124,
4.130):

W =
W (0)
√

2
exp(iωt−κZZ)

 1
−i
0

 , (8.258)
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where ω is the time frequency and κZ is the wave vector component in the Z direction. The derived
spacetime components are

vF =
W (0)
√

2
ρ

ρm
exp(iωt−κZZ)

 1
−i
0

 , (8.259)

EF = 0, (8.260)

BF = κZ
W (0)
√

2
ρ

ρm
exp(iωt−κZZ)

 1
−i
0

 , (8.261)

qF = 0, (8.262)

JF = a2
0κ

2
Z

W (0)
√

2
ρ

ρm
exp(iωt−κZZ)

 1
−i
0

 . (8.263)

In contrast to the simple rotating field, the derived fluid electric field and charge density disappear.
Velocity, magnetic field and current density are all in parallel, having no Z component. The real
part is sketched in Fig. 8.27 for an instant of time t. The tops of the vector arrows describe a helix
in space. �

Magnetostatic current loop

� Example 8.12 The field of a circular current loop is best described in spherical polar coordinates
(r,θ ,φ). The vector potential of a loop with radius a and current I has only a φ component given by

W =


0
0

µ0 a2 r sin(θ) I
(

15a2 r2 sin(θ)2

8(r2+a2)
2 +1

)
4(r2+a2)

3
2

 . (8.264)

This gives the velocity field

vF =
ρ

ρm
W 6= 0 (8.265)

and an electric field perpendicular to vF in the (r,θ) plane:

EF =

µ2
0 a4 r ρ2 I2

(
15a2 r2 sin(θ)2

8(r2+a2)
2 +1

)2

16ρ2
m (r2 +a2)

3

 −sin(θ)2

−cot(θ) sin(θ)2

0

 . (8.266)

The other fields BF , qF , JF are also different from zero and highly complicated. BF has components
in the r and θ directions and JF in the φ direction.

The θ dependence of the component vφ is graphed in Fig. 8.28 for a = 1. This is largest in
the XY plane (θ = π/2) and vanishes at the poles. The absolute strength decreases with distance
from r = a, as expected. The angular distribution of electric field components Er, Eθ is shown in
Fig. 8.29 in a 3D plot. �
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Figure 8.28: Velocity component vφ of the
magnetostatic current loop (8.264).

Figure 8.29: Components Er (outer) and Eθ (in-
ner) of the electric field (8.266) for the magneto-
static current loop, spherical distribution.

8.3 Fluid gravitation

ECE2 theory is used to unify the field equations of fluid dynamics and gravitation. This produces
the subject of fluid gravitation, which can be described as the effect of the fluid vacuum or aether
on gravitational theory. Fluid dynamics and electromagnetism have already been unified in the
preceding section. Now we extend this methodology to gravitation and name it triple unification.

8.3.1 Triple unification

As a starting point, we adopt the equality of force densities used in Eq. (8.165):

ρg = ρmEF , (8.267)

where ρ is the matter density, ρm is the vacuum density and g is the gravitational acceleration field.
The densities ρ and ρm are different only in matter, where ρ contributes to the force. Outside of
matter, ρ is the mechanical aether density and identical to ρm by definition. Therefore, we can
identify Newtonian gravitation with the Kambe electric field directly:

g =−MG
r3 r = (vg ·∇)vg. (8.268)

Newtonian gravitation is the action of acceleration by a mass M of a test mass at distance vector r,
and ρ is a mass density concentrated in the gravitational center, as is well known from classical
mechanics. vg is the aether velocity. A subscript g has been appended to show that it is used here in
the context of gravitation. The above equation shows directly that gravitation is connected with the
aether. Eq. (8.267) connects the force fields of both realms. vg should not be confused with the
velocity of the test mass, which is a local velocity, not a velocity field.

The list below shows the gravitational field equations and field definitions of ECE2 theory as
developed in Section 7.1.1, together with the special ECE2 representation of mass and current
density by wave vectors, as defined in Eqs. (6.166 - 6.169). For simplicity, we assume no magnetic
densities, and κ0 has been omitted. The vector potential Q is a velocity, as discussed in Chapter 7,
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and is directly associated with the aether velocity vg:

∇ ·Ω = 0, (8.269)
∂Ω

∂ t
+∇×g = 0, (8.270)

∇ ·g =−4πG ρ = κ ·g, (8.271)

− 1
c2

∂g
∂ t

+∇×Ω =−4πG
c2 J = κ×Ω, (8.272)

g =−∇φg−
∂vg

∂ t
, (8.273)

Ω = ∇×vg. (8.274)

The fluid dynamics equations from the previous sections are:

∇ ·HF = 0, (8.275)
∂HF

∂ t
+∇×EF = 0, (8.276)

∇ ·EF = qF , (8.277)

− 1
a2

0

∂EF

∂ t
+∇×HF =

1
a2

0
JF (8.278)

with the definitions

EF =−∇h− ∂vF

∂ t
= (vF ·∇)vF , (8.279)

HF = w = ∇×vF , (8.280)

qF = ∇ · ((vF ·∇)vF) , (8.281)

JF =
∂ 2vF

∂ t2 +∇
∂h
∂ t

+a2
0 ∇× (∇×vF). (8.282)

It can be seen directly that g corresponds to EF and Ω to HF . The mechanical potential φg is
identical with the enthalpy h. As already stated, it is vF = vg. From ρ = ρm in free space follows
that

gmatter =

(
−∇φg−

∂vg

∂ t

)
matter

=

(
−∇h−

∂vg

∂ t

)
vacuum

(8.283)

and

(Ω)matter = (∇×W)matter = (∇×vF)vacuum . (8.284)

From comparing Eq. (8.271) to Eq. (8.277), and from g = EF in free space, we obtain

(qF)vacuum =−(ρm)vacuum

4πG
=−(ρ)matter

4πG
(8.285)

or

(∇ · ((vF ·∇)vF))vacuum =−(ρ)matter

4πG
. (8.286)

If the divergence expression in the above equation does not vanish, then this type of spacetime
velocity field gives rise to a mass density acting like a material density. Conversely, any mass
density induces a spacetime velocity field. This is an equivalence between matter and aether
structures.
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� Example 8.13 Newton’s law of gravitation (8.268) is formally identical with the Coulomb law.
Therefore, the equivalent spacetime velocity field is the same as the velocity field of an electric
Coulomb field, which was computed and graphed in Example 8.9. The velocity field is a central
field of the form 1/

√
r (see computer algebra code [148]):

vr =±
√

2MG

√
1
r
− c (8.287)

with c = 0. The graph (except for constants) is exactly that of Fig. 8.24. �

Structure of spiral galaxies
� Example 8.14 As another example, we compute the spacetime structure of spiral galaxies. From
astronomical observations, it is known that the stars in a whirlpool galaxy move with nearly constant
velocity, except those close to the center. This result is in conflict with Newton’s theory as well
as Einstein’s general relativity, both of which predict a significant reduction in velocity (see Fig.
8.30). This difference is explained away by assuming that “dark matter” exists in the outer regions
of galaxies and that it holds the stars in their positions. It is also implicitly assumed that gravitation
is the only force acting in galactic dimensions.

Figure 8.30: Galaxy rotation curve. A: Newtonian theory, B: experimentally observed.

Fluid gravitation gives a much simpler and consistent explanation for the observed structure of
whirlpool galaxies. We start by considering the angular momentum of a mass m orbiting a heavy
mass M. This is defined by

LF = mrrF ×vF , (8.288)

where rF is the position vector of mass m taken from the center of mass, and mr is the reduced mass

mr =
mM

m+M
. (8.289)

In this example, we want to describe the angular momentum of spacetime itself. We do this by
taking away the stars, figuratively speaking, and considering only the spacetime structure itself.
Because there are now no discrete masses, we have to use the angular momentum density instead.
This is obtained by replacing the mass mr in Eq. (8.288) by the vacuum mass density ρm. The
equation then reads

L̂F = ρmrF ×vF , (8.290)
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where L̂F stands for the angular momentum density of the distributed vacuum mass density ρm.
Applying the vector function identity

a× (b× c) = (a · c)b− (a ·b)c, (8.291)

we obtain from Eq. (8.290):

rF × L̂F = ρmrF × (rF ·vF) = ρm ((rF ·vF)rF − (rF · rF))vF . (8.292)

Since the rotational direction in a spiral galaxy is perpendicular to the distance rF from the center,
we have

rF ·vF = 0, (8.293)

and Eq. (8.292) simplifies to

vF =
1

ρmr2
F

L̂F × rF . (8.294)

We make the XY plane coincident with the galactic plane, so that the angular momentum density
will have only a Z component LFZ in cartesian coordinates:

L̂F = L̂FZ

0
0
1

 . (8.295)

With the radius vector

rF =

XF

YF

0

 , (8.296)

Eq. (8.294) gives the result

vF =
LFZ

ρmr2
F

−YF

XF

0

 . (8.297)

This is a velocity rotating in the XY plane, which is similar to Example 8.10 (see Fig. 8.25). It is
also divergenceless:

∇ ·vF = 0. (8.298)

The gravitomagnetic field of an orbiting volume element at distance rF from the center, assuming a
constant ρm, is

Ω = ∇×vF =
2

ρmr2
F

L̂F . (8.299)

Using the velocity (8.297), the acceleration field is

gvacuum = (vF ·∇)vF =
L̂2

FZ

ρ2
mr4

F

−XF

−YF

0

=− L̂2
FZ

ρ2
mr4

F
r =− L̂2

FZ

ρ2
mr3

F
er (8.300)
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(see computer algebra code [149] for all computations). This is an inverse cubic law, in contrast to
Newton’s inverse square law of gravitation. The dynamics solutions for such a potential are not
closed orbits but spiral orbits, as will be shown in the next chapter. In this example, we consider
only the asymptotic behavior of the velocity.

When written in plane polar coordinates (r, θ ), the modulus of the angular momentum density
(8.290) is

L̂ = ρmrv = ρmr2 dθ

dt
, (8.301)

giving

dθ

dt
=

L̂
ρmr2 . (8.302)

L̂ is a constant of motion. The squared velocity in plane polar coordinates, in general, is:

v2 =

(
dr
dt

)2

+ r2
(

dθ

dt

)2

=

(
dθ

dt

)2
(

r2 +

(
dr
dθ

)2
)

(8.303)

=

(
L̂

ρmr2

)2(
r2 +

(
dr
dθ

)2
)
.

For the limit r→ ∞, the derivative stays finite for closed orbits, so we can write (with a limited
parameter r0):

v2 =

(
L̂

ρm

)2(
1
r2 +

1
r2

0

)
−−−→
r→∞

(
L̂

ρmr0

)2

= const. (8.304)

This matches the velocity curve observed in astronomy and supports fluid gravitation. The stars
of a whirlpool galaxy are “swimming” in the aether or spacetime. Because of their huge distance
from the galactic center, Newtonian acceleration is extremely small and vanishes in the aether
background. Their motion is determined by the aether flow in space. No dark matter or dark
energy is required to explain the structure of spiral galaxies, so these concepts have to be ruled out
according to Occam’s razor.

From Eqs. (8.298) and (8.149), it follows that

∂ΦF

∂ t
=

∂hF

∂ t
= 0. (8.305)

The scalar potential of a whirlpool galaxy is constant. The vacuum charge of a galaxy diverges for
r→ 0:

qF = 2∇ ·gvacuum =

(
L̂FZ

ρmr

)2

−−→
r→0

∞ , (8.306)

giving rise to real mass accumulations. There is a very large mass at the center of a galaxy, as has
been observed. If EF is time-independent, the spacetime current, according to (8.282), is:

JF = a2
0 ∇× (∇×vF). (8.307)

Inserting the spacetime velocity (8.297) leads to

JF = 0, (8.308)
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indicating that, because of the static structure of potentials, there is no spacetime current, although
a velocity field is present. We have to discern properly between a spacetime flow and a “condensed”
structure appearing as a moving mass density. During the flow, the mass density of spacetime does
not change. A mass density of spacetime is only apparent as a static mass density at the center of
the galaxy.

Please note that this does not apply to the motion of stars, because the fixed stars of a whirlpool
galaxy are moving with the aether or spacetime, so there is necessarily a mass current of stars.
However, this mass current is a derivative effect that comes from spacetime, but is not included in
the rotation of spacetime itself. �

8.3.2 Non-classical Acceleration
We have seen that in fluid dynamics the velocity field depends on time, and on coordinates that in
turn depend on time, for example, in cartesian coordinates: v = v(X(t), Y (t), Z(t), t). In mass point
dynamics, there is no velocity field but only a velocity vector with a time dependence: v = v(t).
This vector is to be applied at the position of the mass point. Therefore, the convective derivative of
the velocity is different from that of a mass point. The convective acceleration field is

a =
∂v
∂ t

+(v ·∇)v, (8.309)

while in mass point dynamics the acceleration is simply

a =
dv
dt

. (8.310)

In Example 7.4 (previous chapter), the velocity and acceleration for mass points has been worked
out in spherical coordinates. Generally, in non-cartesian coordinates, the above acceleration can be
written as a covariant derivative with a spin connection matrix Ω:

a =
D
Dt

v =
∂

∂ t
v+Ωv (8.311)

(see Eqs. (7.174, 7.175). In Section 8.2.3, it was shown that the convective derivative of fluid
dynamics is also an example of a covariant derivative of Cartan geometry.

We will now discuss the differences between fluid dynamics and mass point dynamics in
cylindrical and plane polar coordinates, because both play a central role in rotational systems and
gravitation. The convective derivative in cylindrical coordinates (r, θ , Z) has already been given
by Eq. (8.205). With a = b = v, it is

(v ·∇)v =

 vr
∂vr
∂ r + vθ

r
∂vr
∂θ

+ vZ
∂vr
∂Z −

v2
θ

r
vr

∂vθ

∂ r + vθ

r
∂vθ

∂θ
+ vZ

∂vθ

∂Z + vθ vr
r

vr
∂vZ
∂ r + vθ

r
∂vZ
∂θ

+ vZ
∂vZ
∂Z

 . (8.312)

Details of its derivation can be found in [91]. The convective derivative is

Dv
Dt

=
∂

∂ t

vr

vθ

vZ

+
 vr

∂vr
∂ r + vθ

r
∂vr
∂θ

+ vZ
∂vr
∂Z −

v2
θ

r
vr

∂vθ

∂ r + vθ

r
∂vθ

∂θ
+ vZ

∂vθ

∂Z + vθ vr
r

vr
∂vZ
∂ r + vθ

r
∂vZ
∂θ

+ vZ
∂vZ
∂Z

 . (8.313)

The right-hand side can be decomposed into a matrix-vector product with two matrices in the
following way:

Dv
Dt

=
∂

∂ t

vr

vθ

vZ

+

 ∂vr

∂ r
1
r

∂vr
∂θ

∂vr
∂Z

∂vθ

∂ r
1
r

∂vθ

∂θ

∂vθ

∂Z
∂vZ
∂ r

1
r

∂vZ
∂θ

∂vZ
∂Z

+
 0 − vθ

r 0
vθ

r 0 0
0 0 0



vr

vθ

vZ

 . (8.314)
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The second matrix has the antisymmetric structure of a rotation generator. The equation is a special
case of the Cartan covariant derivative

Dva

Dt
=

∂va

∂ t
+ω

a
0b vb, (8.315)

as was previously discussed in Section 8.2.3. In cylindrical coordinates, the components of the
velocity arevr

vθ

vZ

=

 ṙ
rθ̇

Ż

 , (8.316)

therefore, Eq. (8.314) can be written as:

Dv
Dt

=
∂

∂ t

 ṙ
rθ̇

Ż

+



∂ ṙ
∂ r

1
r

∂ ṙ
∂θ

∂ ṙ
∂Z

∂ (rθ̇)
∂ r

1
r

∂ (rθ̇)
∂θ

∂ (rθ̇)
∂Z

∂ Ż
∂ r

1
r

∂ Ż
∂θ

∂ Ż
∂Z

+
0 −θ̇ 0

θ̇ 0 0
0 0 0



 ṙ

rθ̇

Ż

 . (8.317)

The second line of the first matrix contains terms like ∂ (rθ̇)/∂ r. From the independence of
coordinates, it follows that

∂ r
∂ r

= 1,
∂ r
∂θ

= 0, etc. , (8.318)

and for this line we obtain:

θ̇ + r
∂ θ̇

∂ r
+

∂ θ̇

∂θ
+ r

∂ θ̇

∂Z
. (8.319)

By computer algebra (see computer code [150]) the convective acceleration is

a =
Dv
Dt

=

 r̈+2 ∂ ṙ
∂Z Ż− rθ̇ 2 +2 ∂ ṙ

∂θ
θ̇ +2ṙ ∂ ṙ

∂ r
rθ̈ +2r ∂ θ̇

∂Z Ż +2rθ̇
∂ θ̇

∂θ
+2rṙ ∂ θ̇

∂ r +3ṙθ̇

Z̈ +2Ż ∂ Ż
∂Z +2θ̇

∂ Ż
∂θ

+2ṙ ∂ Ż
∂ r

 . (8.320)

Please note that the dotted variables are components of the velocity; therefore, we have in general,
for example,

∂ θ̇

∂ r
=

∂ θ̇(r,θ ,Z)
∂ r

6= 0. (8.321)

For equal variables in the numerator and denominator, however:

∂ ṙ
∂ r

=
d
dt

∂ r(θ ,Z)
∂ r

= 0, (8.322)

∂ θ̇

∂θ
=

d
dt

∂θ(r,Z)
∂θ

= 0, (8.323)

∂ Ż
∂Z

=
d
dt

∂Z(r,θ)
∂Z

= 0. (8.324)

Here, r(θ , Z), etc., are functions. This further simplifies Eq. (8.320):

a =

 r̈+2 ∂ ṙ
∂Z Ż− rθ̇ 2 +2 ∂ ṙ

∂θ
θ̇

rθ̈ +2r ∂ θ̇

∂Z Ż +2rṙ ∂ θ̇

∂ r +3ṙθ̇

Z̈ +2θ̇
∂ Ż
∂θ

+2ṙ ∂ Ż
∂ r

 . (8.325)
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The Newtonian acceleration (7.161) in plane polar coordinates is

aN = (r̈− rθ̇
2)er +(rθ̈ +2ṙθ̇)eθ . (8.326)

The term −rθ̇ 2er is the centrifugal acceleration, and (rθ̈ + 2ṙθ̇)eθ is the Coriolis acceleration.
In cylindrical coordinates, the acceleration is extended by a term Z̈eZ so that the Newtonian
acceleration, written in component form, is

aN =

 r̈− rθ̇ 2

rθ̈ +2ṙθ̇

Z̈

 . (8.327)

This is only a part of the convective derivative (8.320). Denoting the difference between a and aN

by a1, we have

a = aN +a1 (8.328)

with

a1 =

 2 ∂ ṙ
∂Z Ż +2 ∂ ṙ

∂θ
θ̇

2r ∂ θ̇

∂Z Ż +2rṙ ∂ θ̇

∂ r + ṙθ̇

2θ̇
∂ Ż
∂θ

+2ṙ ∂ Ż
∂ r

 . (8.329)

We see that a1 consists mainly of terms arising from the coordinate dependence of the velocity field
v, as expected. The structure of the convective velocity field is much more complicated than the
Newtonian velocity.

In the case of plane polar coordinates, the third component disappears, and thus all Z dependen-
cies. Then, the accelerations are

a =

[
r̈− rθ̇ 2 +2 ∂ ṙ

∂θ
θ̇

rθ̈ +2rṙ ∂ θ̇

∂ r +3ṙθ̇

]
, (8.330)

aN =

[
r̈− rθ̇ 2

rθ̈ +2ṙθ̇

]
, (8.331)

a1 =

[
2 ∂ ṙ

∂θ
θ̇

2rṙ ∂ θ̇

∂ r + ṙθ̇

]
. (8.332)

� Example 8.15 As a non-trivial example3, we consider a three-dimensional vortex field called
Torkado [92] (see Fig. 8.31). (This field could also be an explanation for the dynamics of the
plasma model of galaxies.) We concentrate on a streamline in the middle of the structure graphed
in Fig. 8.32. The flow is slow in the outer region and goes up very quickly in the inner tube. It is
a continuous motion which is not caused by an external force, in our consideration. The central
streamline can be described by an analytical approach in cylindrical coordinates (r, θ , Z):

r(θ) = r0 + r1 cos
(

θ

10

)2

, (8.333)

Z(θ) =−Z0 sin
(

θ

5

)
, (8.334)

3This is a revision of UFT paper 361.
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with constants r0, r1, Z0. For a plot in cartesian coordinates, we transform the cylindrical orbit
using

X = r(θ)cos(θ), (8.335)

Y = r(θ)sin(θ), (8.336)

Z = Z(θ). (8.337)

We assume conservation of angular momentum around the Z axis:

LZ = mr2
θ̇ (8.338)

so that the angular velocity θ̇ can be expressed by the r coordinate function (8.333):

θ̇ =
LZ

mr2 . (8.339)

The other time derivatives can be rewritten as follows:

θ̈ =
d
dt

θ̇ =
dr
dt

∂ θ̇

∂ r
=−2ṙ

LZ

mr3 , (8.340)

ṙ =
dθ

dt
∂ r
∂θ

= θ̇
∂ r
∂θ

, (8.341)

r̈ =
d
dt

ṙ =
d
dt

(
θ̇

∂ r
∂θ

)
= θ̈

∂ r
∂θ

+ θ̇
∂ ṙ
∂θ

, (8.342)

Ż =
dθ

dt
∂Z
∂θ

= θ̇
∂Z
∂θ

, (8.343)

Z̈ =
d
dt

Ż =
d
dt

(
θ̇

∂Z
∂θ

)
= θ̈

∂Z
∂θ

+ θ̇
∂ Ż
∂θ

. (8.344)

In this way, any explicit time dependence is eliminated and we obtain dependencies on the orbits
r(θ) and Z(θ), exclusively.

Now, we can compute the fluid acceleration (8.325), and its constituents (8.327) and (8.329).
This will show us how fluid spacetime affects the classical motion of the central Torkado streamline.
The calculations are a bit complicated, but can be understood by reviewing the computer algebra
code [151].

First, we consider the velocity components (8.316). In the calculation, please note that r and
Z are functions of θ , as are ṙ and θ̇ , and that they are different from the pure coordinates r and Z.
This important mathematical distinction is not always presented clearly in physics. The velocity
components are graphed in Fig. 8.33. The radial component changes sign, when the streamline
is nearest to the Z axis. The angular component is always positive, indicating no turning points,
and the Z component seems to be mostly positive. In the regions between the maxima, it is slightly
negative, which is not recognizable because of the 20-fold reduction factor in the graph. Please note
that this calculation does not produce the time dynamics of the motion. The flow elements spend
a very long time in the outer region and only a very short time in the region with high velocities.
Therefore, the continuity of motion in the Z direction is guaranteed.

The Newtonian acceleration is graphed in Fig. 8.34. There is no angular acceleration component.
This could be surprising, but it follows from the fact that there is no external potential and obviously
no Coriolis-like force. If only a central, radial force is present, Newtonian central motion stays
in a plane. Here, we have no fixed plane of motion, but, in spite of this, we still have no forces
that would initiate an angular acceleration. Nevertheless, an angular velocity component ist there,
which is enforced by the central acceleration.
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If we consider the a1 deviation from the Newtonian case (see Fig. 8.35), fluid effects add
positive contributions to the otherwise negative radial acceleration. They also produce an angular
acceleration that is not present in the Newtonian case, and the acceleration in the Z direction is
strongly enhanced. The total fluid acceleration a is graphed in Fig. 8.36. The positive peaks of the
radial acceleration lead to indentations in the curve, compared to the Newtonian case. This effect is
characteristic of fluid dynamics. �

Figure 8.31: Flux structure of the
Torkado 3D orbit (vortex) [184].

Figure 8.32: Central streamline within the
Torkado 3D orbit.

Figure 8.33: Angular dependence of velocity
components, Eq. (8.316).

Figure 8.34: Angular dependence of Newtonian
acceleration components, Eq. (8.327).
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Figure 8.35: Angular dependence of non-New-
tonian acceleration components, Eq. (8.329).

Figure 8.36: Angular dependence of total acceler-
ation components, Eq. (8.325).

8.3.3 Impact of spin connection on gravitation
In classical dynamics the vacuum is a “nothingness”, but in fluid gravitation it is richly structured, as
discussed earlier in this chapter. We limit this discussion to planar orbits in a plane polar coordinate
system. From Eq. (8.314) it follows that the acceleration in fluid spacetime in two dimensions can
be written as

D
Dt

[
ṙ

rθ̇

]
=

∂

∂ t

[
ṙ

rθ̇

]
+

[
0 −θ̇

θ̇ 0

][
ṙ

rθ̇

]
+

[
Ω1

01v Ω1
02v

Ω2
01v Ω2

02v

][
ṙ

rθ̇

]
(8.345)

with the spin connection matrix[
Ω1

01v Ω1
02v

Ω2
01v Ω2

02v

]
=

[
∂vr
∂ r

1
r

∂vr
∂θ

∂vθ

∂ r
1
r

∂vθ

∂θ

]
. (8.346)

The index v indicates that the spin connection relates to the velocity v =
[
ṙ, rθ̇

]
. In general, the

convective derivative of a vector field F is

DF
Dt

=
∂F
∂ t

+(v ·∇)F. (8.347)

We can identify F with the position vector of an element of a fluid:

R = R(r, t) . (8.348)

It follows that the velocity field of the fluid is

v(r, t) =
DR
Dt

=
∂R
∂ t

+(v ·∇)R. (8.349)

This can be written with the spin connection as:

D
Dt

[
Rr

Rθ

]
=

∂

∂ t

[
Rr

Rθ

]
+

[
Ω1

01r Ω1
02r

Ω2
01r Ω2

02r

][
Rr

Rθ

]
(8.350)

This spin connection is different from the one for the velocity; therefore, we use an index r here.
The structure of the spin connection matrix can be found by evaluating the term (v ·∇)R in Eq.
(8.349). With

R = Rrer +Rθ eθ , (8.351)
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computer algebra gives

(v ·∇)R =

−Rθ vθ

r +
( ∂

∂θ
Rr)vθ

r +
(

∂

∂ r Rr

)
vr

( ∂

∂θ
Rθ)vθ

r + Rrvθ

r +
(

∂

∂ r Rθ

)
vr

 (8.352)

(see computer algebra code [152]). Similarly to Eq. (8.345), Eq. (8.350) can also be rewritten
containing a sum of two matrix-vector products:

D
Dt

[
Rr

Rθ

]
=

∂

∂ t

[
Rr

Rθ

]
+

[
0 −θ̇

θ̇ 0

][
Rr

Rθ

]
+

[
Ω1

01 Ω1
02

Ω2
01 Ω2

02

][
vr

vθ

]
(8.353)

with [
Ω1

01 Ω1
02

Ω2
01 Ω2

02

]
=

[
∂Rr
∂ r

1
r

∂Rr
∂θ

∂Rθ

∂ r
1
r

∂Rθ

∂θ

]
. (8.354)

This is also proven by the computer algebra code. Please note that the second matrix is now
multiplied by the velocity vector, and not the position vector. Therefore, the elements of this matrix
are dimensionless, in contrast to the usual spin connection.

This calculation can be simplified further. In plane polar coordinates, the position vector has a
radial component only:

R = rer, (8.355)

thus:

Rr = r, Rθ = 0. (8.356)

Therefore, Eq. (8.353) takes the form

D
Dt

[
r
0

]
=

∂

∂ t

[
r
0

]
+

[
0 −θ̇

θ̇ 0

][
r
0

]
+

[
Ω1

01 Ω1
02r

Ω2
01 Ω2

02r

][
ṙ

rθ̇

]
, (8.357)

and the applicable spin connection matrix is[
Ω1

01 Ω1
02r

Ω2
01 Ω2

02r

]
=

[
∂Rr
∂ r

1
r

∂Rr
∂θ

0 0

]
. (8.358)

The velocity field components are:

vr =
(
1+Ω

1
01
)

ṙ+Ω
1

02rθ̇ (8.359)

and

vθ = θ̇r = ωr. (8.360)

The spin connections affect only the radial part of the velocity.
In contrast to the above analysis, classical dynamics is defined by

v(t) =
Dr(t)

Dt
=

∂r(t)
∂ t

+(v ·∇)r(t), (8.361)
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i.e., by the convective derivative of the position r(t) of a particle rather than the position R(r, t) of
a fluid element. Therefore, in classical dynamics, the following holds:[

vr

vθ

]
=

∂

∂ t

[
r(t)

0

]
+

[
0 −θ̇

θ̇ 0

][
r(t)

0

]
. (8.362)

In component format, the above equation is:

vr =
∂ r(t)

∂ t
, (8.363)

vθ = r(t) θ̇ , (8.364)

as is well known from orbital dynamics.

� Example 8.16 In the following example, we use the fluid dynamics velocities (8.359) and (8.360)
and compute the equations of motion. The Hamiltonian and Lagrangian are

H =
1
2

m
(
v2

r + v2
θ

)
+U (8.365)

and

L =
1
2

m
(
v2

r + v2
θ

)
−U, (8.366)

where U is the potential energy. Deviations from a closed elliptic orbit due to spin connection terms
are expected to result in a precession. It is well known that in the solar system precession is a very
tiny effect, so:

Ω
1

01 ∼Ω
1

02� 1. (8.367)

The Euler-Lagrange equations (7.202) of the system are

∂L

∂ r
=

d
dt

∂L

∂ ṙ
(8.368)

and

∂L

∂θ
=

d
dt

∂L

∂ θ̇
. (8.369)

With

U =−mMG
r

, (8.370)

the Lagrangian is

L =
m
2

((
Ω

1
02rθ̇ +(Ω1

01 +1)ṙ
)2

+ r2
θ̇

2
)
+

mMG
r

. (8.371)

This leads to a new type of equations of motion, which are quite complicated (see computer algebra
code [152]). The orbit is changed by Ω1

01 and Ω1
02, but the equations become much simpler, if we

assume that

Ω
1

02 ≈ 0. (8.372)
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Then, the Lagrange equations take the form

r̈ =
r3θ̇ 2−MG
(Ω1

01 +1)2r2 , (8.373)

θ̈ =−2ṙθ̇

r
. (8.374)

The Lagrangian (8.371) does not explicitly depend on θ , so we have in (8.369):

∂L

∂θ
= 0 (8.375)

and ∂L /∂ θ̇ is a constant of motion, the angular momentum

L =
∂L

∂ θ̇
= mr2

θ̇ . (8.376)

This is conserved in the assumed case, where Ω1
02 = 0.

The equations of motion have been solved numerically by the classical Runge-Kutta method
with initial conditions for bound orbits. This gives the trajectories θ(t) and r(t). We will study such
trajectories in detail in the next chapter. The orbit r(θ) has been graphed in two-dimensional plots.
In Fig. 8.37, the orbits for Ω1

01 = 0 and Ω1
01 = 0.02 are compared. In the case of a vanishing

spin connection, an elliptic orbit is obtained, as expected. A spin connection Ω1
01 > 0 gives a

forward precessing orbit. If the spin connection is negative (Ω1
01 =−0.02), a backward precession

is obtained, as can be seen from Fig. 8.38. Obviously, the existence of one fluid dynamic spin
connection term suffices to result in non-Newtonian orbits. Alternatively, such precessing ellipses
can also be obtained through relativistic effects. This will be shown in the next chapter of this book.
�

Figure 8.37: Orbital precession for Ω0
01 > 0

(forward precession).
Figure 8.38: Orbital precession for Ω0

01 < 0
(backward precession).
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8.4 Intrinsic structure of fields
In this chapter, we have described the unification of electrodynamics, mechanics and fluid dynamics.
In Example 8.13, we saw that Newton’s law of gravitation and the Coulomb law are formally
identical. They can both be described by Kambe’s divergence equation (8.69):

∇ ·EF = qF , (8.377)

which is an interpretation of both laws by fluid dynamics. EF is the flow field and qF is a source
or sink of the flow. Consequently, electric and gravitational fields should have an internal flow
structure. In ECE theory, both fields are defined in equivalent form by the potentials and spin
connections: Eq. (4.211),

E =−∇φ − ∂A
∂ t
− cω0e A+ωeφ , (8.378)

for the electric case, and Eq. (7.38),

g =−∇Φ− ∂Q
∂ t
− cω0g Q+ωgΦ, (8.379)

for the gravitational case. We have denoted the spin connections in the respective equations by the
indices e and g, and omitted the polarization indices. In our interpretation of potentials, A and Q
are aether flows. In particular, Q has the units of m/s and was handled as a velocity in preceding
examples. In the above equations, we see that there are two contributions from the vector potentials:
a time derivative and a contribution that is directly proportional to A and Q. The time derivatives
are also used in standard physics, but the direct contributions (multiplied by a spin connection)
appear only in ECE theory. In the static case, the Coulomb and gravitational fields read

E =−∇φ − cω0e A+ωeφ (8.380)

and

g =−∇Φ− cω0g Q+ωgΦ, (8.381)

in which the scalar potentials φ and Φ also contribute linearly. In the fluid dynamics interpretation
of spacetime, they can be considered as terms of aether pressure. We see that both types of potentials
(scalar and vector) are present in static fields of electrodynamics and gravitation. This is a result
that cannot be obtained from standard physics.

The fields (8.380, 8.381) can be simplified further by applying the antisymmetry laws (5.24)
and (7.59)):

−∂A
∂ t

+∇φ − cω0e A−ωeφ = 0, (8.382)

−∂Q
∂ t

+∇Φ− cω0g Q−ωgΦ = 0, (8.383)

giving for E and g (in the static case):

E =−2cω0e A, (8.384)

g =−2cω0g Q. (8.385)

The formula for the electric field was already derived in Example 8.4. The vector potential A
corresponds directly to velocity field v via the ratio x between mass and charge density in the
vacuum (see Eqs. (8.209, 8.216)):

E =−2cxω0 v. (8.386)
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Thus, both equations (8.384) and (8.385) refer to an aether flow directly.
The interpretation of static fields as flow fields is not new. Nicola Tesla argued in that direction,

and Thomas Bearden [88] interpreted the field of an electric charge to be an output flux of aether
material. If there is a current of aether output flux, there must also be an input flux, otherwise the
continuity equation would be violated. We know that charges are always connected with matter,
see for example the famous ratio e/m for electrons. So, when there is an output flux of the electric
field, the input flux must be realized by additional aether material, which can only represent a
gravitational field (see Fig. 8.39), because a gravitational field is always attractive, i.e., it provides
the same compensating aether current for both types of charges and is nothing more than a backflow
caused by electromagnetic effects. Because these flow types are different, there must be different
structures of “aether particles” or, more plausibly, “aether compounds”, that belong to an electric
and a gravitational aether flux. This research subject is essentially unexplored, and there have been
only hints by some authors, on a philosophical level, that such structures should exist (see, for
example, [93]).

We have obtained the remarkable result that static fields are determined solely by the vector
potentials or spacetime flows. We can develop these hypothetical considerations further. In Eqs.
(8.384, 8.385), the spin connections represent a wave number or, with the factor c included, an
angular velocity (or time frequency). This may be a hint that the fields are connected with quantum
states, in analogy to the quantum energy h̄ω . The fields may be interpreted as the internal structure
of aether compounds making up the flows. According to contemporary quantum electrodynamics,
photons mediate the electromagnetic interaction, and gravitons mediate the gravitational field. The
quantum energy of photons is h̄ω which gives us an interpretation of the spin connection ω0e in Eq.
(8.384). The quantum energy of the mediating photon then is

Ee = h̄cω0e , (8.387)

and that of the mediating graviton is

Eg = h̄cω0g . (8.388)

These will have very different values, because the electromagnetic and gravitational field energies
differ by many orders of magnitude. Both intrinsic structures (photons and gravitons) represent
radiation fields that are also present in neutral matter, because atoms and molecules contain
internally covalent or ionic bonds, so they contain strong electric fields.

Knowledge about the internal structure of fields allows us to construct counter gravitational
effects. Assume that we know the internal frequency ω0g of the graviton radiation of a body. We
overlay this field with electromagnetic radiation having the same frequency. Then, the electro-
magnetic field provides aether compounds of the type expressed as gravitation, and the external
gravitational field of the Earth cannot couple to the body. This is depicted in Fig. 8.40. Such
a process has already been realized experimentally in the 1950ies. It has been found that the
frequency of graviton radiation is in the spectral range between microwave and infrared radiation,
where the penetration depth into solids is largest [94]. This effect is beyond the scope of standard
physics. By ECE theory, however, we have found a possible explanation that does not need quantum
electrodynamics or other highly complicated theories.
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In total, we have described three logical levels of fields:
1. Force fields
2. Potentials
3. Intrinsic flow quanta

This is a significant progress that is independent of quantum-mechanical methods.

Figure 8.39: Aether fields of a source charge.

Figure 8.40: Replacement of a graviton wave by an electromagnetic wave
(not all E fields that are present in the body are shown).



9. Gravitation

On gravitation, complete books have been written by theoretical physicists. Einsteinian theory is
considered as the “holy grail” of this field. It is complicated and requires a large mathematical
effort to describe observable effects. Many of them (velocity curves of galaxies, polarization of
gravitational light deflection) cannot be described correctly, or even not at all. In this textbook
and other publications [6], it has been shown that Einsteinian general relativity is mathematically
incorrect. In this chapter, we present ECE theory as a successful alternative. In particular, it is a
much simpler approach for generally relativistic effects, which allows the usage of well-known
Lagrange theory in its fully relativistic formulation.

9.1 Classical gravitation

Before we come to ECE-based gravitation, we recapitulate the results of non-relativistic, classical
theory [95], which is also the basis of ECE gravitation.

9.1.1 Conical sections

Classical gravitating masses in bound states move around each other in elliptic orbits. Perturbations
of Newton’s law of gravitation lead to precessing ellipses. We found already such effects, when we
investigated the impact of fluid spacetime on gravitation (see Section 8.3.3).

First, we repeat some basic geometrical facts of conic sections, in particular of ellipses. A conic
section is the curve obtained by the intersection of a plane, called the cutting plane, with the surface
of a cone. According to Fig. 9.1, the types of intersections depend on the eccentricity parameter,
for which we have:

ε = 0: circle,
0 < ε < 1: ellipse,

ε = 1: parabola,
ε > 0: hyperbola.

Closed orbits are only the circle and the ellipse. The parameters of the ellipse are defined as
follows (see Fig. 9.2):
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Figure 9.1: Conic sections [185]. Figure 9.2: Parameters of an ellipse [186].

α: half right latitude (semi latus rectum),
a: semi major axis,
b: semi minor axis,
ε: eccentricity,

X , Y : cartesian coordinates,
r, θ : radius and polar angle of plane polar coordinates.

Their interrelations are as follows:

X2

a2 +
Y 2

b2 = 1, (9.1)

ε
2 = 1− b2

a2 , (9.2)

α = a(1− ε
2), (9.3)

a =
α

1− ε2 , (9.4)

b =
α√

1− ε2
, (9.5)

rmin =
α

1+ ε
= a(1− ε), (9.6)

rmax =
α

1− ε
= a(1+ ε). (9.7)

9.1.2 Newtonian equations of motion

Newton’s gravitational force is of type 1/r2:

F =−mMG
r2 er, (9.8)
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where r is the distance of the orbiting mass m from the central mass M. We use polar coordinates
(r, θ ) with the radial unit vector er. The kinetic energy is

T =
1
2

mv2 =
1
2

m
(
v2

r + v2
θ

)
, (9.9)

and the potential energy is

U =−mMG
r

. (9.10)

The total energy E is equal to the Hamiltonian

H = E =
1
2

m
(
v2

r + v2
θ

)
+U. (9.11)

The dynamics can be computed by applying the Lagrange theory, as we already did in Example
8.16. According to Eq. (8.366), the Lagrangian is

L = T −U =
1
2

m
(
v2

r + v2
θ

)
−U (9.12)

with velocity components

vr = ṙ, (9.13)

vθ = rθ̇ (9.14)

in polar coordinates. Then, the Euler-Lagrange equations of motion are

r̈ = rθ̇
2−MG

r2 , (9.15)

θ̈ =−2ṙθ̇

r
. (9.16)

The constant of motion is the angular momentum

L = mr2
θ̇ . (9.17)

From (9.15) follows the radial Leibniz equation

F = m(r̈− rθ̇
2)er =−

mMG
r2 er, (9.18)

which can be transformed into the Binet equation [95]

d2

dθ 2

(
1
r

)
+

1
r
=−mr2

L2 F(r). (9.19)

By this equation, the force law can be derived from any given orbit r(θ).
The solutions of the equations of motion are the conical sections. For bound states, the total

energy is E < 0, for unbound (“scattering”) states, it is E > 0 by convention. Then, E = 0 relates
to a parabola, which can be imagined to be an infinitely large ellipse.

For all conic sections, the orbit r(θ) is given by

r =
α

1+ ε cos(θ)
, (9.20)
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and the squared velocity of the orbiting mass m is

v2 = MG
(

2
r
− 1

a

)
. (9.21)

There are additional relations between the orbit parameters and the energies and angular
momentum:

a =
MG
2|E|

, (9.22)

b =
L√

2m|E|
=
√

α a , (9.23)

E =−mMG
2a

, (9.24)

ε =

√
1+

2EL2

mM2G2 , (9.25)

L2 = m2MGα. (9.26)

The radial velocity ṙ and the orbit function θ(r) can be expressed by

ṙ =±
√

2
m
(E−U)− L2

m2r2 , (9.27)

θ(r) =
∫ ±L/r2√

2m
(

E−U− L2

2mr2

)dr. (9.28)

9.1.3 Non-Newtonian force laws
The Lagrange formalism can be used to obtain trajectories from any force law. The force has to be
representable by a potential U appearing in the Lagrangian (9.12), i.e., it must be a conservative
force. As an example, we will derive the force law for a whirlpool galaxy, in which the stars are
assumed to move on spiral arms.

� Example 9.1 We assume that the spiral arms of a galaxy are logarithmic spirals, and we will
derive the corresponding force law. A logarithmic spiral is defined in plane polar coordinates by
the orbit

r(θ) =−r0

θ
, (9.29)

where r0 is a parameter. The minus sign provides a motion from the outer part of the spiral arm to
the inner, as is mostly the case. Stars are “born” at the outermost places of the galaxy, as has been
found by astronomical observations. The force law is derived from the Binet equation (9.19):

F(r) =
L2

mr2
d2

dθ 2

(
1
r

)
+

1
r
. (9.30)

Insertion of the orbit (9.29) gives the force

F(r) =
L2θ 3

mr3
0

=− L2

mr3 . (9.31)

This is a cubic force law. Such a force law was already derived from the spacetime structure of
spiral galaxies in Eq. (8.300) of Example 8.14. In that case, it referred to a volume element of the
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vacuum at position rF . Here, we apply the force law to a real mass, which is attracted by this force.
Therefore, we can replace the density quantities L̂FZ and ρm by their point mass values L and m.
The potential energy of the force (9.31) is

U(r) =−
∫

F(r)dr =− L2

2mr2 . (9.32)

All calculations are contained in the computer algebra code [153]. �

� Example 9.2 Now, we compute the dynamics of a whirlpool galaxy. The Lagrange equations of
motion have been solved numerically in two cases (see computer algebra code [154]). In the first
case, we used the potential energy (9.32). Then, according to Eq. (9.12), the Lagrangian is

L = T −U =
1
2

m
(
ṙ2 + r2

θ̇
2)+ L2

2mr2 , (9.33)

and the resulting equtions of motion are

r̈ = rθ̇
2− L2

m2r3 , (9.34)

θ̈ =−2ṙθ̇

r
. (9.35)

For a numerical solution, the initial conditions for r and θ̇ should obey the relation for the angular
momentum, which is a constant of motion:

L = mr2
θ̇ . (9.36)

The orbit of a numerical solution with model parameters is graphed in Fig. 9.3. The star moves from
the outside to the inside on a spiral with only one winding. It was not possible to find a parameter
set leading to more windings of the orbit. The trajectory diagram of the velocity components
(Fig. 9.4) shows that the angular velocity diverges, when the radius approaches zero. The rotation
speed accelerates to infinity.

This limit of a hyperbolic spiral is not realistic for a galaxy, because the potential will not be
of pure −1/r2 type near to its center. Therefore, we have added a potential of type −a/r with a
constant a which models a Newtonian behavior in this region. Then, the equations of motion are

r̈ = rθ̇
2− L2

m2r3 −
a
r2 , (9.37)

θ̈ =−2ṙθ̇

r
. (9.38)

Only the equation for r is affected by the additional term in the potential. In the numerical solution,
this prevents the stars from falling into the center; the direction changes at a minimal radius, so that
a loop-like orbit arises (see Fig. 9.5). In order not to describe unphysical effects, one has to stop the
simulation at the point of closest approach to the center.
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Figure 9.3: Orbit of a star approaching the galactic
center, −1/r2 potential.

Figure 9.4: Trajectories of ṙ and θ̇ .

Figure 9.5: Orbit of a star approaching the galactic center, −1/r2 and additional −1/r potential.

In an analysis of the solutions, the analytical orbit (9.29) has been inserted into the equations of
motion (9.34, 9.35). This leads to a differential equation for θ(t):

2θ̇
2−θθ̈ = 0 (9.39)

(see computer algebra code [155]). This equation has the solution

t =− 1
ω0 θ

or θ =− 1
ω0 t

(9.40)

with a constant ω0. This solution is valid for both equations of motion as required. It means that
the rotation accelerates to infinity, when t approaches zero. To obtain a motion from the outer to
the inner, we have to start at negative time values and stop before t = 0 is reached. The velocity
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components are

vr = ṙ =− d
dt

(r0

θ

)
=−r0

d
dt

(−ω0 t) = r0 ω0, (9.41)

vθ = rθ̇ = r0ω0 t
d
dt

(
− 1

ω0t

)
=

r0

t
. (9.42)

In the limit t→±∞ we have

vr→ r0ω0 = const., (9.43)

vθ → 0. (9.44)

This means v→ const. and is a second, direct proof for the velocity curve of whirlpool galaxies
discussed in Example 8.14. Neither Newtonian nor Einsteinian theory is able to describe the
velocity curve. ECE theory uses only the concept of a rotating background spacetime which is a
concept of general covariance and therefore general relativity. As has been shown, the calculations
can be performed successfully even within a non-relativistic framework. No ad-hoc concepts
like dark matter or dark energy are required, which are to be exluded by our results according to
Occam’s razor. �

9.2 Relativistic gravitation
After we have described the non-relativistic theory of gravitation, we introduce relativistic methods
of gravitation, which are all to be considered as alternatives to Einstein’s erroneous field equation
of general relativity. We start with the line element and equations of special relativity, which will
be generalized subsequently.

9.2.1 Relativistic line element
The geometric distance of two points or “events” in four-dimensional spacetime has been introduced
already in Section 2.1.2. Such a distance is described by the quadratic differential line element of
special, as well as general, relativity:

ds2 = c2dτ
2 = c2dt2−dr2. (9.45)

τ is the proper time, local to the system under consideration, and t is the time scale of an external
observer. c is the speed of light without gravitational fields in vacuo, a universal constant. In
cartesian coordiantes, the infinitesimal distance in space is

dr = dXeX +dY eY +dZeZ, (9.46)

and its squared modulus is

dr2 = dX2 +dY 2 +dZ2. (9.47)

The oberserver moves with a velocity v relative to the sytsem under consideration:

v =
dr
dt

. (9.48)

This is the velocity he measures in his own inertial system. It follows

dr2 = v2dt2, (9.49)
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and with Eq. (9.45) we obtain

c2dτ
2 = (c2− v2)dt2. (9.50)

We can rewrite this equation to(
dt
dτ

)2

=
c2

(c2− v2)
=

(
1− v2

c2

)−1

. (9.51)

The derivative dt/dτ is called the γ factor of special relativity:

γ :=
dt
dτ

=

(
1− v2

c2

)−1/2

. (9.52)

in plane polar coordinates, we have

v2 =

(
dr
dt

)2

+ r2
(

dθ

dt

)2

= ṙ2 + r2
θ̇

2 (9.53)

and

dr2 = dr2 + r2dθ
2. (9.54)

In 3D polar coordinates it is, according to Eq. (7.170),

v2 =

(
dr
dt

)2

+ r2
(

dθ

dt

)2

+ r2 (sinθ)2
(

dφ

dt

)2

, (9.55)

and, correspondingly,

dr2 = dr2 + r2dθ
2 + r2(sinθ)2dφ

2. (9.56)

9.2.2 Hamiltonian and Lagrangian in special relativity
The Lagrangian we have used so far was

L = T −U, (9.57)

where T is the kinetic and U the potential energy, and the total energy E, or Hamiltonian, is

H = E = T +U. (9.58)

In relativistic mechanics, based on special relativity, the total energy of a mass m contains the rest
mass mc2 and is

E = γmc2 (9.59)

with the γ factor

γ =

(
1− v2

c2

)−1/2

. (9.60)

Therefore, the kinetic energy is a consequence of the γ factor. In contrast to the original Lorentz
transformation, where v is a constant velocity difference between frames of reference, v here is
assumed to be variable. The Lagrangian is defined by

L =−mc2

γ
−U. (9.61)
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The term with the inverse γ factor may look surprising at a first glance, but is the kinetic energy, as
can be seen as follows. With the approximation

√
1− x≈ 1− x

2
for x� 1, (9.62)

where x = v2/c2, the inverse γ can be approximated for non-relativistic velocities by

1
γ
≈ 1− v2

2c2 , (9.63)

therefore:

mc2

γ
≈ mc2− 1

2
mv2. (9.64)

Consequently, the relativistic kinetic energy is approximately

Trel :=−mc2

γ
≈ 1

2
mv2−mc2, (9.65)

so we obtain for the non-relativistic kinetic energy:

Tnon-rel =
1
2

mv2 ≈−mc2

γ
+mc2 =

(
1− 1

γ

)
mc2. (9.66)

It is more comfortable to subtract the rest energy mc2 from the total energy. This avoids
huge numerical values, and results are directly comparable to those of the non-relativistic theory.
Therefore, we use the Sommerfeld Hamiltonian

H0 := (γ−1)mc2 +U. (9.67)

A constant can be added to the Lagrangian without effect on the Euler-Lagrange equations. There-
fore, we can also define a reduced kinetic relativistic energy

Trel,0 :=
(

1− 1
γ

)
mc2. (9.68)

9.2.3 Generally covariant Hamiltonian and Lagrangian
In Eq. (9.50), which was derived from the relativistic line element (9.45), no restriction has been
made for the velocity v. Therefore, we can identify v with an arbitrary velocity of a mass m moving
in a frame of the observer. Since the line element is valid within Cartan geometry with curvature
and torsion, the Hamiltonian and Lagrangian derived in the preceding section are also valid in a
Cartan framework of general relativity. The differences to special relativity will become visible, as
soon as we apply differential operations to these equations, for example derive the Euler-Lagrange
equations from the Lagrangian.

The relativistic Euler-Lagrange equations
We consider the gravitational problem of a mass m moving within the gravitational field of a central
mass M. Using cartesian coordinates (X , Y , Z), the squared velocity is

v2 = Ẋ2 + Ẏ 2 + Ż2. (9.69)

The Lagrangian then is

L =−mc2

γ
+

mMG
r2 , (9.70)
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which, written out in coordinates, is

L =−mc2

√
1− Ẋ2 + Ẏ 2 + Ż2

c2 +
mMG

X2 +Y 2 +Z2 . (9.71)

The Euler-Lagrange equations then are, in short notation (where r stands for one of the components
X , Y, Z),

d
dt

∂L

∂ ṙ
− ∂L

∂r
= 0. (9.72)

The calculation is lengthy because of the occurrence of the γ factor. Computer algebra [156] shows
that the result can be brought into a quite compact vector equation:

r̈ =
M G
γ r3

(
ṙ(ṙ · r)

c2 − r
)

. (9.73)

In the Euler-Lagrange equations (9.72), we have used the observer time t. In the literature, the
proper time τ is used. This is a question of interpretation. Since we always observe a system
on basis of an oberserver frame, for example the center of the central mass M, the trajectories of
interest are r(t), etc., and not r(τ). Insofar, we prefer the usage of the Euler-Lagrange equations in
the above form. Written with τ , they are

d
dτ

∂L

∂ ṙ
− ∂L

∂r
= 0. (9.74)

Because of Eq. (9.52), we have

dt = γ dτ. (9.75)

Therefore, the Euler-Lagrange equations for τ obtain an additional factor 1/γ so that Eq. (9.73)
takes the form

r̈ =
M G
γ2 r3

(
ṙ(ṙ · r)

c2 − r
)
. (9.76)

The difference between both in the results will be discussed in Example 9.3. In both cases, the
non-relativistic result will be obtained for γ → 1, c→ ∞:

r̈ =−M G
r3 r. (9.77)

Besides these two possibilites of formulating a generally covariant relativistic theory of gravita-
tion, there are two more. The relativistic linear momentum of a mass m moving with velocity v is
defined by

p = γmv. (9.78)

In older textbooks, it was talked about a “relativistic mass increase” m→ γm, but we use the more
modern view that the momentum is increased and the mass is always identical to the rest mass. v is
determined by the relativistic dynamics of the system and is already a relativistic quantity in this
sense.
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The relativistic Newton equation
With the relativistic momentum (9.78), Newton’s law can be generalized to

F =
dp
dt

=
d
dt
(γmv). (9.79)

We compute the kinetic energy from this force. Reducing F to one dimension for convenience, the
kinetic energy is the line integral

T =
∫

Fds, (9.80)

which, with ds = vdt, can be written∫
Fvdt =

∫ d
dt
(γmv)vdt = m

∫
vd(γv). (9.81)

This expression can be integrated by parts. We apply the formula∫
u dw = uw−

∫
w du (9.82)

with the functions

u = v, w = γv. (9.83)

uw has to be evaluated at the integration limits. Application of integration by parts to (9.81) gives

T = m
∫ v

0
v d(γv) = mγv2∣∣v

0−m
∫ v

0
γv dv = mγv2−m

∫ v

0

v√
1− v2

c2

dv (9.84)

= mγv2 + mc2

√
1− v2

c2

∣∣∣∣∣
v

0

= mγv2 +
1
γ

mc2−mc2.

The second term at the end of the chain can be expanded and rewritten to

1
γ

mc2 = mc2 1− v2

c2√
1− v2

c2

= γm(c2− v2). (9.85)

Inserting this into (9.84) gives the final result

T = (γ−1)mc2. (9.86)

This is identical with the kinetic energy in the Sommerfeld Hamiltonian (9.67).
Having shown this, we have proven compatibility of Newton’s generalized law of dynamics

(9.79) with the Hamiltonian and Lagrangian. By equating this law with Newtons law of gravitation,
we obtain

F =
dp
dt

=
d
dt
(γmv) =−mMG

r3 r. (9.87)

We have to evaluate the time derivativ of γv in a similar way as for the kinetic energy T , but without
integration of parts. The details can be found in [96]. Here, we only present the result:

F = mγ
3 dv

dt
= mγ

3r̈. (9.88)

Equating this with Newton’s law of gravitaiton gives the final result

r̈ =−MG
γ3r3 r. (9.89)

Relativity introduces a factor of 1/γ3 but no relativistic terms of the order 1/c2. This is different
from the gravitational equation (9.73) obtained from Lagrange theory.
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The Minkowski force
A third possibility to generalize Newton’s law of gravitation comes from the Minkowski force. This
is defined as the 4-vector of force in the local frame of the moving mass, using the proper time:

Fµ

M =
d pµ

dτ
(9.90)

with the 4-momentum

pµ =

(
E
c
,p
)
. (9.91)

Using the definitions

E = γmc2, p = γmv (9.92)

as before, the space part of the Minkowski force is

FM = γF, (9.93)

where F is the relativistic generalization of the Newton force (9.79), leading to

FM = mγ
4 dv

dt
= mγ

4r̈. (9.94)

In analogy to (9.89), the gravitational acceleration then is

r̈ =−MG
γ4r3 r. (9.95)

If the Minkowski force is related to the observer frame, it is

Fµ

M =
d pµ

dt
, (9.96)

and because of dτ = dt/γ , one factor of γ cancels out in (9.95). Then, the Minkowski force is
identical to the relativistic Newtonian version (9.89).

Relativistic motion of the S2 star
� Example 9.3 We present the results of relativistic motion for the S2 star and compare them with
non-relativistic quantities. The S2 star is one of several heavy galactic objects that orbit the center
of our home galaxy whithin some few years. These stars have been investigated by astronomical
observations some years ago. The problem is that the galactic center is hidden by gas clouds so that
its surrounding region is very difficult to observe. Since the galactic center (a “black hole” after
classification of Einstein’s obsolete theory) has a mass of a few millions of solar masses, we expect
strong relativistic effects on star orbits in its vicinity.

We have solved the Euler-Lagrange equation (9.73) (see computer algebra code [157]). The
orbit is an ellipse with quite high ellipticity, as can be seen from Fig. 9.6. The exact motion depends
strongly on the initial conditions of the calculation. Since these are not very precisely known from
experiment, one has to vary them so that best agreement is achieved. Details on this are reported
in [97]. In particular, no structural parameters of an elliptic orbit (Eqs. (9.1 - 9.7)) can be obtained
from a numerical solution a priori. These parameters have to be extracted from the numerically
given orbit by algorithms (see [97] for details).
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The relativistic γ factor depends on the velocity of the star and is largest at the periastron
(closest approach to the center). From Fig. 9.7 it can be seen that, at these maxima, γ deviates from
unity only by a few ten-thousandths. The relativistic angular momentum is

L = r×p = γ m r×v, (9.97)

where p is the relativistic linear momentum. For a planar motion in cartesian coordinates (XY
plane) this is

Lrel = γ m(XẎ −Y Ẋ), (9.98)

while the non-relativistic angular momentum is

Ln-r = m(XẎ −Y Ẋ). (9.99)

Both are graphed in Fig. 9.8. The relativistic angular momentum is a constant of motion as expected,
while the non-relativistic angular momentum is not. The deviations have peaks at periastron where
the γ factor (see Fig. 9.7) is largest.

Figure 9.6: Orbit of the S2 star. Figure 9.7: γ factor of the S2 star.

Figure 9.8: Angular momenta of S2. Figure 9.9: Total energies of S2.
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A similar picture results for the total energies in the relativistic and non-relativistic case:

Erel = (γ−1)mc2− mMG√
X2 +Y 2

, (9.100)

En-r =
1
2

mv2− mMG√
X2 +Y 2

. (9.101)

As can be seen from Fig. 9.9, both deviate significantly at the periastron only, similar to the angular
momenta. The orbital velocity of the S2 star reaches some percent of the velocity of light at these
points. This is still far away from an ultra-relativistic case with v≈ c. �

Comparison of force laws

� Example 9.4 The numerical results for the four force laws are compared. These are valid
formulations for covariant relativistic gravitational problems:

r̈ =
M G
γ r3

(
ṙ(ṙ · r)

c2 − r
)

Lagrange in observer time (9.102)

r̈ =
M G
γ2 r3

(
ṙ(ṙ · r)

c2 − r
)

Lagrange in proper time (9.103)

r̈ =−MG
γ3r3 r Relativistic Newton (9.104)

r̈ =−MG
γ4r3 r Minkowski in proper time (9.105)

A comparison of all four theory variants is made in Table 9.1 for the orbit of the S2 star. The
differences in the maximum radius and eccentricity are marginal. The orbital period T deviates
from experiment by half of a year for the Minkowski force, but is well represented by the other
calculations.

The angle of precession per orbit is negative (or retrograde) for both the Minkowski and rela-
tivistic Newton force. Using Lagrange theory, the precession is positive. However, the precession
is extremely small in the τ version of Lagrangian theory. It is barely above the numerical precision
limit of 10−8 rad as determined in [97]. There is also a logical problem for the Lagrange theory
based on proper time τ , as stated earlier. The experimental value of the precession is not very
precisely known and even differs in sign. Its mean value is positive so that the first Euler-Lagrange
calculation seems to be in best accordance with experiments.

In both Lagrange theories, the relativistic angular momentum is conserved as to be expected.
However, for the relativistic Newton and Minkowski force, only the non-relativistic angular mo-
mentum is conserved (see Fig. 9.10), giving an inconsistent result. This seems surprising, because
the consistency of all four force laws with relativistic mechanics was shown before. One possible
explanation is that the angular momentum is to be defined in these cases by the velocity in the rest
frame of the mass, giving

Lrel = γmr× dr
dτ

= γmr× dr
dt
· 1

γ
= mr× dr

dt
= Ln-r. (9.106)



9.2 Relativistic gravitation 253

T [yr] rmax [1014 m] ε ∆φ [rad] const. of
motion

Euler-Lagr. t 15.50 2.78609 0.88712 5.9033·10−4 Lrel
Euler-Lagr. τ 15.57 2.79440 0.88746 7.5090·10−7 Lrel
Rel. Newton t 15.50 2.78621 0.88720 -1.7697·10−3 Lnon−rel
Minkowski τ 15.06 2.79452 0.88753 -2.3585·10−3 Lnon−rel

Experiment 15.56 2.68398 0.8831 -0.017. . .
+0.035

Table 9.1: Parameters of S2 star orbit (v0 = 7.7529648 ·106 m/s, various calculations and experi-
ment).

Figure 9.10: Angular momenta of S2 for the relativistic Newton force.

Relativistic motion of the Hulse-Taylor pulsar

� Example 9.5 As another interesting example, we present results for the Hulse-Taylor double-star
system, which consists of a pulsar and a neutron star of nearly equal mass. The details are described
in [97], here we only report the results. For the double-star system, r is used as the center of mass
coordinate. The Euler-Lagrange equations derived from the covariant Lagrangian have been solved,
as we have done for the S2 star. Since relativistic effects in this double-star system are smaller
than for the S2 star, we ran into numerical precision problems. Therefore, the system of units was
redefined, see [97].

The results of the calculations are listed in Table 9.2. As in the case for S2, we had to alter
the periastron velocity v0 significantly to obtain the experimental orbit period of 7.75 hours. This
overestimates the maximum radius (apastron) and ellipticity. The experimental precession of 4.226
degrees per earth year has been converted to a value per single orbit that is in the order of 10−5 rad.
This is an order of magnitude higher than the values of our calculation which are quite insensitive
to changes of v0. Perhaps, additional fluid gravitation effects have to be taken into account (see
discussion below). The orbits of the Hulse-Taylor pulsar and its partner are graphed in Fig. 9.11.
The ellipse of the neutron star is a bit larger, because the masses of both stars are not totally equal.

Since the equations of motion are complicated, we tried a simplification by approximating the
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γ factor in the Lagrangian:

√
1−u≈ 1− u

2
− u2

8
+ . . . (9.107)

with

u =
v2

c2 . (9.108)

The results of this quadratic approximation coincide exactly with the fully relativistic calculation
(see corresponding line in Table 9.2). When we restrict the calculation to the linear term, the
non-relativistic result (9.66) follows. Doing a non-realtivistic calculation gives practically the same
results (see extra line in Table 9.2). This may appear astonishing because the Hulse-Taylor pulsar is
considered as a source for gravitational waves. However, when we compare the v0 value of 450
km/s with that of the S2 star (see caption of Table 9.1), we realize that v0 of the Hulse-Taylor pulsar
is smaller by an order of magnitude. This leads to a γ factor deviating from unity by only an order
of 10−6. Therefore, relativistic effects are very small in the Hulse-Taylor system, despite of the
fact that two stars comparable to the sun come quite near to each other. The fast rotation of the
pulsar of 17/s does not play a role in this type of gravitational theory, but it may be the reason for
an energy loss which is observed. This leads to a decrease of the orbit period by 76.5 µs per year,
corresponding to a decrease of the semi major axis by 3.5 m per year. The loss power is reported to
be 7.35 ·1024 W which corresponds to about 8 ·107 kg/s. This is far too low to account for the orbit
decrease. Since the precession data give a hint to fluid gravitation effects, this may also be a reason
for the orbit shrinking.

The shrinking of the orbit can qualitatively be understood by the following consideration. If the
orbit of the double-star system is superimposed with a spacetime or aether flow, we can add such a
flow velocity to the orbital velocity in the kinetic energy, i.e., in the γ factor. Using the quadratic
approximation (9.107) and assuming an additional X component vaX of the aether, we obtain

1
γ
≈ 1− 1

2
(vX + vaX)

2 + v2
Y

c2 − 1
8

(
(vX + vaX)

2 + v2
Y

c2

)2

. (9.109)

Since the effects have to be related to a single orbit, the reported decrease of period time and radius
are so small that they cannot be obtained from our calculation. However, a numerical test showed
that the angle of precession ∆φ depends sensitively on a change of kinetic energy as in Eq. (9.109).
Another reason could be of electromagnetic type since the pulsar has a huge magnetic moment.

The decrease of radius has been shown qualitatively by a model calculation with the above γ

factor (see Fig. 9.12 and computer algebra code [158]). Besides the shrinking of the radius, there is
a precession of the ellipse, which both is observed in the Hulse-Taylor pulsar system. Einsteinian
general relativity is not an adequate argument because of its mathematical incorrectness. �
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v0 [m/s] T [h] rmax [109 m] ε ∆φ [rad]
450 000 4.75 1.04648 0.51840 3.1966 ·10−6

466 863 7.17 1.48350 0.63433 2.9697 ·10−6

468 831 7.60 1.55474 0.64814 2.9447 ·10−6

469 526 7.76 1.58133 0.65303 2.9360 ·10−6

rel. approx. 2nd order:
469 526 7.76 1.58133 0.65303 2.9360 ·10−6

non-rel.:
469 526 7.76 1.58131 0.65303 9.7865 ·10−10

experiment:
450 000 7.75 1.40201 0.617155 6.5209 ·10−5

Table 9.2: Parameters of Hulse-Taylor double star system (various calculations and experiment).

Figure 9.11: Orbit of the Hulse-Taylor pulsar and
its neutron star partner (in 109 m).

Figure 9.12: Model of a shrinking orbit.

� Example 9.6 We derive the relativistic Euler-Lagrange equations in plane polar coordinates.
In section 9.2.3, Eq. (9.73), we had derived the relativistic Euler-Lagrange orbital equations in
cartesian coordinates. The equations are

r̈ =
M G
γ r3

(
ṙ(ṙ · r)

c2 − r
)
. (9.110)

To transform them into plane polar coordinates, we use the coordinate transformations

X = r cos(φ), (9.111)

Y = r sin(φ). (9.112)

Then, the velocity components are

vX = Ẋ = ṙ cos(φ)− rφ̇ sin(φ), (9.113)

vY = Ẏ = ṙ sin(φ)+ rφ̇ cos(φ), (9.114)

and the accelerations are

aX = v̇X = r̈ cos(φ)−2φ̇ ṙ sin(φ)− φ̈r sin(φ)− φ̇
2r cos(φ), (9.115)

aX = v̇X = r̈ sin(φ)+2φ̇ ṙ cos(φ)+ φ̈r cos(φ)− φ̇
2r sin(φ). (9.116)
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The scalar product ṙ · r in (9.110) simplifies to

ṙ · r = vX X + vYY = rṙ. (9.117)

Inserting (9.113-9.117) into (9.110) gives, after some trigonometric reductions and resolving for φ̈

and r̈:

φ̈ eX =

(
GM φ̇ ṙ
γc2 r2 −

2φ̇ ṙ
r

)
eX , (9.118)

r̈ eY =

(
GM ṙ2

γc2 r2 + φ̇
2r− GM

γr2

)
eY , (9.119)

where

eX =

[
1
0

]
, eY =

[
0
1

]
(9.120)

are the cartesian unit vectors. Because these are the same at both sides of (9.118, 9.119), it follows
directly that

φ̈ =
GM φ̇ ṙ
γc2 r2 −

2φ̇ ṙ
r

,

r̈ =
GM ṙ2

γc2 r2 + φ̇
2r− GM

γr2 .

(9.121)

(9.122)

Alternatively, these equations can be derived from the Lagrangian

L =−mc2

γ
+

mMG
r

(9.123)

with the γ factor

γ =

(
1− ṙ2 + r2φ̇ 2

c2

)−1/2

. (9.124)

In both equations of motion, there is a relativistic term proportional to 1/c2, which depends on the
dynamic terms ṙ and φ̇ and contains the gravitational force term GM/r2. In this sense, we have a
coupling between kinetic and potential energy. The constant of motion is the relativistic angular
momentum in polar coordinates:

L = γmr2
φ̇ . (9.125)

The computer algebra code of both methods of derivation can be found in [159] and [160]. �

9.2.4 Spin connection vector
Newton’s law in form of the Poisson equation (8.271) reads

∇ ·g =−4πG ρm = κ ·g, (9.126)

where g is the gravitational acceleration, ρm is the mass density and κ is a combination of potential
and spin connection in ECE2 theory, see Eq. (6.165). If we identify κ with a characteristic
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spin connection wave number, this is a quantity that connects gravitation with ECE2 spacetime.
Deploying Newton’s gravitational law in the relativistically generalized form (9.104),

g =−MG
γ3r3 r, (9.127)

we obtain from

κ ·g = ∇ ·g (9.128)

in cartesian coordinates the equation

− GM κYY

(Y 2 +X2)
3
2 γ3
− GM κX X

(Y 2 +X2)
3
2 γ3

=− 2GM

(Y 2 +X2)
3
2 γ3

+
3GMY 2

(Y 2 +X2)
5
2 γ3

+
3GM X2

(Y 2 +X2)
5
2 γ3

,

(9.129)

which can be simplified to

κX X +κYY =−1 (9.130)

(see [98] and computer algebra code [161]). Because the gravitational field is a central field, it is

∇×g = 0. (9.131)

Now, we inspect the term κ×g. In electrodynamics, g corresponds to the electric field E, and there
is a term κ×E on the right-hand side of the field equation (6.167), which is the electromagnetic
Faraday law or the gravitomagnetic law in the case of mechanics. Since we consider gravito-statics,
there is no magnetic or gravitomagnetic field. Furthermore, we identify κ(Λ) with κ . Because there
is no homogeneous current, we obtain

κ×g = 0, (9.132)

i.e., κ is parallel to g. Therefore, we can write

κX =
gX

v2
0
=− MG

v2
0γ3(X2 +Y 2)

X , (9.133)

κY =
gY

v2
0
=− MG

v2
0γ3(X2 +Y 2)

Y (9.134)

with a factor v2
0, which has the dimension of a squared velocity. By inserting the above equations

into Eq. (9.130), the factor can be determined and is

v2
0 =

MG
γ3(X2 +Y 2)

. (9.135)

Inserting v2
0 into (9.133, 9.134) then gives the simplified equations

κX =− X
X2 +Y 2 , (9.136)

κY =− Y
X2 +Y 2 . (9.137)

The γ factor has canceled out so that these equations hold for the relativistic as well as the non-
relativistic case.
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The condition (9.131) leads to the result

κXY −κY X = 0. (9.138)

Together with Eq. (9.130), we obtain two equations for two unknowns X and Y :

κX X +κYY =−1, (9.139)

κXY −κY X = 0. (9.140)

The solution for the variables X , Y is

X =− κX

κX
2 +κY

2 , (9.141)

Y =− κY

κX
2 +κY

2 . (9.142)

This is the inverse result to Eqs. (9.136, 9.137). X and Y are completely defined by the spin
connections κX and κY . Alternatively, we could solve the equation system (9.139, 9.140) for the
variables κX and κY and would obtain Eqs. (9.136, 9.137) again.

The spin connection vectors for an elliptic orbit have been graphed in Fig. 9.13. It can be seen
that they all point to the center of motion, i.e. they are in parallel to the central gravitational field.
The spin connections have been plotted on an equidistant angular grid. Their mutual distances do
not represent the timing of the motion of the orbiting mass. �

Figure 9.13: Spin connection vectors for an elliptic orbit.

9.2.5 Counter gravitation
We consider two methods to counteract gravitation. The Biefeld-Brown effect describes an interac-
tion of electricity and gravitation. Another method is to achieve counter gravitation by mechanical
means alone.

Biefeld-Brown effect
Consider the Coulomb law

∇ ·E =
ρ

ε0
(9.143)
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and Newton’s law (Poisson equation)

∇ ·g =−4πG ρm, (9.144)

where ρ is the electrical charge density and ρm the gravitational mass density. Using the electric
potential φ and gravitational potenial Φ, the force fields are

E =−∇φ +ωeφ (9.145)

and

g =−∇Φ+ωmΦ, (9.146)

as derived in earlier chapters. Here we have discerned between the spin connections of electromag-
netism ωe and gravitation ωm. We want to add Eqs. (9.143) and (9.144). For this, we multiply Eq.
(9.143) by a factor α , wich provides the same physical units for both equations. By inserting the
definitions of E and g, we obtain

−∇
2 (αφ +Φ)+∇ · (αωeφ +ωmΦ) = α

ρ

ε0
−4πG ρm. (9.147)

Counter gravitation is perfectly achieved, if g = 0, which means that

∇Φ = ωmΦ. (9.148)

Then, the terms with the gravitational potential in Eq. (9.147) cancel out, giving

−∇
2
φ +∇ · (ωeφ) =

ρ

ε0
− 4πG

α
ρm. (9.149)

The electric quantities at the left-hand side have to be defined in a way that the right-hand side is
fulfilled, which contains the mass density of the apparatus, whose gravity is to be counteracted. This
is called the Biefeld-Brown effect. α is a coupling constant between electrostatics and gravitation,
which has to be determined experimentally. The divergence term in the above equation can be
rewritten to give

∇
2
φ −ωe ·∇φ − (∇ ·ωe)φ =− ρ

ε0
+

4πG
α

ρm. (9.150)

For a spin connection ωe with negative sign, this is an equation for an Euler-Bernoulli resonance, as
was discussed in section 5.4.4. The engineering challenge is to realize an electric spin connection
that fulfills the resonance condition.

Mechanical counter gravitation
� Example 9.7 We compute the spin connections of the Earth’s gravitational field and investigate,
if counter gravitation is possible on a pure gravitational or mechanical level (see computer algebra
code [162]). As a consequence of the antisymmetry law, the gravitational field can be expressed
twofold:

g =
1
2
(−∇Φ+ωΦ) (9.151)

=
1
2

(
−∂Q

∂ t
− cω0 Q

)
, (9.152)

where Φ is the gravitational potential, Q is the vector potential, and ω0 and ω are the scalar and
vector spin connections of gravitation.
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Gravitation of the Earth is a gravitostatic problem, therfore ∂Q/∂ t = 0. Mass and radius of the
Earth and the gravitaional constant have the values

ME = 5.97219e24 kg,

rE = 6.371009e6 m, (9.153)

G = 6.67408e-11 m3kg−1s−2.

Therefore, the gravitational potential on the Earth’s surface is

ΦE =−ME G
rE

=−6.256e7 m2s−2. (9.154)

The radial component of the gravitational field is

gr =−∇rΦE =−9.81 ms−2. (9.155)

The vector spin connection is the same as for the Coulomb potential (see Eq. (4.105) of Example
4.1):

ωr =
1
r
, (9.156)

which for the Earth’s radius is

ωrE = 1.569610e-7 m−1 (9.157)

and gives

ωrEΦ =−9.81 ms−2. (9.158)

Both terms in Eq. (9.151) are of the same size. In total, we obtain the well known absolute value

g = 9.81 ms−2. (9.159)

From Eq. (9.152) follows

g =−1
2

cω0QrE , (9.160)

where QrE is the radial part of the gravitational vector potential on the Earth’s surface. To completely
counteract the force of gravity, the sign of g must be reversed so that the total sum is zero:

g→−g =
1
2

cω0QrE . (9.161)

This can be achieved by modifying the spin connection ω0. For the complete compensation of the
gravitational field, an additional spin connection is required:

cω0 =
2g

QrE
. (9.162)

In this notation, the left side has the unit of a time-frequency. So we have to know the value of the
vector potential QrE in order to determine the appropriate ω0. For this, we have to make a “detour”
via the gravitomagnetic field. This field results from the inverse equation of the mechanical Lorentz
force, which is also called the gravitomagnetic equation (see Eq. (7.50)):

Ω =− 1
c2 v×g. (9.163)
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The field Ω is determined by the gravitational field g and the linear velocity v of a point on the
Earth’s surface. At the equator, it is

v =
2π

T
rE =

2π ·6.371009e6 m
24 ·3600 s

= 463.3 ms−1. (9.164)

This results in an amount of

Ω =
vg
c2 = 5.057e-14 s−1. (9.165)

According to a more precise calculation in this book, Eq. (7.71), we obtain for the mean gravito-
magnetic field on the Earth’s surface:

Ω = 1.588e-14 s−1. (9.166)

Now, we have to determine the vector potential QrE on the Earth’s surface. The gravitomagnetic
field is defined by

Ω = ∇×Q−ω×Q. (9.167)

If, as in the case of the g field, we assume that both contributions are equal, it follows

Ω = 2 |−ω×Q| ≈ 2ωQ, (9.168)

where ω⊥Q has been assumed. At the radius of the Earth, with ω = 1/rE , the gravitomagnetic
field then is

ΩE ≈
2
rE

QrE , (9.169)

and, consequently,

QrE ≈
rE

2
ΩE = 5.059e-8 ms−1. (9.170)

From Eq. (9.162) results a mechanical time-related spin connection of

ωt0 := cω0 =
2g

QrE
= 3.879e8 s−1, (9.171)

which corresponds to a time frequency of

ft0 =
ωt0

2π
= 6.173e7 Hz (9.172)

This value is in the range of what is called “hypersonic”. This consideration opens up opportunities
to study the effect of very high sound frequencies on gravity. It has been reported [93] that radiation
in the wavelength range between 0.3 and 4.3 mm leads to antigravity effects (see also section 8.4).
This corresponds to frequencies between and 1010 and 1012 Hz, even higher than computed above.
Our calculation would be a first qualitative explanation of this effect on a “hypersonic” basis. �
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9.3 Precession and rotation
9.3.1 x theory

We have seen that relativistic effects invoke a precession of gravitational orbits. In our calculations,
precession is a result of relativistic Lagrange theory, which is a first-principles theory, without
additional assumptions. On the other hand, the precession angles of planetary motion are quite small
and require special numerical effort to get reliable results. Therefore, it would be advantageous to
have an analytical method to compute and compare precessions. Then, we could continue to use
the orbit parameters of ellipses like eccentricity, half right latitude and angular momentum. In a
Lagrange calculation, these parameters are not available a priori and have to be extracted from the
results numerically. The calculation is solely determined by the initial conditions of position and
velocity of the planets.

We consider a plane polar coordinate system. In x theory, we assume a constant progression
of the orbital angle of motion from the standard elliptic form. Later, we will discuss a method of
extending this procedure to variable progressions. Denoting the deviation of the polar angle by a
factor of x, the angle of a full orbit of 2π is modified to x ·2π , and the analytical form of the orbit
(9.20) then is

r =
α

1+ ε cos(xθ)
. (9.173)

For x< 1, we obtain forward precession, because for θ = 2π a full circle has not yet been completed.
For x> 1, we have backward precession. The analytical results for conical sections given in Sections
8.1.1 and 8.1.2 can be extended as follows. (For the detailed calculations, see computer algebra
code [163].)

The orbital derivative is

dr
dθ

=
εr2x

α
sin(xθ), (9.174)

and the time derivative can be computed by

dr
dt

=
dr
dθ

dθ

dt
=

εr2xθ̇

α
sin(xθ). (9.175)

The angular momentum is a constant of motion, augmented by a factor of x:

L = mr2xθ̇ (9.176)

Since the orbit r(θ) is known by Eq. (9.173), the force law can be computed from the Binet
equation (9.19):

F(r) =
L2

m

(
x2−1

r3 − x2

αr2

)
(9.177)

For for x = 1, the relation (9.26) for the angular momentum holds:

L2 = m2MGα, (9.178)

and the force law (9.177) takes the Newtonian form

F(r) =−mMG
r2 . (9.179)

The squared velocity of the orbiting mass m is in general

v2 = ṙ2 + r2
θ̇

2, (9.180)
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and, according to Eq. (9.175), can be written as

v2 = θ̇
2

((
dr
dθ

)2

+ r2

)
= r2

θ̇
2
(

1+
(rxε

α
sin(xθ)

)2
)
. (9.181)

From (9.176), the angular frequency is

θ̇ =
L

xmr2 , (9.182)

and inserting this into the velocity equation gives

v =
L

xmr

(
1+
(rxε

α
sin(xθ)

)2
)1/2

. (9.183)

From the orbit (9.174), it follows

sin(xθ)2 = 1− 1
ε2

(
α

r
−1
)2

, (9.184)

so that the velocity takes the final form

v =
L

xmα

(
2x2α

r
− x2(1− ε

2)+
α2

r2 (1− x2)

)1/2

, (9.185)

which only depends on r. The θ coordinate has been eliminated. For x = 1, it turns into the equation

v =
L

mα

(
2α

r
− (1− ε

2)

)1/2

. (9.186)

This can be brought into the form

v2 = MG
(

2
r
− 1

a

)
, (9.187)

which is the well known equation (9.21) of Newtonian theory.

The x theory is depicted by some graphs which should make clear the meaning of the precession
parameter x for conical section orbits. We start with ellipses. Significant deviations of x from unity
lead to changes in the minor axis, which becomes identical to the major axis, see Fig. 9.14. For
x = 2, the curve is deformed and no longer identifiable as an ellipse. Therefore, we call this type of
curves generalized conical sections.
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Figure 9.14: Generalized ellipses (ε = 0.5). Figure 9.15: Generalized parabolas (ε = 1.0).

Figure 9.16: Generalized hyperbolas (ε = 1.5). Figure 9.17: Special generalized hyperbola
(ε = 1.5,x = 0.3).

The “generalization” effect of parabolas can be seen in Fig. 9.15. For values of x very different
from unity, the curves are more like spirals or hyperbolas than parabolas. For generalized hyperbolas
(Fig. 9.16), the curves are distorted in a similar way. In all plots, only the angular range of θ

between 0 and 2π is shown, in order not to overload the diagrams. A special case appears for
hyperbolas with x = 0.3 as graphed in Fig. 9.17, where the orbits are shown for a broader range
of angles. Between −π and π , the orbit is a circle, showing that even closed orbits for ε > 1 are
possible for generalized conical sections. For larger angles, some kinds of loops are observable.

All this reminds to the alleged behaviour of “black holes” of the deprecated Einstein theory. If
the central gravitational mass is very massive as reported for the centers of galaxies by astronomers,
we can assume significant deviations of x from unity, leading for example to the orbits of Fig. 9.17.
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Even deflection of light can be described by Eq. (9.173). Therefore, we can imagine that light in
the vicinity of such massive stars is bent completely around the center and is trapped. This would
result in invisibility from outside, and the massive star would behave like a “black hole”. All this is
concluded on the basis of classical physics.

The Lagrangian of x theory is

L = T −U (9.188)

as usual. The kinetic energy is

T =
1
2

mv2 =
1
2

m
(
ṙ2 + r2

θ̇
2) . (9.189)

Integrating the force (9.177) that stems from the Binet equation, gives the potential energy

U =−
∫

F(r)dr =−mMG
(

x2

r
+

α(1− x2)

2r2

)
. (9.190)

Then, the resulting Lagrangian of x theory is

L =
1
2

m
(
ṙ2 + r2

θ̇
2)+mMG

(
x2

r
+

α(1− x2)

2r2

)
, (9.191)

and the equations of motion are

r̈ = MG

(
−x2

r2 −
α
(
1− x2

)
r3

)
+ r θ̇

2, (9.192)

θ̈ =−2
ṙθ̇

r
. (9.193)

Obviously, only the radial equation is affected by the x factor. In the limit x→ 1 we obtain the
original Lagrange equations for Newtonian motion in a plane (9.15 - 9.16). Eq. (9.192) is identical
with the force law (9.177), here written in polar coordinates, where the centrifugal acceleration rθ̇ 2

appears additionally.
So far, we have considered a constant value of x. We can extend the theory to a variable x

that depends on the coordinates by writing x(r,θ). This makes sense, since the relativistic effects
of precession depend on the velocity and are largest at the periastron of orbits (point of closest
approach to the central mass). For a varying x, the orbit (9.173) takes fhe form

r =
α

1+ ε cos(x(r,θ)θ)
. (9.194)

Concerning the dependence on r, this is a transcendent equation, and the Binet equation cannot
be used any more to determine the force law. As an alternative, we use Lagrange theory directly.
Assuming that the potential energy (9.190) remains approximately valid, we obtain the Euler-
Lagrange equations

r̈ = MG

(
2r−α

r2 x
∂x
∂ r
− x2

r2 −
α
(
1− x2

)
r3

)
+ r θ̇

2, (9.195)

θ̈ = MG
2r−α

r4 x
∂x
∂θ
−2

ṙθ̇

r
. (9.196)

These equations contain the derivatives of x as expected, leading to an additional term in both
equations. If x only depends on r, the angular acceleration is the same as before, and the angular
momentum (9.176) is a constant of motion. If x depends on θ , this is not the case any more. For
x = const., we obtain Eqs. (9.192, 9.193) again.
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� Example 9.8 We compute the x factor for the precession of the planet Mercury (see computer
algebra code [164]). The angle of precession per orbit is experimentally, and by an approximation
of Einstein theory [99], given by

∆θ =
6πMG

c2α
, (9.197)

where M is the mass of the sun and α the half right latitude of Mercury’s orbit:

M = 1.98855e30 kg, (9.198)

α = 5.7909050e10 m.

This gives a precession angle of

∆θ = 4.80664e-7 (9.199)

per orbit. From x theory, we have

∆θ = 2π(1− x), (9.200)

from which follows

x = 1− ∆θ

2π
= 1− 3MG

c2α
, (9.201)

giving a numerical value of

x = 1−7.649998e-8. (9.202)

This value is very close to unity as expected. The computed value of ∆θ amounts to 41.16 arc
seconds per (Earth) century, while NASA reports 42.98 arc seconds per century. For the conversion
factors see [100]. �

9.3.2 Precession by rotating spacetime
We have seen in the preceding sections that gravitational precession is induced by any kind of
perturbation of Newton’s equations, may it be by relativistic effects or impacts of spacetime
structures. Now, we study the effect of the gravitational vector potential, which will lead to a
precession by the gravitational Lorentz force.

The vector potential of mechanics in ECE2 theory is a velocity, therefore we denote it by a
vector vg for clarity:

W = vg. (9.203)

The gravitomagnetic field is defined by

Ωg = ∇×vg. (9.204)

The vector potential gives rise to an own momentum field, in addition to the mechanical momentum

pm = mv (9.205)

or, relativistically,

pmr = γmv. (9.206)
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In electrdynamics, we know that the field momentum is

pA = qA, (9.207)

where A is the magnetic vector potential and q is the electric charge. In gravitation, the field
momentum is, analogously,

pg = mvg. (9.208)

Consequently, the canonical momentum of classical mechanics is

pc = pm +pg = mv+mvg. (9.209)

The canonical momentum is not measurable, only the mechanical momentum is. Therefore, the
Hamiltonian is defined by the measurable momentum only:

H =
1

2m
(pc−pg)

2 +U =
1
2

mv2 +U (9.210)

in the non-relativistic case with potential energy U .
If no canonical momentum is present, the Lagrangian is

L = T −U (9.211)

with the kinetic energy T . However, to determine the Lagrangian in the presence of vg, we have to
use Hamilton’s equation

H = ∑
j

p jq̇ j−L , (9.212)

where p j are the components of the canonical momentum and q j the generalized coordinates.
Instead of using Eq. (9.211), we have to determine the Lagrangian from Hamilton’s equation. The
result is

L =
1
2

mv2 +mv ·vg−U. (9.213)

(see computer algebra code [165]). There is a product term of velocities, but no quadratic term in
vg. This derivation follows the procedure of standard mechanics [101]. In the papers of ECE theory,
the Hamiltonian

H1 =
1

2m
p2

c +U (9.214)

was used [102], which leads to somewhat different results and to complications in the Euler-
Lagrange equations. For consistency checks, see [165].

In the following, we assume a uniform rotation of spacetime by the vector potential, wich
corresponds to a rotation of a solid disk. Then, a number of specializations can be introduced in
the Hamiltonian. We focus on the results here; for the full (and partially lengthy) calculations
see [102]). Assume that we have a cylindrical coordinate system (r, θ , Z) and the gravitomagnetic
field points in direction of the unit vector k:

Ωg = ΩgZk. (9.215)

Because of

Ωg = ∇×vg, (9.216)
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vg has only a θ component, i.e., it is in the rotation plane and perpendicular to the radius vector.
Then, it can be shown [102] that

vg =
1
2

Ωg× r, (9.217)

and the (constant) angular velocity of spacetime rotation is

Ω =
1
2
|Ωg|=

1
2

ΩgZ. (9.218)

This is in analogy to the electromagnetic Larmor frequency

ωL =
e

2m
B (9.219)

in a magnetic field B. In the mechanical case, both constants are masses, therefore the factor reduces
to 1/2. For the modulus of vg, it follows that

vg = Ωr. (9.220)

Using the definition of the angular momentum,

L = p× r, (9.221)

and the Hamiltonain of ECE theory (9.214), which can be rewritten to

H1 =
1
2

m
(
v2 +v2

g
)
+mv ·vg +U, (9.222)

the product term on the right-hand side can be written as

mv ·vg =
1
2

p ·Ωg× r =−1
2

p× r ·Ωg =−
1
2

L ·Ωg. (9.223)

By construction, L and Ωg are parallel. Therefore, L ·Ωg = LΩg, and with (9.218) follows

mv ·vg =−LΩ, (9.224)

where L is a constant of motion. Then, the Hamiltonian (9.222) is

H1 =
1
2

m
(
v2 +v2

g
)
−LΩ+U. (9.225)

A positive precession frequency Ω leads to a decrease of total energy, while a negative precession
frequency (in the direction of elliptic motion, see next example) increases total energy so that it is
possible to change the orbit to an open conic section, if E > 0 is reached.

� Example 9.9 The Euler-Lagrange equations of the Lagrangian (9.213) are computed in plane
polar coordinates. We define the vector potential vg for a uniformly rotating spacetime by

vg =

[
0

rω0

]
, (9.226)

where the two vector components are the radial and angular component. This is a pure rotational
potential with a fixed frequency ω0. The resulting Euler-Lagrange equations from the Lagrangian
(9.213) are

r̈ = r θ̇
2 +2r ω0θ̇ −MG

r2 , (9.227)

θ̈ =−2ṙ
r

(
ω0 + θ̇

)
. (9.228)
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There is an additional term of ω0 in both equations. A numerical solution (see computer algebra
code [166]) shows that a negative ω0 leads to forward precession, while a positive ω0 produces
retrograde precession. The constant of motion is the angular momentum

L = mr2(ω0 + θ̇). (9.229)

The angular velocity of spacetime rotation adds to that of the undisturbed ellipse. �

� Example 9.10 From Eq. (9.220), we can derive the vector potential of the terrestrial orbit. The
orbital precession (apsidal precession) is 1.862e-7 radians/year, which gives

Ω = 1.862e-7/(365.25 ·24 ·3600) rad/s = 5.900e-15 rad/s. (9.230)

Withe the average orbit radius of r=1.495e11 m, we obtain

vg = Ωr = 8.821e-4 m/s. (9.231)

This is orders of magnitude smaller than the orbital velocity of the Earth around the sun, which is
2.979e4 m/s. �

The gravitational Lorentz force
Finally, we show that from the Lagrangian (9.213) the gravitational Lorentz force is obtained. In
analogy to the electromagnetic Lorentz force, this force is defined by Eq. (7.49):

FL = mgL = mv×Ωg, (9.232)

which can be written as

mgL = mv× (∇×vg). (9.233)

To derive this force from the Lagrangian, we use a cartesian coordinate system in three dimensions
with position and velocity vectors

r =

X
Y
Z

 , v =

Ẋ
Ẏ
Ż

 . (9.234)

The gravitomagnetic vector potential is

vg =

vgX

vgY

vgZ

 , (9.235)

and, without a potential energy, the Lagrangian is

L =
m
2
(
Ẋ2 + Ẏ 2 + Ż2)+m

(
vgX Ẋ + vgY Ẏ + vgZŻ

)
. (9.236)

In the computer algebra code [167], it is shown that, for example, the X component of the
acceleration is

Ẍ =

(
∂

∂X
vgZ−

∂

∂Z
vgX

)
∂

∂ t
Z +

(
∂

∂X
vgY −

∂

∂Y
vgX

)
∂

∂ t
Y. (9.237)

In total, computer algebra gives

r̈ = v× (∇×vg) = v×Ωg, (9.238)
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which is the acceleration of the gravitomagnetic force equation (9.232). The gravitomagnetic field
Ωg is the gravitational equivalent of of magnetic induction in the Ampère-Maxwell law of ECE2
electrodynamics:

∇×Ωg =
4πG
c2 Jg, (9.239)

where Jg is a local mass current density, analogous to the current density in electrodynamics. The
gravitomagnetic forces give rise to forces in additon to the centrifugal and Coriolis force.

Field momentum in one dimension

The concept of the canonical momentum holds also for one-dimensional motion, say in X direction.
We study the question, if the gravitational force on the Earth’s surface can be counteracted by a
field momentum. This field momentum can only be produced by electromagnetism and has the
well known vector form given by Eq. (9.207). Here, we use it simply in one dimension:

pA = qA (9.240)

with charge q and vector potential A. The Lagrangian (9.236) holds also for one-dimensional
motion, and then reads

L =
m
2

Ẋ2 +qAẊ−U, (9.241)

with the potential energy in the constant gravitational field

U = mgX (9.242)

and g=9.81 m/s2. When the Lagrangian is reduced to one dimension, it follos from the solutiton
(9.237) that

Ẍ =−g, (9.243)

because the only remaining component vg, corresponding to A, has no dependence on the Y or
Z coordinate. However, we can assume a time dependence of the vector potential. Then, the
Lagrangian is

L =
m
2

Ẋ2 +qA(t)Ẋ−mgX , (9.244)

and the Euler-Lagrange equation is

Ẍ =−qȦ(t)−g. (9.245)

� Example 9.11 We consider examples of Eq.(9.245) with growing X(t) (see computer algebra
code [168]). This means that gravity is counteracted by the momentum of the vector potential. For

A(t) =−A0tn, (9.246)

the A term in the Euler-Lagrange equation becomes positive and outperforms the gravitational term
−g after a short time. It has to be n≥ 1 to obtain growing curves. Two examples with n = 1 and
n = 2 are graphed logarithmically in Fig. 9.18. The results can also be obtained analytically and
are polynomials of t. �
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Figure 9.18: Trajectories X(t) for two values
of n according to Eq. (9.246).

Figure 9.19: Trajectories Ẋ(t) and X(t) for a
driven harmonic oscillator.

� Example 9.12 As another example, we consider a harmonic oscillator in an external momentum
field (see computer algebra code [169]). Instead of a driving force, we use an oscillating vector
potential

A(t) = A0 cos(ωt). (9.247)

The potential of the repulsive force is

U =
1
2

kX2 (9.248)

with the spring constant k. In a driven oscillator, the resonance frequency is

ω0 =

√
k
m
. (9.249)

The Euler-Lagrange equation is

Ẍ +
k
m

X = A0 ω q sin(ωt), (9.250)

which is an equation of an undamped, forced oscillation, giving resonance at ω = ω0. The vector
potential term qA, although not being a force but a momentum, acts as a driving force. For ω→ ω0,
the amplitude grows to infinity. The benefit of this approach is that no minimum value of the force
amplitude is required, so that a resonance can be enforced even by small values of A0 and q. An
example is graphed in Fig. 9.19.

This resonance mechanism can be used to extract energy from spacetime. The important point
is that the driving force has to operate without feedback effect. The generation mechanism for A
must be independent of the amplitude X of the oscillator. It has to be guaranteed that the usage of
the vector potential by the oscillator does not impact the vector potential’s creation mechanism.
The vector potential may arise from the vacuum or aether. It can be created by a magnetic field,
for example. This condition is fulfilled for a permanent magnet, where the vector potential is
replenished by the elementary magnets from the vacuum, even if its amplitude is diminished by
driving the oscillator. �
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9.3.3 Rotation of the relativistic line element
A principal origin of rotating orbits can be found from the line elements of special and general
relativity. In Minkovski space with planar polar coordinates, this is

ds2 = c2dτ
2 = c2dt2−dr2− r2dφ

2, (9.251)

where τ is the proper time, the time in the local frame of the system under consideration. The time
t is defined in the oberserver frame. With the squared observer velocity

v2 =

(
dr
dt

)2

+ r2
(

dφ

dt

)2

(9.252)

and the relativistic γ factor

γ =

(
1− v2

c2

)−1/2

, (9.253)

the above equation can be developed into

ds2 = c2dτ
2 = c2dt2−dr2− r2dφ

2

= c2dt2− dr2

dt2 dt2− dφ 2

dt2 dt2 (9.254)

= c2dt2
(

1− v2

c2

)
= c2 dt2

γ2 .

For the time transformation, it follows

dt = γ dτ. (9.255)

Thomas precession
In the standard view of special relativity, Thomas precession is described as follows. A particle
moves on an arbitrary curved line in Minkovski space. Because such a motion requires accelerations,
it is assumed that the particle is at rest in an inertial frame at each instant of time. Thus, special
relativity can be applied at each instant. This leads to a complicated transformation to an external
observer frame [104]. The result is that in this frame an additional rotation is seen, an angular
velocity of Thomas precession, which is

ωT =− 1
c2

γ2

γ +1
v×a =−(γ−1)

v×a
v2 . (9.256)

a = v̇ is the acceleration. For non-relativistic velocities with v� c, γ → 1, this angular velocity
becomes approximately

ωT ≈−
1
2

v×a
c2 . (9.257)

The factor 1/2 is called the Thomas half, which appears in quantum mechanics, for example, in
spin-orbit coupling, where electrons move with relativistic velocities.

In gravitation, this effect becomes evident, when a mass orbits a center of gravitation with a
high velocity. This leads to a frame rotation of the orbit in the observer frame. The acceleration is
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the central gravitational acceleration g. In a generally covariant theory as ECE2, the term v×g in
Eq. (9.257) is part of the gravitomagnetic field of the transformation law (7.43):

Ω
′
g =−γ

1
c2 v×g− γ2

1+ γ

v
c

(v
c
·Ωg

)
. (9.258)

The primed field is that in the observer frame. There is, however, no gravitomagnetic field local to
the rotating frame, therefore the equation simplifies to

Ω
′
g =−γ

1
c2 v×g. (9.259)

The gravitomagnetic field Ω
′
g effects a rotation. We can compare this with the electromagnetic case,

where a magnetic moment of a moving charge q in an external magnetic field B leads to the Larmor
precession

ωL =
qgL

2m
B (9.260)

(see [105]). gL is the Landé factor, which is unity in classical physics. The corresponding equation
for the gravitomagnetic field is

ωg =
1
2

Ω
′
g, (9.261)

in analogy to the definiton of the gravitomagnetic moment in Example 7.3. Therefore, the frequency
of Thomas precession in ECE2 theory, in non-relativistic approximation, is

ωT =
1
2

Ω
′
g =

1
2

1
c2 v×g (9.262)

and is identical with the modulus of Eq. (9.257), obtained in complicated form from standard
theory. The result (9.262) is valid for a spacetime with curvature and torsion.

In a simplified consideration, the angular difference between both frames is effected by the time
dilation between observer time dt and proper time dτ . It is assumed that the rotational frequency ω

of the orbiting mass is the same in both frames. Then, the angular difference seen in the observer
frame is

∆φ = ω(dt−dτ). (9.263)

Using relation (9.255), the additional angle seen in the observer frame is

∆φ = ω dt
(

1− 1
γ

)
, (9.264)

and in the local frame of the mass, it is

∆φ = ω dτ (γ−1) . (9.265)

When we expand the γ factor to second order, we have(
1− 1

γ

)
≈ (γ−1)≈ 1

2
v2

c2 , (9.266)

i.e., in this approximation the deviation ∆φ in both frames is identical. This value is usually related
to one full rotation of 2π , therefore we have a relative precession of

∆φ

2π
≈ 1

2
v2

c2 . (9.267)

Here, the Thomas half appears again, and we can directly compute the precession angle ∆φ from
the orbital velocity v. Since v is not constant except in circular orbits, we have either to take an
average value or the maximum at periastron.
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de Sitter and Lense-Thirring precession
The de Sitter or geodetic precession is commonly explained by Einsteinian general relativity. The
line element with non-constant metric factors is defined as

ds2 = c2dτ
2 = c2m(r, t)dt2− dr2

m(r, t)
− r2dφ

2, (9.268)

where m(r, t) is a metric function to be determined by Einstein’s obsolete field equation. For the
Schwarzschild metric, it follows

m(r, t) = 1− 2MG
rc2 =: 1− r0

r
, (9.269)

with the Schwarzschild radius r0. Geodetic precession can be derived as follows. The rotation angle
of plane polar coordinates in the observer frame is

dφ
′ = dφ +ωdt, (9.270)

where we have assumed that the frame of the orbiting mass rotates with full angular frequency ω ,
i.e., the mass is at rest in its own frame. Then, the line elememt is

ds2 = c2m(r, t)dt2− dr2

m(r, t)
− r2dφ

′2 (9.271)

= c2m(r, t)dt2− dr2

m(r, t)
− r2(dφ

2 +2ωdφdt +ω
2dt2).

With the standard relation for polar coordinates,

dφ = ωdt, (9.272)

we obtain:

ds2 =
(
c2m(r, t)−3ω

2r2)dt2−
(

dr2

m(r, t)
+ r2dφ

2
)
. (9.273)

We define

vφ = ωr (9.274)

and

v1 =
1

m(r, t)

(
dr
dt

)2

+ r2
(

dφ

dt

)2

(9.275)

to find that

ds2 =

(
m(r, t)−

3v2
φ
+ v2

1

c2

)
c2dt2, (9.276)

and with

v2
2 = v2

1 +3v2
φ (9.277)

the line element can be written as

ds2 =
c2

γ2
2

dt2 (9.278)
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with

γ2 =
dt
dτ

=

(
m(r, t)− v2

2
c2

)−1/2

. (9.279)

The phase change by de Sitter rotation is given by

∆φ = 2π(γ2−1)≈ 2π
v2

2
c2 (9.280)

for one orbit.
The Lense-Thirring precession is an additional frame dragging of spacetime, evoked by rotating

masses, and is normally quite small, compared to geodetic precession. In standard theory, it is
derived from a solution of Einstein’s field equation in the weak field approximation. In ECE2
theory, it is explained by the gravitomagnetic field, see Example 7.1.

Precession by general frame rotation
Now, we consider a general frame rotation, where an angular frequency is added to the angular
velocity of the orbiting mass. The rotation angle in the observer frame is define by

φ
′ = φ +ω1 t, (9.281)

where ω1 is a frame rotation, which is independent of the “regular” orbital angular velocity

ω =
dφ

dt
. (9.282)

ω1 is allowed to have an arbitrary time dependence, therefore

dφ
′ = dφ +ω1 dt + t dω1. (9.283)

Similar to Eq. (9.271), the line element is

ds2 = c2dt2−dr2− r2 (dφ +ω1 dt + tdω1)
2 (9.284)

= c2dt2−dr2− r2 (dφ
2 +ω

2
1 dt2 + t2dω

2
1 +2(ω1 dφ dt + t dφ dω1 + tω1dω1 dt)

)
=

(
c2−

(
dr
dt

)2
)

dt2− r2 (
ω

2dt2 +ω
2
1 dt2 + t2dω

2
1 +2(ω1 ω dt2 +(ω +ω1) t dω1 dt)

)
=

(
c2−

(
dr
dt

)2

− r2(ω2 +2ω1ω +ω
2
1 )

)
dt2

− r2

(
t2
(

dω1

dt

)2

dt2 +2(ω +ω1) t
dω1

dt
dt2

)

=

(
c2−

(
dr
dt

)2

− r2(ω +ω1 + t
dω1

dt
)2

)
dt2

= c2
(

1− v2
1

c2

)
dt2.

In the last line, we have used the abbreviation

v2
1 =

(
dr
dt

)2

+ r2
(

ω +ω1 + t
dω1

dt

)2

. (9.285)



276 Chapter 9. Gravitation

The corresponding relativistic γ factor is

γ1 =
dt
dτ

=

(
1− v2

1
c2

)−1/2

. (9.286)

This derivation can be extended to the metric (9.268) with a non-constant function m(r, t). As
before, the phase change of one rotation is approximately

∆φ = 2π
v2

1
c2 . (9.287)

This result holds for forward precession. For retrograde precession, the sign has to be changed. We
can compare this result with x theory, from which we obtained in Eq. (9.200):

∆φ = 2π(1− x). (9.288)

Equating both results (for forward precession) gives

x = 1− v2
1

c2 =
1
γ2

1
. (9.289)

This is a useful connection between non-relativistic x theory and relativistic gravitational theory.
The velocity v1 is not constant, therefore it is meaningful to apply the v1 value at perihelion or
periastron, respectively, the points where precession is most effective.

The frame rotation by an angular frequency ω1 can also be characterized kinematically. The
phase change for one rotation is

∆φ = ω1T, (9.290)

where T is the time period for this rotation in the observer frame. This is an equation of classical
mechanics, but it does not follow from Newtonian gravitation, by which no frame rotation can be
described.

� Example 9.13 We compare the results of the precession formula (9.287) with experimental
data of three astronomical objects (see Table 9.3 and computer algebra code [170]). Since the
contribution of precession to the velocity at periastron is much smaller than the linear velocity
v, we assume v1 ≈ v. The experimental values were already listed in Tables 9.1 and 9.2 and in
Example 9.10. The value for the Earth is too small by a factor of 3. Conformance can be improved
by increasing v1. One has to bear in mind that the relativistic contribution to the Earth’s precession
is only 1/232 of the measured value. The main contribution comes from the impact of other planets.

For the Hulse-Taylor double star system, a factor of 4.6 appears between computed and
experimental precession. It is not known, whether impacts of other celestial bodies play a role. For
the S2 star, the computed value is well within the experimentally determined range, albeit this is
quite large. As often mentioned earlier, the spin connections of spacetime impact the motion of
celestial bodies, therefore we cannot expect to obtain an exact coincidence. In particular, the solar
system is not well suited to study these effects, because the precession of planets is very small.

v1 [m/s] ∆φ [theory] ∆φ [exp.]
Earth 29 766 6.1937e-8 1.8627e-7
Earth (adopted) 52 090 1.8968e-7 1.8627e-7
Hulse-Taylor 450 000 1.4156e-5 6.5209e-5
S2 7.75296e6 0.00420 -0.017 ... +0.035

Table 9.3: Comparison of precession formula (9.287) with experimental values.

�
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General frame rotation with Lagrange theory
In Example 9.6, the relativistic equations of gravitational motion have been derived by Lagrange
theory. The Lagrangian in plane polar coordinates is

L =−mc2

γ
−U (9.291)

with the gravitational potential energy

U = mΦ =−mMG
r

(9.292)

and the γ factor

γ =

(
1− ṙ2 + r2φ̇ 2

c2

)−1/2

. (9.293)

The constant of motion is the relativistic angular momentum

L = γmr2
φ̇ , (9.294)

and the Hamiltonian is

H = γmc2 +U. (9.295)

Application of frame rotation consists of the replacement

φ → φ
′ = φ +ω1t (9.296)

with an arbitrary rotation frequency ω1(t). For relativistic motion, the γ factor (9.293) is to be
replaced by

γ =

(
1−

ṙ2 + r2
( d

dt (φ +ω1t)
)2

c2

)−1/2

(9.297)

=

(
1−

ṙ2 + r2
(
φ̇ +ω1 + ω̇1t

)2

c2

)−1/2

.

Inserting this into the Lagrangian (9.291) and evaluating the Euler-Lagrange equations for φ and r,
we obtain the equation set

φ̈ =−ω̈1t− 2ω̇1 ṙt
r

+
ω̇1GM ṙt

γc2 r2 +
ω1GM ṙ
γc2 r2 −2ω̇1−

2ω1 ṙ
r︸ ︷︷ ︸

Ωφ Φ

(9.298)

+
GM φ̇ ṙ
γc2 r2 −

2φ̇ ṙ
r

,

r̈ = ω̇
2
1 r t2 +2ω̇1 φ̇rt +2ω1 ω̇1rt +ω1

2r+2ω1 φ̇r︸ ︷︷ ︸
ΩrΦ

(9.299)

+
GM ṙ2

γc2 r2 + φ̇
2r− GM

γr2 .
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These equations have to be solved simultaneously for a given function ω1. For ω1→ 0, this equation
set becomes identical to (9.121, 9.122), as required for consistency:

φ̈ =
GM φ̇ ṙ
γc2 r2 −

2φ̇ ṙ
r

, (9.300)

r̈ =
GM ṙ2

γc2 r2 + φ̇
2r− GM

γr2 . (9.301)

The additional terms in Eqs. (9.298, 9.299) contain the rotation frequency ω1 and can be interpreted
as spin connection terms of a vector spin connection

Ω =

[
Ωr

Ωφ

]
. (9.302)

With this spin connection, the gravitational acceleration is

r̈ =−∇Φ+ΩΦ. (9.303)

The components Ωφ Φ and Ωφ Φ have been indicated in Eqs. (9.298, 9.299). A rotating frame is a
manifestation of a Cartan spin connection of ECE theory.

� Example 9.14 We study a numerical example for a general frame rotation. The equation set
(9.298, 9.299) has been solved numerically for a demo system with parameters near to unity (see
computer algebra code [171]). The relativistic angular momentum with general rotation is defined
by

L = γmr2 (
φ̇ +ω1 + ω̇1t

)
(9.304)

and comes out from the Euler-Lagrange equations as a constant of motion. Its non-relativistic,
Newtonian counterpart is

LN = mr2 (
φ̇ +ω1 + ω̇1t

)
. (9.305)

The total energy (without rest energy) is

E = mc2(γ−1)− mMG
r

, (9.306)

and the corresponding Newtonian expression is

EN =
1
2

m
(
ṙ2 + r2(φ̇ +ω1 + ω̇1t)2)− mMG

r
. (9.307)

For the solution of the frame-rotated equations, the rotation function

ω1 = c1(c2t2 + c3 exp(−c4 t) (9.308)

was used with positive parameters c1, ... c4. This is a quite exotic example as the results show. We
chose a negative frame rotation, so that the orbiting mass changes its diretction of rotation (see
Fig. 9.20). Even a small loop is visible. The angular velocity ω = φ̇ is graphed in Fig. 9.21. The
directional change takes place where ω reverses sign. Nonetheless, the radial velocity ṙ keeps its
shape over time, and there is no orbital increase or shrinking, although the additional rotation is
massive. This is a consequence of the form of spin connections in the equations of motion that
describe a pure rotation.

Despite of the exotic orbit, the motion is physical in the sense that angular momentum and
total energy are maintained. This can be seen from Figs. 9.21 and 9.21, where both quantities are
presented in relativistic and non-relativistic form, as given in Eqs. (9.304 - 9.307). L and E are
constant, while their Newtonian counterparts are not, as expected. The deviation is largest where
the orbital velocity is at maximum. �
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Figure 9.20: Orbit in a rotating frame. Figure 9.21: Velocity components ω amd ṙ in a
rotating frame.

Figure 9.22: Relativistic and Newtonian
angular momentum.

Figure 9.23: Relativistic and Newtonian total en-
ergy.





10. m theory

Until now, we have mainly worked with equations of relativistic mechanics, which are formally
derived from special relativity. The relativistic γ factor, however, is not constant, so that this model
goes far beyond special relativity. In ECE theory, the equations of motion are defined in a space with
curvature and torsion. Therefore, it is adequate to consider this kind of handling relativistic effects
as a method of general relativity. In the standard model, however, general relativity is constrained
to Einstein’s obsolete field equation, and using a variable γ factor is called “relativistic mechanics”,
considered as an extension to special relativity in a Minkowski space. To our knowledge, this
method has seldom been applied to gravitational problems. However, as we have shown in the
previous sections, it is possible to describe effects with this method, which are considered as
properties of “true general relativity” in standard physics, for example all kinds of precession.

Throughout this chapter, we use the metric of a non-constant, centrally symmetric spacetime
that is different from Minkowski space. We will extend the methods, used so far, to “true general
relativity”, even in the sense of standard physics.

10.1 The equations of motion
In this section, we will extend the Lagrangian method to “true general relativity” and derive
equations of motion of this type. We will base our development on a kind of metric, which is
common to Einstein theory and Cartan geometry, but we will develop the method within ECE2
theory, i.e., Cartan geometry.

10.1.1 Line element and relativistic energy
According to Section 2.1.3, Eq. (2.53), the squared line element in a space with curvature and
torsion is

ds2 = gµνdxµdxν . (10.1)

In a Minkowski space for a spherically symmetric spacetime, this takes the form

ds2 = c2dt2−dr2− r2dθ
2− r2 sin(θ)2dφ

2 (10.2)
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with a time coordinate x0 = ct. Furthermore, r is the radius coordinate, θ is the polar angle and φ

is the azimuthal angle (see Fig. 2.3). In a general spherically symmetric spacetime with torsion and
curvature, the line element has to be generalized as described in Chapter 7 of [7]:

ds2 = c2m(r, t)dt2−n(r, t)dr2− r2dθ
2− r2 sin(θ)2dφ

2. (10.3)

m(r, t) and n(r, t) are general functions describing the distortion of spacetime by a central pointmass
at r = 0. Only the time and the radial coordinate are affected. The angular parts remain unchanged
because of the rotational symmetry. It was shown in [7] that the line element can further be
simplified by the replacement

n(r, t) =
1

m(r, t)
, (10.4)

and the time dependence of m(r, t) can be rolled over to the time coordinate. Therefore, the
simplified line element reads

ds2 = c2m(r)dt2− dr2

m(r)
− r2dθ

2− r2 sin(θ)2dφ
2. (10.5)

This form follows from Einstein’s field equation, where the Ricci tensor is zero for the vacuum,
and finally the Schwarzschild metric is derived. This result was already used for the metric of the
general rotation in Section 9.3.3. In ECE2 theory, we keep the choice above for simplification,
but can freely define the function m(r). Comparing Eq. (10.5) with Eq. (10.1), it follows that the
metric is diagonal and the metric coefficients are

g00 = m(r), g11 =−
1

m(r)
, g22 =−r2, g33 =−r2 sin(θ)2. (10.6)

This is a metric-based theory so far. We call it m theory. Nevertheless, it can be founded on Cartan
geometry itself. In Cartan geometry, the basis element is the tetrad, and the metric follows from the
tetrad (see Eq. (2.204)) by

gµν = n qa
µqb

ν ηab, (10.7)

where qa
µ are the tetrad elements, ηab is the Minkovski metric of tangent space, and n = 4 is the

dimension of the base manifold. In general, the tetrad cannot be determined uniquely, if the metric
is given. In this case, however, the metric is diagonal. If we assume that the tetrad matrix is diagonal
also, Eq. (10.7) reduces to the diagonal elements in both the base manifold and tangent space, and
we obtain

q(0)0 =
1
2

√
m(r), q(1)1 =

1
2
√

m(r)
, q(2)2 =

r
2
, q(3)3 =

r sin(θ)
2

. (10.8)

This is the connection of m theory to Cartan geometry.
In order to obtain equations of motion, we restrict consideration to a two-dimensional plane

polar coordiante system. Then, the line element (10.5) reads

ds2 = c2m(r)dt2− dr2

m(r)
− r2dφ

2 = c2m(r)dt2−dr2. (10.9)

According to Section 2.1.2:

dr =
∂r
∂ r

dr+
∂r
∂φ

dφ . (10.10)
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r is the position vector in m space. According to (10.9), the scalar product dr2 = dr ·dr must be

dr2 =

(
∂r
∂ r

dr+
∂r
∂φ

dφ

)2

=
dr2

m(r)
+ r2dφ

2. (10.11)

A possible solution of this equation is(
∂r
∂ r

)2

dr2 =
1

m(r)
dr2, (10.12)(

∂r
∂φ

)2

dφ
2 = r2dφ

2, (10.13)

∂r
∂ r
· ∂r

∂φ
= 0, (10.14)

so we have

∂r
∂ r

=
1

m(r)1/2 er, (10.15)

∂r
∂φ

= reφ , (10.16)

and

∂r
∂ r
· ∂r

∂φ
= 0, (10.17)

which confirms Eq. (10.14). Therefore, the position vector of m space is

r =
r

m(r)1/2 er. (10.18)

The velocity of m space is

v = ṙ =
d
dt

(
r

m(r)1/2

)
er +

rφ̇

m(r)1/2 eφ . (10.19)

Since r describes a trajectory coordinate, it depends implicitly on time. Then, we have

d
dt

(
r

m(r)1/2

)
=

ṙ
m(r)1/2 −

∂m(r)
∂ r rṙ

2m(r)3/2 (10.20)

=
ṙ

m(r)1/2

(
1−

∂m(r)
∂ r r

2m(r)

)
.

We neglect the second term with ∂m(r)
∂ r , assuming a slow change of m(r) with r. Another practical,

but “non-mathematical”, argument is that the term for the velocity would become extraordinarily
complex with the exact form of (10.20). Thus, we set

v = ṙ =
1

m(r)1/2

(
ṙer + rφ̇eφ

)
. (10.21)

Sometimes, we use the variable name

r1 = r1er =
r

m(r)1/2 er, (10.22)
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so that the velocity in this case is

v1 = ṙ1 = ṙ1er + r1φ̇eφ . (10.23)

A new time variable can be defined by

t1 = m(r)1/2t. (10.24)

r1 and t1 are the characteristic variables of m space.
From the line element (10.9) of m space, it follows

ds2 = c2m(r)dt2−
(

dr1

dt

)2

dt2 = c2dt2
1 −v2

1dt2, (10.25)

which, in plane polar coordinates related to the observer space, is

ds2 = c2
(

m(r)− ṙ2 + r2φ̇ 2

m(r)c2

)
dt2 (10.26)

=
c2dt2

γ2 .

Thus, the generally relativistic γ factor of m space is defined by

γ =

(
m(r)− ṙ2 + r2φ̇ 2

m(r)c2

)−1/2

. (10.27)

The linear momentum of m space is

p1 = γmv1 = γm
v

m(r)1/2 . (10.28)

Then, the angular momentum in polar coordiantes is

L1 = r1×p1 = γmr1×v1 (10.29)

= γmr1er× (ṙ1er + r1φ̇ eφ ) = γmr2
1φ̇ k

= γm
r2

m(r)
φ̇ k,

where k is the unit vector perpendicular to the (r, φ) plane.
The relativistic total energy in m space can be derived as follows. The line element (10.25) is

ds2 = c2dτ
2 = c2dt2

1 −v2
1dt2 = m(r)c2dt2− v2

m(r)
dt2. (10.30)

It follows

c2
(

dτ

dt

)2

= m(r)c2− v2

m(r)
. (10.31)

Multiplying by γ2m(r)m2c2 gives

m(r)m2c4 = γ
2m(r)2m2c4− γ

2v2m2c4. (10.32)
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Inserting the relativistic momentum of m space,

p2 = γ
2m2v2, (10.33)

we obtain

m(r)m2c4 = γ
2m(r)2m2c4− c2 p2. (10.34)

This is Einstein’s energy equation

E2
0 = E2− c2 p2 (10.35)

with rest energy

E0 =
√

m(r)mc2 (10.36)

and total energy

E = γm(r)mc2, (10.37)

written in standard form:

E2 = E2
0 + c2 p2 or

γ
2m(r)2m2c4 = m(r)m2c4 + c2 p2.

(10.38)

(10.39)

This is an equation of general relativity. In the form it was derived, it holds for a free particle,
because there is no potential energy. In special relativity, we have m(r)→ 1 and, consequently,

γ
2m2c4 = m2c4 + c2 p2. (10.40)

The term c2 p2 is not the kinetic energy, but a “momentum energy”. The kinetic energy is not a
constant of motion, in contrast to the conservation of total energy and momentum. If the particle is
at rest, the total energy is equal to the rest energy. The relativistic kinetic energy in m space can be
computed in analogy to Einstein’s theory [106]. When a particle moves from point 1 to 2, the work
done is

W12 =
∫ 2

1
Fdr = T2−T1. (10.41)

This is the force integral along a path from 1 to 2 and gives the difference of kinetic energies T2−T1.
The force is the time derivative of the momentum in m space, transformed into observer space:

F =
dp
dt

=
d
dt
(γmv). (10.42)

Starting from rest, we obtain

W = T =
∫ d

dt
(γmv) ·vdt = m

∫ v

0
vd(γv). (10.43)

This equation can be integrated by parts, giving

T = γmv2−m
∫ v

0

v dv√
m(r)− v2

m(r)c2

(10.44)

= γmv2 +mc2

√
m(r)− v2

m(r)c2

∣∣∣∣∣
v

0

= γmv2 +mc2

√
m(r)− v2

m(r)c2 −mc2.
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With some algebraic manipulations, this equation becomes

T = mc2m(r)
(

m(r)γ−
√

m(r)
)

(10.45)

(see computer algebra code [172]). For m(r)→ 1 we obtain

T → mc2(γ−1), (10.46)

which is the well known result of special relativity. The result of classical mechanics is obtained
with an appropriate approximation of the γ factor:

T → mc2(1+
1
2

v2

c2 −1) =
1
2

mv2. (10.47)

The Hamiltonian is the total energy including the potential energy. The latter is not contained
in Einstein’s energy equation as already mentioned. The potential energy of a central gravitational
field in m theory is

U =−mMG
r1

=−
√

m(r)
mMG

r
. (10.48)

Therefore, the Hamiltonian of m theory is

H = E +U = γm(r)mc2−
√

m(r)
mMG

r
. (10.49)

This quantity is conserved, therefore

dH

dτ
=

dH

dt
= 0. (10.50)

Besides the total energy, the angular momentum (10.29),

L = γm
r2

m(r)
φ̇ , (10.51)

is a constant of motion:

dL
dτ

=
dL
dt

= 0. (10.52)

We call these two equations the Evans-Eckardt equations:

dH

dt
= 0,

dL
dt

= 0.

(10.53)

(10.54)

They can be used to determine the equations of motion for the coordinates r and φ of m space.
Before doing this, we develop the Lagrange theory of m space as an alternative.
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10.1.2 Lagrange equations
The relativistic Lagrangian used so far was

L =−mc2

γ
−U. (10.55)

The form of the Lagrangian is not defined a priori. It must be chosen in a way that the correct
equations of motion are produced. The Hamiltonian is connected with the Lagrangian via the
relation [107]

H = ∑
i

q̇i pi−L , (10.56)

where qi are the generalized coordinates and pi are the generalized momenta. In our case, we have

q̇i = v1, pi = p1 = γmv1. (10.57)

Inserting this and Eq. (10.49) into Eq. (10.56), and using

v2 = c2m(r)
(

m(r)− 1
γ2

)
, (10.58)

we obtain the Lagrangian of m theory

L =−mc2

γ
+

mMG
√

m(r)
r

, (10.59)

whose kinetic part is formally identical with that of special relativity, however with the γ factor of
general relativistic m theory. We can work out now the Euler-Lagrange equations:

d
dt

∂L

∂ φ̇
− ∂L

∂φ
= 0, (10.60)

d
dt

∂L

∂ ṙ
− ∂L

∂ r
= 0. (10.61)

These have been defined for the coordinates in observer space. The γ factor complicates the
calculation significantly. In particular, we have to use for the time derivative of m(r):

dm(r)
dt

=
dm(r)

dr
ṙ. (10.62)

Computer algebra gives the result

φ̈ =φ̇ ṙ

(
1

m(r)
d m(r)

dr

(
2− GM

2γ c2 r
√

m(r)

)

+
GM

γ c2 r2
√

m(r)
− 2

r

)
,

r̈ =
d m(r)

dr

(
−2φ̇

2 r2

m(r)
+ c2

(
m(r)− 3

2γ2

)
+

GM

2γ3r
√

m(r)

+
GMφ̇ 2r

2γ c2m(r)3/2

)
− GM φ̇ 2

γ c2
√

m(r)
−

GM
√

m(r)
γ3 r2 + φ̇

2 r.

(10.63)

(10.64)
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The angular momentum comes out as a constant of motion, proving Eq. (10.51) a posteriori. In an
additional check, we have computed the equations of motion from the Evans-Eckardt equations
(10.53, 10.54) (see computer algebra code [173]). This gives the same equations, a cross-check for
correctness of the calculations1.

The equations of motion contain terms with dm(r)/dr. These are critical for the computation.
In particular, one term weights this derivative by a factor of c2 in the numerator. This gives a
behaviour like a limit of 0 ·∞, which can converge to any value or diverge to infinity. For a constant
m(r), this critical term disappears, however, other terms containing m(r) are left. In the limit
m(r)→ 1, only the terms of Eqs. (9.121, 9.122) remain, which are the standard equations of
relativistic motion in polar coordinates, with exception of a factor of 1/γ3 in the gravitational force.
This is the factor appearing in the relativistic Newton equation (9.89).

The relativistic Newton equation of m space can be computed as in Section 9.2.3. It is

F =
dp1

dt
=

d
dt

(
γm

v√
m(r)

)
! =−mMG

r3
1

r1 =−m(r)
mMG

r2 er. (10.65)

We do not include the time dependence of the trajectory r(t) in m(r). Therefore, we only have to
evaluate the time derivative of γv (see computer algebra code [172]). The result is

F = m
√

m(r)γ3 dv
dt

=−m(r)
mMG

r2 er, (10.66)

and the relativistic Newtonian acceleration in m space is

r̈ =−
√

m(r)
MG
γ3r3 r. (10.67)

The only difference to Eq. (9.89) is the factor
√

m(r).

� Example 10.1 We define models for m functions and show results of some examplary calcula-
tions. m theory depends on the form of the metric function m(r), which is not predefined. In early
research papers [108], the metric of m theory was already used with two model functions for m(r).
In cosmological cases (spiral galaxies), an approach based on geometrical foundations of general
relativity was used:

m(r) = a− exp
(

bexp(− r
R
)
)

(10.68)

with constants a, b and R. In the limit r→ ∞, we have to obtain m(r)=1, this leads to the constraint

1 = a−1 (10.69)

or

a = 2. (10.70)

The parameter b determines the behavior near to r = 0. We require that m(r) has to be always
positive, so we have for this limit:

m(0) = 0. (10.71)

1During the development of ECE theory, the results were initially different. This was a problem of the computer
algebra system, which is challenged by this type of calculations.
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From (10.68), we then obtain

a− exp(b) = 0 (10.72)

or

b = log(a) = log(2). (10.73)

The exponent-based m function is graphed in Fig. 10.1 for three values of b, with a = 2 and R = 1.
Using b < log(2) leads to quite flat curves of m(r).

In [108], we also introduced a metric function derived from the obsolete Schwarzschild metric,
extended by an empirical term −α/r2 which was necessary to obtain shrinking of orbits:

m(r) = 1− rS

r
− α

r2 (10.74)

with the Schwarzschild radius

rS =
2MG

c2 . (10.75)

This function, as well as the original Schwarzschild metric with α = 0, goes to −∞ for r→ 0. It is
used in Einsteinian theory only for r > rS. In m theory, there is no such restriction that would lead
to the problem of negative values of m(r) as described above.

The equations of motion (10.63, 10.64) have been solved numerically. The exponential m
function (10.68) was used with a = 2, b = log(2), R = 0.1. The parameters in the equations
were chosen in the range of unity so that a nearly ultra-relativistic case was obtained. This shows
sometimes drastic relativistic effects, but otherwise these effects would be too tiny to be recognizable
in the graphics. When the initial velocity of the calculation is high enough, we obtain a highly
elliptic orbit with forward precession (see Fig. 10.2). With smaller initial velocities, even backward
precession has been produced in some cases, showing that this behavior strongly depends on the
energetic state of the system.

The same calculation as before has been executed with an initial velocity reduced by about a
factor of 0.6. Now, the m function comes into full effect, causing an inward spiraling of the orbiting
mass until it falls into the center (see Fig. 10.3). This behaviour is only possible in m space. The
“normal” relativistic calculations always showed a stable orbit, albeit with strong precession. When
the mass falls into the center, the γ factor increases dramatically as shown in Fig. 10.4. In special
relativity, one would expect the orbital velocity going to the limit c, but in m theory this behaviour
is quite different. After initial rising, the velocity drops to zero, i.e., the mass approaches the center
softly. This is a startling result.

From Fig. 10.5 we see that the relativistic angular momentum remains constant up to the last
moment where the orbiting mass comes to rest and the calculation diverges. The Newtonian angular
momentum does not contain the γ factor, therefore, at the rest point, there is φ̇ = 0, bringing the
Newtonian angular momentum to zero. A comparable behavior is seen for the total energy (see Fig.
10.6). The Newtonian values become meaningless near to the end point. Obviously, such a singular
orbit is correctly described by m theory. �
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Figure 10.1: Exponential function m(r) for
three values of b.

Figure 10.2: Orbit of relativistic motion with ex-
ponential m function.

Figure 10.3: Collapsing orbit of exponential
m function.

Figure 10.4: γ factor and velocity v of the collaps-
ing orbit.

Figure 10.5: Angular momenta of the
collapsing orbit.

Figure 10.6: Total energies of the collapsing orbit.
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� Example 10.2 The orbit of the S2 star is analyzed by m theory. This orbit was already investi-
gated in Example 9.3, where relativistic effects have been discussed. In Example 9.4, the relativistic
force laws have been compared using the S2 data. The experimental values were taken from older
measurements. In Table 10.1, we give an update with newer experimental data of 2018 [109], when
the S2 star was in closest approach to the center of the galaxy. The detailed investigation using m
theory is described in [110]. As can be seen from Table 10.1, using the experimental data directly
for the initial conditions of the calculation gives larger discrepancies with experiment concerning
the period time and maximum orbital radius.

The results depend on the mass of the galactic center. In [110], it was shown that this mass has
been determined by a Newtonian method, resulting in 8.572e36 kg. Therefore, we have varied this
mass, using m(r) = 1 in the equations of motion of m theory. Best agreement with experiments is
obtained for a value of 8.3627e36 kg (see line 3 of Table 10.1). As the calculations have shown,
the γ factor is 1.0003 at maximum, i.e., it plays only a small role.

Alternatively, we have performed calculations with the exponential m function (10.68). The
results depend very sensitively on this function, and it was difficult to define the m function in a way
that the terms with dm(r)/dr had an effect that was small enough to avoid excessive precession.
Therefore, we used a constant value of

m(r) = 0.9877. (10.76)

Using this constant value and the experimental central mass value, gives the results in the fourth
line of Table 10.1. Obviously, a constant m(r) has practically the same effect as changing the
central mass. The orbit of the S2 star was graphed earlier in Fig. 9.6, demonstrating the high
ellipticity of the orbit. We conclude that this ellipse is obtained from a generally relativistic theory
and, therefore, is non-Newtonian. �

T [y] ε rmax [1014 m] ∆φ [rad]
experiment 16.05 0.88466 2.73464 ?
exp. initial conditions 9.65 0.83724 2.02688 6.0636e-4
best fit for M 16.07 0.88323 2.89596 5.7702e-4
expon. m function with m=0.9877 16.07 0.88332 2.89596 5.9144e-4

Table 10.1: Parameters of the S2 star orbit (experimental data of 2018 and calculations).

10.2 Consequences of m theory

In the following subsections, we will consider some particular aspects, which can be deduced from
m theory.

10.2.1 Vacuum force

In the preceding section, we derived the equations of motion of m theory. We used the observer
space coordinates (r, φ), because the metric function m(r) appearing in the line element is defined
in these coordinates. Alternatively, we can use the coordinates of m space (r1,φ). We did so already
in deriving the relativistic Newton equation in Eqs. (10.65 - 10.67). The result was an expression in
observer coordinates, so this did not lead to any problems.

In this section we start again with the force equation

F1 =
dp1

dt
, (10.77)
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but try to stay in m space coordinates, i.e., we use the variables r1 and ṙ1. The time t is that of the
observer space as before. Thus, we have

p1 = γ1mṙ1 =
γ1mṙ

m(r)1/2 . (10.78)

With the velocity in plane polar coordinates (10.23), the γ factor of m space is

γ1 =

(
m(r)− ṙ2

1
c2

)−1/2

=

(
m(r)− ṙ2

1 + φ̇ 2r2
1

c2

)−1/2

. (10.79)

We compute the force in radial direction from the Lagrange expression

F1 =
∂L

∂ r1
er. (10.80)

The Lagrangian in m space is

L =−mc2

γ1
+

mMG
r1

. (10.81)

With

∂

∂ r1

(
1
γ1

)
=

1
2

γ1
dm(r)

dr1
− γ1

c2 r1φ̇
2 (10.82)

follows

F1 =
∂L

∂ r1
=−1

2
γ1mc2 dm(r)

dr1
+ γ1mr1φ̇

2− mMG
r12 (10.83)

(see computer algebra code [174]). This equation can be compared with the non-relativistic radial
equation (9.15) of ECE theory. The general form of the force is

F1 =−m∇Φ+mΩΦ (10.84)

with the vector spin connection Ω and the gravitational potential

Φ =−MG
r1

. (10.85)

The term with the derivative of dm(r)/dr1 in Eq. (10.83) describes the spin connection term and is
interpreted as a vacuum force:

Fvac =−
1
2

γ1mc2 dm(r)
dr1

. (10.86)

The complete force then is

F1 = Fvac + γ1mφ̇
2− mMG

r12 . (10.87)

There is the problem that the vacuum force and the factor γ1 contain both variables r1 and r.
The m function is defined in the observer space by definition. Therefore, the derivative of the m
function can be rewritten by:

dm(r)
dr1

=
dm(r)

dr
dr
dr1

(10.88)
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with

r1 =
r√

m(r)
. (10.89)

Computer algebra [174] delivers

dr1

dr
=−

r d m(r)
dr −2m(r)

2m(r)3/2 , (10.90)

and by inversion:

dr
dr1

=− 2m(r)3/2

r d m(r)
dr −2m(r)

. (10.91)

Inserting this into (10.86) gives for the vacuum force, which in vector form is

Fvac =
γ1mc2 m(r)3/2 d m(r)

dr

r d m(r)
dr −2m(r)

er, (10.92)

and which is equal to the spin connection term

Fvac = mΩΦ. (10.93)

Obviously, the vacuum force is an effect of Cartan geometry and appears only in m space, if m(r)
is a variable function of r. The m function may be interpreted as a density change of the vacuum or
aether. This change leads to a new type of force. The force is maximized, when the denominator of
Eq. (10.92) is going to zero, i.e., fulfills the condition

r
d m(r)

dr
= 2m(r). (10.94)

This is a resonance effect, where a maximum of energy from spacetime is transferred. The work
done by this force between space points 1 and 2 is

W12 =
∫ 2

1
Fvac ·dr = T2−T1 =U1−U2, (10.95)

where T2−T1 is the change in kinetic energy and U1−U2 is the change in potential energy. The
energy is conserved du to the Hamiltonian H = T1 +U1 = T2 +U2, which gives the right-hand
side equality of Eq. (10.95).

� Example 10.3 We give some examples for vacuum force resonances. The vacuum force can be
computed approximately without solution of dynamics, if we assume a constant factor γ1 in Eq.
(10.92). Using the Schwarzschild-like m function (10.74),

m(r) = 1− r0

r
− α

r2 , (10.96)

we computed the vacuum force in this way. Inserting m(r) into the equation for the resonance
condition (10.94), this gives the solutions

r1,2 =
3r0

4
± 1

4

√
9r02 +32α. (10.97)
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For α = 0, the original Schwarzschild m function is obtained with the divergence point

r1 =
3r0

2
. (10.98)

This vacuum force has been graphed in Fig. 10.7 for rS = 1 and two values of α . There is a pole at
r = 1.5, indicating infinite energy from spacetime at this point. Increasing α shifts the pole to the
right.

The same graph was computed with the exponential m(r) function

m(r) = 2− exp
(

log(2)exp(− r
R
)
)

(10.99)

for two values of the parameter R (see Fig. 10.8). There is a minimum of Fvac that moves to r = 0
for R→ 0. This explains that, for a small R (which was used in the Lagrange solutions), the vacuum
force seems to go to infinity for r→ 0 like a hyperbola. This m function is much more well behaved
than the Schwarzschild-like function, because it is positive and does not contain zero crossings for
r→ 0, which would indicate event horizons (see Section 10.2.3). The divergence point r1 of Eq.
(10.94) cannot be computed analytically as for the Schwarzschild function, because this gives a
transcendent equation. Instead, we can make a Taylor series expansion of function (10.99) (see
computer algebra code [174]). The result is

r1 =

√
6R√

log(2)2 +3log(2)+1
, (10.100)

which is proportional to the R parameter.
There is still another aspect of the resonance equation (10.94) that can be investigated. The

equation can be considered as a differential equation for m(r), which has the general solution

m(r) = c1r2 (10.101)

with a constant c1. This means that, for such a quadratic m(r), the vacuum force is infinite
everywhere. However, the m function has to have the limit m(r)=1 for large r. Therefore, we
compose a function that is quadratic for r→ 0 and constant for r→ ∞:

m(r) =


r2

2a2 for r < a,
1− a

4(r− a
2)

for r ≥ a.
(10.102)

It can be checked that m(r) is continuous and continuously differentiable at r = a. Both cases in the
equation above give

m(a) =
1
2
, (10.103)

dm(r)
dr

(a) =
1
a
. (10.104)

This function is graphed in Fig. 10.9 for a = 1/2. The corresponding vacuum force and its
denominator are shown in Fig. 10.10. It can be seen that the vacuum force drops massively when r
approaches 1/2. If it were possible to design the m function directly, such cases of infinite energy
from spacetime would be possible. �
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Figure 10.7: Vacuum force of Schwarzschild-
like functions m(r).

Figure 10.8: Vacuum force of exponential func-
tions m(r).

Figure 10.9: m function composed of terms
r2 and 1/r2.

Figure 10.10: Denominator of vacuum force and
vacuum force from Fig. 10.9.

� Example 10.4 A Sagnac interferometer can be used to measure the radial dependence of the
function m(r). Such an interferometer was described in Example 5.4. Now, we extend the usage of
this device to measure an effect of m theory and, thereby, of general relativity.

In two dimensions, the infinitesimal line element of m theory (10.5) reads

ds2 = c2m(r)dt2− dr2

m(r)
− r2dφ

2. (10.105)

The interferometer is used in one fixed position, where it is spun in both directions to observe
the time difference of the travelling times of light in the fiber. There are two radius coordinates.
r describes the distance from the gravitational center, and ri is the radius of the interferometer
windings. Both coordinates are fixed, therefore we have dr = 0 in the line element, and the angular
coordinate is the angle of the local intererometer frame, leading to

ds2 = c2m(r)dt2− r2
i dφ

2. (10.106)
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Light has a zero geodetic, the line element vanishes; so, with ds2 = 0,

c2m(r)dt2 = r2
i dφ

2. (10.107)

The interferometer is spun by a mechanical frequency ±Ω. Therefore, the differential angle dφ has
to be replaced by

dφ → dφ ±Ωdt, (10.108)

as was done in Section 9.3.3 for rotating frames. From (10.107), we obtain

dt =
ri√

m(r)c±Ωri
dφ . (10.109)

Then, the time for one right and one left rotation, respectively, is

t1 =
2πri√

m(r)c−Ωri
(10.110)

and

t2 =
2πri√

m(r)c+Ωri
. (10.111)

The difference between both rotation times is

∆t = t1− t2 =
2πri√

m(r)c−Ωri
− 2πri√

m(r)c+Ωri
=

4πr2
i Ω

m(r)c2−Ω2r2
i
. (10.112)

The term πr2
i is the area of the interferomenter, called A. Therefore:

∆t =
4AΩ

m(r)c2−Ω2r2
i
. (10.113)

The product Ωri is the linear rotation speed of the interferometer at its rim. Since this is much
smaller than c, we can approximate

∆t ≈ 4AΩ

m(r)c2 . (10.114)

This result is the same as in Example 5.4, Eq. (5.126), with the additonal factor of m(r) in the
denominator. Therefore, the result ∆t depends on the height of the interferometer above the Earth’s
surface (more precisely: the distance to the gravitational center).

The required precision of the time measurement can be assessed by setting ri = 1m and
Ω = 2π ·50/s, giving

∆t ≈ 4.4e-14 s (10.115)

(see computer algebra code [175]). This is a quite short time. Normally, the interferometer consists
of a high number of turns of the optical fiber. Then, the area factor increases by this number,
enlarging the required minimum for time difference measurement by the same factor. �
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10.2.2 Superluminal motion
From the generalized γ factor

γ1 =

(
m(r)− v2

m(r)c2

)−1/2

, (10.116)

we see that the m function alters the effective velocity of light by

c2→m(r)c2. (10.117)

The dependence of the generalized γ factor on the m function has been graphed in Fig. 10.11.
The ratio v/c has been taken as a parameter. As can be seen, the γ factor goes to infinity for
m(r)→ 0 as found by the dynamics calculations in the preceding sections. For v/c > 1, this limit
is reached already above m(r)=1. For cases m(r)> 1, the γ factor also can take values smaller than
unity. This behaviour is unknown in Einsteinian relativity. If we allow for m(r)> 1, superluminal
motion is possible.

It is seen that the generalized γ factor is not restricted to positive m values. Only the total
argument of the square root in Eq. (10.116) must be positive, the summands below the square root
can have any sign. This allows for negative m values in a certain range. As can be seen from Fig.
10.11, there are limits of γ in dependence of v/c. Again, superluminal motion is possible, and γ

may take values smaller than unity.

Figure 10.11: Generalized γ factor in dependence of m(r) for some values of v/c.

10.2.3 Event horizons and cosmology
In Einsteinian theory of “black holes”, an event horizon appears. We did not find “black holes” in
ECE theory, but event horizons could exist. These are surfaces, on which the m function is zero. In
m theory, we can construct such surfaces as follows. We introduce a zero point of m(r) at r0 > 0 as
shown in Fig. 10.12, where we chose r0 = 0.3. The m function then reads

m(r) = 2− exp
(

log(2)exp(±r− r0

R
)

)
, (10.118)

where the plus sign holds for r < r0 and the minus sign for r > r0. We first consider the outer
space r > r0. If the mass orbits in sufficient distance from the event horizon at r0, we obtain, in



298 Chapter 10. m theory

the periodic case, the precessing ellipses or curves oscillating between two radii, as is discussed
below for the case r < r0. If the initial velocity of the calculation falls below a certain value, the
mass stops at the event horizon and stays there (see Fig. 10.13). The r1 coordinate in m space itself
diverges for m(r)→ 0, because it is inversely proportional to the square root of m(r),

r1 =
r

m(r)1/2 , (10.119)

and the denominator approaches zero. The relevant coordinate in observer space is r, while r1 is
only a kind of abbreviation in this space.

The periodic motion of a mass within the horizon is graphed in Fig. 10.14. This is a precessing
ellipse or a motion between two radii, as long as the mass does not come too near to the event
horizon. It is seen that the orbits r and r1 become different in the outer region, where they are
nearer to the horizon. This is an indicator for the strength of the effects of the m function. When
the initial velocity exceeds a certain limit, the mass is caught by the event horizon, leading to an
end of motion. This case is graphed in Fig. 10.15. The r1 coordinate diverges again as explained
above. It has already been seen earlier from Fig. 10.4 that the velocity goes to zero, when the mass
approaches an event horizon.

Figure 10.12: m function with event horizon
at r = 0.3.

Figure 10.13: Collapsing orbits outside of event
horizon.

Figure 10.14: Periodic orbits inside event
horizon.

Figure 10.15: Collapsing orbits inside event hori-
zon.
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Obviously, an event horizon is an insurmountable limit. This is different from obsolete black
hole theory, where a mass can freely fall through the event horizon, which is only a mathematical
artifact in that case. However, for radiation such a limitaion does not exist. To see this, we consider
the wave equation in coordinates of m space:

1
v2

0

∂ 2

∂ t2
1

F−∇
2
1F = 0, (10.120)

where F is a gravitational or electromagnetic field and v0 is its propagation velocity. In one
dimension, this equation reads

1
v2

0

∂ 2

∂ t2
1

F− ∂F(x1, t1)
∂x1

= 0. (10.121)

To concretize this, we assume a harmonic wave

F(x1, t1) = F0 exp(ω1t1− k1x1). (10.122)

The parameters and coordinates are

x1 =
x

m(x)1/2 , (10.123)

t1 = t m(x)1/2,

ω1 =
2π

T1
=

2π

T m(x)1/2 ,

k1 =
2π

λ1
=

2π m(x)1/2

λ
,

with ω being the time frequency and k being the wave number as usual. It follows that(
1
v2

0

∂ 2

∂ t2
1
− ∂ 2

∂x2
1

)
F0 exp(ω1t1− k1x1) = 0, (10.124)

and, by insertion,(
1

v2
0m(x)

∂ 2

∂ t2 −m(x)
∂ 2

∂x2

)
F0 exp(ωt− kx) = 0. (10.125)

Obviously, the phase factors are invariant of the coordinate system. Evaluating the derivatives gives(
− ω2

v2
0m(x)

+ k2m(x)
)

F0 exp(ωt− kx) = 0. (10.126)

Since the wave does not vanish, the factor must be zero, which gives

v2
0 =

ω2

k2 m(x)2 (10.127)

or

v0 =
ω

k m(x)
. (10.128)

The propagation velocity of the wave becomes infinitely high for m(x)→ 0. The event horizon is
passed with superluminal motion. This is completely different as for a mass, which is caught at the
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horizon. All this can be the basis of a completely new cosmology. For example, we can assume
that the size of the universe is determined by the fact that the aether vanishes at the borders of the
universe. Consequently, spacetime does no more exist there. The aether density will diminish to
zero. Since the m function describes the aether density, this means that m(r) approaches zero at the
border. Massive objects cannot leave the universe, but radiation can. It would even do this with
superluminal speed and even move instantly to regions, where any other universes exist. At the
border, dense matter will dissolve, because it is nothing else than a condensation of the aether. All
this is imaginable with requiring neither quantum effects nor higher dimensions.

10.2.4 Light deflection
Light deflection by gravitaton is only explainable by general relativity. Einstein predicted this effect
for the sun (although using dubious mathematics), and Eddington proved this by measurements
during a solar eclipse. Although Eddington’s data later turned out to be scientifically untenable,
they justified Einstein’s success of his general theory of relativity.

In an alternative classical approach, the deflection angle of light can be computed by equating
the photon energy h̄ω with a relativistic mass energy mc2, which gives a relativistic mass according
to special relativity. However, the angle of deflection then comes out to be only half of the observed
value. Einstein obtain the correct result

∆ψ =
4MG
c2R0

, (10.129)

where ∆ψ is the angle of deflection, M is the mass of the sun, and R0 is the radius, where the light
grazes the sun.

During the development of ECE theory, many articles were written to give a mathematically
correct explanation of the effect of light deflection. Already in early papers [111], an estimation
of the photon rest mass could be made. According to the Proca equation, all particles including
photons must have a rest mass, because particle structures are connected with curvature and torsion
of spacetime. In special relativity, however, particles moving exactly with the velocity of light in
vacuo cannot have a rest mass. In the following we present the two most advanced ECE explanations
of this problem. The second explanation uses m theory.

In the first method, we introduce a hypothetical “Newtonian velocity” vN and assume that this
velocity appears in the γ factor of special relativity:

γN =

(
1− v2

N

c2

)−1/2

. (10.130)

For higher velocities, the physical velocity is the relativistic velocity v, which we define by

v = γNvN . (10.131)

This is of course a new definition of the γ factor. If v does not come near to c, the result will not
deviate significantly from the standard definition using v. It follows

v2 =
v2

N

1− v2
N

c2

(10.132)

and, after rewriting,

v2
N =

v2

1+ v2

c2

. (10.133)
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When v approaches c, the Newtonian velocity has the limit

v2
N −→v→c

c2

2
. (10.134)

In this way, the γ factor does not diverge but has the limit

γN −→
v→c

√
2 (10.135)

(see Fig. 10.16).

Figure 10.16: γ factors of standard velocity v and Newtonian velocity vN .

According to Eq. (9.21), in the Newtonian theory of conic sections, the orbital velocity of light
grazing the sun is

v2
N = MG

(
2

R0
− 1

a

)
. (10.136)

Therein, a is the semi major axis

a =
α

1− ε2 , (10.137)

α is the semi latus rectum, and R0 is the perihelion of distance of closest approach

R0 =
α

1+ ε
. (10.138)

In light grazing the sun, the ellipticity is ε � 1, so

ε ≈ R0v2
N

MG
. (10.139)

The angle of deflection at closest approach is

∆ψ =
2
ε
=

2MG
R0v2

N
(10.140)
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(for more details, see [112]). For a photon, the relativistic velocity approaches c, so we have from
Eq. (10.133):

v2
N −→v→c

c2

2
(10.141)

and

∆ψ =
4MG
R0c2 , (10.142)

which is exactly the experimental result. This depends only on the definition of Newtonian and
relativistic velocity.

m theory can be used to explain the deviation of the factor γN, Eq.(10.129), from the γ factors
of special relativity and generally relativistic ECE theory. In m theory, the general-relativistic γ

factor is

γ =

(
m(r)− v2

c2 m(r)

)−1/2

. (10.143)

To allow the case v = c, we must have m(r)>1, otherwise the γ factor would diverge for v→ c. For
the case v = c, we must require with the γ factor of m theory:

γ
2(v→ c) v2(v→ c) = γ

2
N(v→ c) v2

N(v→ c), (10.144)

which leads to

c2

m− 1
m

=
c2

2(1− 1
2)

= c2 (10.145)

or

m− 1
m

= 1, (10.146)

where we have assumed that m(r) is constant. This means that γ(v = c) = 1, which is in accordance
with the earlier definition in Eq. (10.131). Eq. (10.146) is a quadratic equation for m with solutions

m1,2 =
1
2

(
1±
√

5
)
, (10.147)

numerically:

m1 =−0.61803, m2 = 1.61803, (10.148)

which is known as the the golden ratio Φ:

m1 =−(Φ−1), m2 = Φ. (10.149)

This is a startling result. m2 can be inserted into the Lagrange equation set (10.63, 10.64) which is
discussed below.

For photons, we have obtained γ = 1 in m theory. Then, the energy of a photon with rest mass
m0 is

E = h̄ω = m(r)γm0c2 = Φm0c2. (10.150)
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The “standard” rest energy m0c2 is increased by a factor of Φ and the rest mass depends on the
wave energy h̄ω . The photon momentum is

p =
E
c
= Φm0c. (10.151)

The photon with mass fits into the frame of general-relativistic theory, for example via the Proca
equation (7.52). In contrast to special relativity, there is no problem with the γ factor for v→ c. For
m(r), we have obtained a self-consistent solution. Therefore, this photon theory is parameter-free.

When the equations of motion (10.63, 10.64) are solved, it is possible to compute the trajectories
of photons by a classical theory. With special relativity, this is not achievable, because the γ factor
diverges for v→ c. Within m theory, however, v = c is possible for m>1. Since m(r) is assumed to
be constant, the equations of motion reduce to

φ̈ =φ̇ ṙ

(
GM

γ c2 r2
√

m(r)
− 2

r

)
, (10.152)

r̈ =− GM φ̇ 2

γ c2
√

m(r)
−

GM
√

m(r)
γ3 r2 + φ̇

2 r. (10.153)

Only the relativistic corrections ∼ 1/c2 remain. The equations do not depend on the orbiting mass
m, which would be the rest mass of the photon. The scales used in such calculations require special
adaptations, because the central mass and the velocities have quite high numerical values. For
computing the orbit of the S2 star, for example, we had used adapted units [97]. Here, we applied
the same units. The length, for example, is measured in 10−9m. Using the golden ratio value m2
from Eq. (10.148), we obtain the orbit graphed in Fig. 10.17. Please note that the photon moves
from right to left, the sun is at x = 0. Since the angle of deflection is so small, the y axis had to be
zoomed in. The deflection angle is approximately determined by

∆ψ =−∆y
∆x

, (10.154)

where ∆x is measured from x = 0. The result is precise, when the negative x value is far enough
away from the center. The computed dependence of the deflection angle on x is shown in Fig. 10.18.
The asymptotic value is 8.65 · 10−6 radians, compared to the experimental value of 8.48 · 10−6.
This is coincidence within 2% and shows very good conformance. To see how this value depends
on the m value, we have varied the m value in a wider range as presented in Table 10.2. Obviously,
there is a significant variation of ∆ψ with m. The orbit calculation of a photon grazing the sun
impressively proves the m value that has been computed analytically for an effective, constant m
function.

m ∆ψ

1.28 4.29 ·10−6

1.43 6.14 ·10−6

1.57 7.99 ·10−6

1.61803 8.65 ·10−6

1.78 11.0 ·10−6

exp. 8.48 ·10−6

Table 10.2: Deflection angle of light ∆ψ for several values of the m function.
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Figure 10.17: Orbit of light grazing the sun,
moving from right to left (please note
the y scale).

Figure 10.18: Deflection angle ∆ψ =−∆y/∆x of
light grazing the sun, moving from right to left.

The rest mass of the photon can be determined from Eq. (10.150). Assuming an average
frequency of light of ω = 10−15/s, it follows that

m0 =
h̄ω

Φ c2 = 7.25 ·10−37 kg. (10.155)

From earlier results of m theory (for example for the S2 star), we know that we have to expect
m≈1 for ordinary matter. The value of m for photons is far above this range. Since our numerical
calculation has impressively confirmed the analytical result, we are lead to the conclusion that
light (or electromagnetic radiation in general) shows a different interaction with the spacetime
or background field, compared to dense matter. This may be explained by the fact that the mass
of the photon is expanded in any form over space. In electrodynamics, light is often modeled by
plane waves that are even infinitely extended in theory. A spatial restriction is possible, leading to
wave packets as in quantum mechanics. For photons, space appears “more dense” than for ordinary
matter. All of these results have been obtained from a classical theory, without quantum effects
being taken into account.

10.3 Final remarks

In the preceding sections, it was shown that the Hamiltonian, Lagrangian and equations of motion
give forward and retrograde precession of orbits, shrinking orbits, the possibility of expanding
orbits and counter gravitation, superluminal signalling, infinite potential energy from m(r) and
gravitational light deflection. These are major advances in classical dynamics. In forthcoming
papers not reviewed here, the compatibility of relativistic Lagrange theory with Hamilton/Hamilton-
Jacobi theory has been proven [113]. The equations of motion of m theory give new cosmologies.
Equations of special-relativistic motion alone do not, they give only precession.

We conclude that the set of equations of motion derived in this paper can be used to investigate
very intricate cases of cosmology. The equations have been cross-checked in various ways. For
computation, the Lagrangian version was used as a basis because Lagrange theory is strongly for-
malized and, therefore, best suited for being programmed on a computer. The laws of conservation
of angular momentum and total energy provide a critical check for correctness and plausibility of
the results.
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The second part of this book deals with quantum mechanics. We will see that vacuum forces
give rise to microscopic effects like the Lamb shift and vacuum fluctuations. m theory will also be
applied to quantum mechanics, leading to a unification of this subject with general relativity. New
derived theories like a quantum force and quantum-Hamilton equations are introduced. Quantum
statistics is deterministic and principal undeterminacy is eliminated. Quantum mechanics will turn
out as a subject better understandable than today.
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