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Abstract

The Coulomb and Ampère Maxwell laws are calculated exactly from Einstein
Cartan Evans (ECE) unified field theory. The result are given for several
stationary and dynamical line elements and metrics of the Einstein Hilbert
field equation, and show that in general there are relativistic corrections of
the same order as those responsible for the deflection of light by gravity and
perihelion advance for example. In the special relativistic limit the Coulomb
and Ampère Maxwell laws of classical electrodynamics are recovered self con-
sistently. In the stationary Schwarzschild metric there is no charge density or
current density. These are finite in the dynamic Friedman Lemâıtre Robert-
son Walker metric. The laws of classical electrodynamics are investigated for
the rigorously correct Crothers metric, and other metrics.

Keywords: Einstein Cartan Evans (ECE) unified field theory, exact cal-
culation of the generally covariant laws of electrodynamics, stationary and
dynamical line elements.
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336 23 The Coulomb and Ampère Maxwell Laws

23.1 Introduction

In classical electrodynamics the Coulomb law and Ampère Maxwell laws are
well known to be a precise laws of special relativity in Minkowski space-
time [1]. However in a generally covariant unified field theory all the laws of
classical electrodynamics become unified with those of gravitation and other
fundamental fields [2–9]. In previous work [2–9] these laws have been devel-
oped using the spin connection, revealing the presence of resonance phenom-
ena that can lead to new sources of energy. A dielectric formulation of the
laws of classical electrodynamics has also been given. This showed that light
deflected by gravity also changes polarization, as observed for example in light
deflected by white dwarf stars [10]. More generally, there are many optical
and electro-dynamical changes predicted by Einstein Cartan Evans (ECE)
unified field theory [2–9]. In Section 23.2 various well known line elements are
used to compute the Coulomb Law and Ampère Maxwell laws, starting with
the Bianchi identity of differential geometry. In Section 23.3 a discussion is
given of the shortcomings of Big Bang and black hole theory, based on the
rigorously correct Crothers metric. The latter is also used in Section 23.3 to
develop the laws of classical electrodynamics into laws of general relativity.
Appendices give sufficient mathematical detail to follow the derivation step
by step.

23.2 The Generally Covariant Coulomb and Ampère
Maxwell Laws

The starting point of the derivation is the Bianchi identity [11] of Cartan
geometry:

d ∧ T a + ωa
b ∧ T b := Ra

b ∧ qb (23.1)

where T a is the torsion form, ωa
b is the spin connection, d∧ denotes the

wedge product of differential geometry, Ra
b is the curvature form and qb is

the tetrad form. Using the fundamental hypothesis [2–9]:

Aa = A(0)qa, (23.2)

F a = A(0)T a, (23.3)

Eq. (23.1) becomes the ECE field equation:

d ∧ F a = μ0j
a = A(0)(Ra

b ∧ qb − ωa
b ∧ T b). (23.4)
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Here Aa is the potential form, F a is the field form, and cA(0) is a primordial
scalar in volts. The hypothesis (23.2) has been tested experimentally in an
extensive manner (www.aias.us). The field equation (23.4) is generally covari-
ant because the Bianchi identity is generally covariant. Under the general
coordinate transformation the field equation becomes:

(d ∧ F a)′ = (μ0j
a)′ (23.5)

which is:

(d ∧ T a + ωa
b ∧ T b)′ := (Ra

b ∧ qb)′. (23.6)

It retains its form under the coordinate transform because it consists of ten-
sorial quantities. This is the essence of general relativity.

Applying the Hodge dual transform to both sides of Eq. (23.4) (Appendix
(A)) the inhomogeneous ECE field equation is obtained:

d ∧ F̃ a = μ0J
a = A(0)(R̃a

b ∧ qb − ωa
b ∧ T̃ b). (23.7)

Here the tilde denotes Hodge transformation [2 – 9, 11]. It is seen that the
same Hodge transform is applied to two-forms on both sides of the equa-
tion. The generally covariant Coulomb and Ampère Maxwell laws are part
of the inhomogeneous field equation (23.7). As shown in Appendix (B), the
homogeneous and inhomogeneous field equations are the tensor equations:

∂μF̃ aμν = μ0j̃
aν (23.8)

and

∂μF aμν = μ0J
aν (23.9)

respectively. These tensor equations are generally covariant. They look like
the Maxwell Heaviside field equations but contain more information. In the
special case:

Ra
b ∧ qb = ωa

b ∧ T b (23.10)

the homogeneous field equation becomes:

∂μF̃μν = 0 (23.11)

and the inhomogeneous equation becomes:

∂μF aμν = −A(0)(Ra μν
μ )grav. (23.12)
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It has been shown [2–9] that the special case (23.10) is pure rotation. A
solution of Eq. (23.10) is:

Ra
b = −κ

2
εa

bcT
c, ωa

b = −κ

2
εa

bcq
c, (23.13)

in which case the curvature is this well defined dual of the torsion and the spin
connection is the well defined dual of the tetrad. These results are developed in
all detail elsewhere [2–9]. When the connection is the Christoffel connection,
however, the gravitational torsion vanishes:

(T a)grav = 0, (23.14)

(Tκ
μν )grav = Γκ

μν − Γκ
νμ = 0 (23.15)

and the curvature form becomes the Riemann tensor:

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ. (23.16)

In this case the inhomogeneous equation becomes:

∂μF aμν = −A(0)Ra
μμν (23.17)

and as shown in Appendix (C) can be written as two vector equations:

∇ · E = (∇ · E)0 = −φ(0)(R0 10
1 + R0 20

2 + R0 30
3 ) (23.18)

and

∇ × B =
1
c2

∂E

∂t
+ μ0J (23.19)

where

Jr = J1
1 = −A(0)

μ0
(R1 10

0 + R1 12
2 + R1 13

3 ), (23.20)

Jθ = J2
2 = −A(0)

μ0
(R2 20

0 + R2 21
1 + R2 23

3 ), (23.21)

Jφ = J3
3 = −A(0)

μ0
(R3 30

0 + R3 31
1 + R3 32

2 ). (23.22)
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Eq. (23.18) is the generally covariant Coulomb Law, and Eq. (23.19) is the
generally covariant Ampère Maxwell law. As shown in Appendix (D) the
index a for the Coulomb law must be zero on both sides because it is the time-
like index indicating scalar quantities on both sides, and the a indices in
Eqs. (23.20) to (23.22) are obtained in a well defined manner from Cartan
geometry.

The generally covariant Coulomb and Ampère Maxwell laws are given by
evaluating the Riemann elements on the right hand side of Eq. (23.17) for
well known stationary and dynamic line elements and metric elements and
the rigorously correct Crothers metric [12, 13]. The method is summarized in
Appendix (E) and uses computer algebra. It consists of choosing line elements
[11], evaluating the Christoffel symbols and Riemann tensor elements, and
finally raising indices with the relevant metric elements. The final results are
given as follows.

For the Minkowski line element of special relativity:

ds2 = −c2dt2 + dX2 + dY 2 + dZ2, (23.23)

g00 = −1, g11 = 1, g22 = 1, g33 = 1 (23.24)

there is no charge density and no current density, because the space-time
has no curvature. So all Christoffel and Riemann elements are zero in the
Minkowski space-time. This shows that Maxwell Heaviside field theory has
to use charge and current densities phenomenologically, and this is neither
generally covariant (objective) nor rigorously correct nor self consistent. In
the stationary Schwarzschild metric as usually used:

ds2 = −
(

1 − 2MG

rc2

)
c2dt2 +

(
1 − 2MG

rc2

)−1

r2 + r2dΩ2 (23.25)

g00 = −
(

1 − 2MG

rc2

)
,

g11 = −
(

1 − 2MG

rc2

)−1

,

g22 = r2, g33 = r2 sin2 θ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(23.26)

there is no charge density and no current density from Eq. (23.17) because
there is no canonical energy momentum density used in deriving this
Schwarzschild line element. Here M is mass, G the Newton constant, c the
speed of light (S.I.units are used in Eq. (23.25)) and the spherical polar
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coordinate system (r, θ, φ) is used. Therefore in both of these line elements
the Coulomb and Ampère Maxwell laws are:

∇ · E = 0, (23.27)

∇ × B =
1
c2

∂E

∂t
. (23.28)

The Friedman Lemâıtre Robertson Walker dynamical line element [13] is:

ds2 = −c2dt2 + a(t)2
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (23.29)

g00 = −1, g11 =
a2(t)

1 − kr2
, g22 = a2(t)r2, g33 = a2(t)r2 sin2 θ (23.30)

where a is governed by the Friedman equations. This metric is the result of
homogeneity and isotropy, as is well known [14], and the Einstein Hilbert field
equations are used to define the line element through the Friedman equations.
Well known types of cosmologies are defined by this line element [14]. The
line element (23.29) produces the Coulomb law:

∇ · E = −3φä

a

= 4πφG(ρ + 3ρ) =
ρe

ε0
,

(23.31)

and the current density components:

Jr = −A(0)

μ0

(
2
a4

(k + ä2)(kr2 − 1) +
ä

a3
(kr2 − 1)

)
(23.32)

Jθ =
A(0)

μ0

(
2

a4r
(k + ä2) +

ä

a3r2

)
(23.33)

Jφ =
Jθ

sin2 θ
. (23.34)
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These depend on the type of universe, or cosmology, being considered [11].
The Coulomb law (23.31) depends directly on the Newton constant G and
the mass density ρ, together with:

ρ =
m

V
(23.35)

in the rest frame, where m is mass and V is volume. In the laboratory,
Eq. (23.31) is the well tested Coulomb law of electrodynamics, one of the most
precise laws of physics [1]. Eq. (23.31) is generally covariant and upon gen-
eral coordinate transformation produces new physical effects. The generally
covariant Ampère Maxwell law also produces new physical effects which can
be looked for experimentally. Some are already known, notably the change in
polarization of light deflected by gravitation [2–10]. Here, the scalar potential
φ has the units of volts, G is the Newton constant with units of meters per
kilogram, r is the radial vector of the spherical polar coordinate system (r, θ,
φ), ρe is the electric charge density and ε0 is the vacuum permittivity in S.I.
units.

23.3 Discussion of Results and Criticisms of the
Standard Model

The Coulomb and Ampère Maxwell laws in ECE theory are summarized in
Table 23.1a for various metrics.

In this section a discussion of these results is given with fundamental
criticisms of standard model cosmologies. There are various well known exact
solutions of the Einstein Hilbert (EH) field equation which are considered
as follows. The class of vacuum solutions assume that there is no matter
or non-gravitational fields present, this is typified by what is usually called
the Schwarzschild metric, which in ECE self-consistently produces no charge
density and no current density, i.e. a vacuum. The class of electro-vacuum
solutions solves the source free Maxwell Heaviside (MH) field equations in
the given curved Lorentzian manifold, the source of the gravitational field
being the electromagnetic energy-momentum. In this class, as in all classes
of solution of EH, there is no Cartan torsion present. The electro-vacuum
class of solutions is typified by the Reissner Nordstrom (RN) metric, the
Kerr metric, and variations thereof. Einstein did not accept the RN metric
as a unified field theory, because it replaces the derivative of the MH theory
by a covariant derivative and so this is not an objective procedure based
on geometry, it is an ad hoc fix of the phenomenological MH theory, one
which assumes the presence of an electromagnetic field that has no source,
a logical contradiction present in MH electrodynamics. In ECE theory the
electromagnetic field is due to the electromagnetic Cartan torsion, which is
missing from all Riemannian theories such as EH. So to use RN or Kerr with
ECE is a contradiction in fundamental concepts.
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The third class of EH solutions is the null dust class which assumes that
the source of the gravitational field is an incoherent electromagnetic field with
no source. This again has the weaknesses just discussed of the electro-vacuum
class of EH solutions. The class of fluid solutions assumes that the canonical
energy momentum density of EH comes from the stress-energy tensor of a
fluid, and that this is the only source of the gravitational field. This class
of solutions assumes isotropy and homogeneity, and the FLRW metric is an
example. In ECE, the FLRW metric gives a finite charge and current density,
and precisely the correct form of the Coulomb Law (see Table 23.1a). In other
words, ECE identifies the source of the Coulomb law as mass density, to
which charge density is directly proportional. If there is mass density present
anywhere in the universe, there is a source for the electromagnetic field. This
cures the logical inconsistency in MH of having a field without a source.
However, there are fundamental geometrical difficulties associated with this
class of solutions, and these are discussed later in this Section. It seems that
the rigorously correct Coulomb and Ampère Maxwell laws are given by a new
class of solutions of EH deduced by Crothers [15]. This class also gives a finite
charge density and current density given a finite mass density.

There are more exotic classes of exact EH solutions, for example the scalar
field solutions in the field theory of meson beams and quintessence, the class of
solutions due to a finite cosmological constant, the wormhole and superlumi-
nal metrics. The Kerr Newman NUT de Sitter class of exact solutions to EH
uses a source-less electromagnetic field and positive vacuum energy. Finally
the Godel dust solution of EH uses a pressure-less perfect fluid (dust) and a
positive vacuum energy. From the point of view of ECE these are exotic, log-
ically inconsistent and use adjustable parameters. None are true unified field
theories because they are not based on the required logic of Cartan geometry.

Of these solutions the Crothers solution is the rigorously correct one,
and produces a finite charge density and current density given a finite mass
density. The Crothers solution also eliminates singularities, known as “Big
Bang” and “black hole”. ECE theory has been shown [2–9] to eliminate the
wholly phenomenological concept of “dark matter” in favor of the Cartan
torsion, which is an intrinsic part of geometry. The latter is the objective
foundation of general relativity. The most important property of the Crothers
solution is that it is rigorously correct from a geometrical point of view, and
it is further discussed later in this Section. The Crothers solutions are still
Riemannian solutions, without consideration of torsion, but in Eq. (23.17),
the right hand side term is considered in an approximation to derive from
curvature. The effect of gravitational torsion can be included in further work
by changing Eq. (23.17) to:

∂μF aμν = −A(0)
(
Ra μν

μ + ωa
μbT

μνb
)

(23.36)

where ωa
μb is the gravitational spin connection and Tμνb the gravitational

torsion.
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Fig. 23.1a. Spherical metric of Crothers, charge density ρ and current den-
sities Jr, Jθ, Jφ for r0 = 0, α = 0, n = 1, A = B = 1.
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Fig. 23.1b. Spherical metric of Crothers, charge density ρ and current den-
sities Jr, Jθ, Jφ for r0 = 1, α = 1, n = 1, A = B = 1.
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Fig. 23.1c. Spherical metric of Crothers, charge density ρ and current den-
sities Jr, Jθ, Jφ for r0 = 0, α = 1, n = 3, A = B = 1.
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Fig. 23.2. Friedmann Dust metric, charge density ρ and current density
Jx, Jy, Jz for a = 1.

The rigorous self-consistency of ECE theory is proven from the fact that
a vacuum solution, the usually named Schwarzschild metric, results in zero
charge density and current density. This proves that the ECE theory is techni-
cally correct (see Appendices) and conceptually self consistent and objective.
In ECE theory there is neither a gravitational nor an electromagnetic field
without mass density acting as the source of that field. Indeed, the gravita-
tional and electromagnetic fields become unified in the same field, and also
unified with the weak, strong and fermionic and other matter fields [2–9].
In ECE, field theory is unified with quantum mechanics using the tetrad
postulate.
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Fig. 23.3. FLRW metric, current density, r dependence of Jr and Jθ, Jφ for
a = t2, t = 1, k = .5.

It is to be noted that there are conceptual inconsistencies both in MH
theory and in the class of vacuum solutions of EH, because in both cases,
there is a field of force, but no source for the field. The concept of the field
of force was introduced by Faraday. Maxwell considered the source to be the
result of the field. The twentieth century view was that the field is produced
by the source. ECE theory asserts that the field is geometry, and that the
source of the gravitational field unified with the electromagnetic field is mass
density.

The main results of this paper are summarized in Table 23.1a and in the
figures for charge and current densities for the Coulomb and Ampère Maxwell
laws for several representative metrics. Eddington deduced [16] that there
is an infinite number of vacuum solutions of the Einstein Hilbert (EH) field
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Fig. 23.4. Perfect spherical fluid, charge density ρ and current densities Jr,
Jθ, Jφ for a = b = 1.
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Fig. 23.5. Static De Sitter metric, charge density ρ and current densities Jr,
Jθ, Jφ for α = 1.
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Fig. 23.6a. Reissner-Nordstrom metric, charge density ρ and current densi-
ties Jr, Jθ, Jφ for M = 1, Q = 2.
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Fig. 23.6b. Reissner-Nordstrom metric, charge density ρ and current densi-
ties Jr, Jθ, Jφ for M = 2, Q = 1.
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Fig. 23.7. Goedel Metric, charge density ρ and current densities Jx and Jz

for ω = 1.
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Fig. 23.8. Kasner metric, charge density ρ and current densities J1, J2, J3,
for p1 = 1, p2 = −1, p3 = 0.
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Fig. 23.9. General spherical metric, charge density ρ and current density Jr,
Jθ, Jφ for α = 1/r, β = r.
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equation, which is therefore under determined mathematically. This fact alone
shows the need for a generally covariant unified field theory which constrains
severely the mathematically allowed solutions using the laws of classical elec-
trodynamics. In a recent volume [17] many mathematical solutions are given
of the EH field equation. The ECE of this paper may now be used to find
which of these are meaningful in physics (i.e. physical) and which are pure
mathematics with no physical meaning. In this paper the vacuum solutions
are represented by a few well known types. The Minkowski or flat space-time
metric does not give a finite charge or current density in a generally covariant
field theory because all the Riemann elements vanish. The usually named
Schwarzschild solution (actually the Hilbert solution) does not give a finite
charge or current density, and its Ricci tensor elements all vanish. So this is
not a valid solution of the EH field equation. It appears to be accurate in
the solar system (NASA Cassini) because the weak field limit is used to cal-
culate the light deflection. This Hilbert metric represents space-time around
a static mass. The original Schwarzschild metric, as correctly attributed by
Crothers [15], gives a physically valid charge and current density (Fig. (23.1c))
which go to zero as the radial coordinate goes to infinity, without nodes and
singularities. At infinite separation, objects are infinitely far apart, so no
interaction occurs, indicating zero charge and current densities. The general
Crothers metric (Table One and Fig. (23.1a)) is a physical metric for these
reasons, and is acceptable in a unified field theory.

The Godel metric is a vacuum solution that represents space-time around
a spinning mass, and its charge and current densities are sketched in Fig.
(23.7). As for all the metrics used in this paper, it was checked by computer
that it obeys the Ricci cyclic equation:

Ra
b ∧ qb = 0 (23.37)

i.e.

Rκ
μνσ + Rκ

σμν + Rκ
νσμ = 0 (23.38)

in tensor notation. Therefore a spinning mass is sufficient to create charge and
current densities in ECE theory. Surprisingly, it was found by computer that
the simple Kerr metric for the vacuum (not shown) gave several singularities
in the charge and current densities. So this metric, and the charged Kerr met-
ric, was not considered further. The Kasner metric (Fig. (23.8)) represents an
anisotropic vacuum and gives finite charge and current densities, so vacuum
anisotropy is sufficient to give charge and current density in ECE theory.

Metrics that use finite canonical energy momentum density include the
Friedmann dust metric and the Friedmann Lemaitre Robertson Walker
(FLRW) metric. Friedmann dust (Fig. (23.2)) gives a finite charge density as
r goes to infinity, and this result is considered to be unphysical for reasons
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stated. The FLRW metric with a = t2 (Fig. (23.3)) has some more than
one unphysical characteristic in that it gives radially constant charge density
and a radial component of current density that increases quadratically with
radial distance and becomes infinite. However, the FLRW gives the correct
Coulomb Law (Table 23.1a). The metric for a perfect spherical fluid (Fig.
(23.4)) is unphysical again. The charge and current density components go
to zero as r goes to infinity for this metric. The static de Sitter metric (Fig.
(23.5)) has an unphysical node in charge density and the radial component
of current density goes to infinity. The other components of current density
go to zero correctly as r goes to infinity. The Reissner Nordstrom metric
does not meet the philosophical requirements of ECE theory as discussed
already, and as shown in Fig. (23.6) displays an unphysical node in charge
density for M = 2, Q = 1. The charge and current densities of this metric go
to zero correctly as r goes to infinity. For M = 1, Q = 2 this metric gives the
correct behavior as r goes to infinity. Results for the Godel metric are given
in Fig. (23.7), the Kasner metric in Fig. (23.8) and the general spherical
metric (general Schwarzschild) in Fig. (23.9). The Godel metric describes
a homogeneous distribution of swirling dust particles, and gives a constant
charge density and radial current density. This is plausible physically. The
Kasner metric describes an anisotropic universe without matter, with the
choice of parameters:

p1 = 1, p2 = −1, p3 = 0 (23.39)

the results depend only on t (Fig. (23.8)) as a consequence of this choice or
definition. The charge density goes to zero as t goes to infinity and J2, J3 is
time independent. Finally the general Schwarzschild metric (Fig. (23.9)) is
illustrated for the choice of parameters:

α =
1
r
, β = r (23.40)

so there is no intrinsic t dependence by definition. The results are physical,
the charge and current densities go to zero as r goes to infinity.

This pattern is likely to be repeated for the various known exact solutions
of the EH equation [17], very few metrics give the required electro-dynamical
laws without unphysical flaws. So ECE gives the much needed constraint on
these EH solutions. Some care must be taken in interpretation of these results,
for example the unphysical characteristics in Fig. (23.1b) could be due to the
fact that r is constrained to r > α for physical results. However the ECE
method gives at least one fundamentally important finding: that spinning
mass densities create electromagnetic charge and current density given the
existence of the primordial voltage cA(0), indicating the origin of charge in
elementary particles.
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23.4 Schwarzschild Class of Solutions

The Schwarzschild class of solutions are developed from a generalisation of
Minkowski spacetime [19], where the latter is given by

ds2 = dt2−dr2 − |r − r0|2(dθ2 + sin2 θdϕ2),

0 ≤ |r − r0| < ∞,
(23.41)

although Minkowski space appears in the literature by the following line
element,

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdϕ2),
0 ≤ r < ∞,

(23.42)

wherein r0 = 0.
The generalisation of the Minkowski line element has the form,

ds2 = A
(√

C(r)
)

dt2−B
(√

C(r)
)

d
√

C(r)
2
− C(r)(dθ2 + sin2 θdϕ2),

C(r) ≡ C(|r − r0|),
(23.43)

where A
(√

C(r)
)

, B
(√

C(r)
)

and C(r) are a priori unknown positive-
valued analytic functions that must be determined by the intrinsic geometry
of the line element and associated boundary conditions, satisfying the condi-
tion Rμν = 0. The function

√
C(r) = Rc(r) is the radius of curvature. Using

expression (23.43) in Einstein’s field equations gives the following general line
element in terms one unknown analytic function,

ds2 =

(
1 − α√

C(r)

)
dt2 −

(
1 − α√

C(r)

)−1

d
√

C(r)
2

− C(r)(dθ2 + sin2 θdϕ2). (23.44)

The admissible form of C(r) that satisfies the intrinsic geometry of the line
element and the required boundary conditions has been previously deduced
[19], and is given by

√
C(r) =Rc(r) =

(
|r − r0|n + αn

) 1
n ,

r ∈ �, n ∈ �+, r �= r0,
(23.45)
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where r0 and n are entirely arbitrary constants, and α is a constant that
depends upon the mass of the source of the gravitational field. Metric (23.44)
is well defined on −∞ < r < r0 < r < ∞, and has no singularity other than
at r = r0. Thus, there is no such thing as a black hole.

The metric appearing in the bulk of the literature under the name of the
“Schwarzschild” solution1, is not Schwarzschild’s solution, and is obtained
from (23.4) and (23.5) by choosing n = 1, r0 = α, r > r0. It should be
noted that according to (23.5) the actual radius of curvature for the usual
line element is Rc = (r − α) + α, so that α drops out of the expression
for the radius of curvature, but that does not mean that Rc can then go
down to zero. Rc must always obey expression (23.5), which generates it.
There is no possibility of the so-called “black hole”. It is the standard but
erroneous assumption that Rc can go down to zero in the usual line element
that has spawned the (fallacious) concept of the black hole. Schwarzschild’s
true solution [21], although not well known, is obtained by choosing n = 3,
r0 = 0, r > r0. Schwarzschild’s actual solution is well-defined on 0 < r < ∞,
and does not admit of a black hole. Schwarzschild in fact, never made any
claims in relation to what has been called a black hole, notwithstanding it
being so frequently attributed to him in the literature [22].

The infinite number of metrics obtained via (23.4) and (23.5) are equiva-
lent, and so anything proved for any one of them necessarily holds for all of
them. The simplest Schwarzschild-class metric is Brillouin’s solution [23–24],
obtained by choosing n = 1, r0 = 0, r > r0, giving the line element,

ds2 =
(

1 − α

r + α

)
dt2−

(
1 − α

r + α

)−1

dr2 − (r + α)2(dθ2 + sin2 θdϕ2),

0 < r < ∞.

(23.46)

The requirement that a solution for Einstein’s static vacuum field must
admit of an infinite series of equivalent metrics was pointed put by Eddington
as long ago as 1923 [25].

Although the components of the metric tensor of (23.44), based upon the
supposition of the line element (23.33), are determined by the field equations,
the admissible form of the a priori unknown C(r) is not determined by the
field equations. It is determined by the intrinsic geometry of the line ele-
ment, already fixed in (23.33) by the form of the line element for Minkowski
spacetime itself, and the required boundary conditions. This illustrates that
satisfaction of the field equations is a necessary but insufficient condition for a
model of Einstein’s gravitational field. Indeed, one can substitute into (23.44)
any analytic function for C(r) without disturbing the spherical symmetry

1The first and correct form of this line element was in fact derived by Johannes Droste
in 1916 [20].
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of the line element and without violating the field equations. However, not
simply any analytic function will produce a meaningful model of Einstein’s
gravitational field. For example, setting C(r) = exp(2r) produces a line ele-
ment that is spherically symmetric and satisfies Rμν = 0, but it does not
describe a model of Einstein’s gravitational field. To begin with, the resulting
line element is not asymptotically Minkowski, and that is sufficient to inval-
idate the relevant line element as a model of Einstein’s gravitational field,
notwithstanding its satisfaction of Rμν = 0 and its spherical symmetry.

The fundamental error in the usual analysis of spherically symmetric line
elements of a Type 1 Einstein Space, has been its failure to apprehend the
geometric fact that there is a distinction between the radius of curvature
Rc(r) and the geodesic proper radius Rp(r) in a general spherically symmet-
ric metric space such as that for Einstein’s gravitational field. In Minkowski
space, Rc(r) and Rp(r) are identical, owing to the pseudo-Euclidean2 nature
of Minkowski space. But Einstein’s gravitational field is non-Euclidean (it is
a pseudo-Riemannian metric manifold), and so the familiar Euclidean rela-
tions do not apply. Nonetheless, the intrinsic geometry of the line element
of Einstein’s gravitational field for a spherically symmetric Type 1 Einstein
Space is precisely the same as the line element for Minkowski space. In both
cases the geodesic proper radius is given by the integral of the square root
of the component of the line element that contains the square of the differ-
ential element of the radius of curvature and the radius of curvature is the
square root of the coefficient of the collected infinitesimal angular terms. It
is common in the literature to find the radius of curvature referred to as an
“areal” radius, or in a certain case as a “Schwarzschild” radius. However, it is
in fact the radius of curvature, owing to its formal geometric relationship to
the Gaussian curvature [26–27], and it does not determine the radial geodesic
distance from the source of the gravitational field. In the case of (23.42),
Rc(r) = r and

Rp(r) =
∫ r

0

dr = r = Rc(r). (23.47)

However, in the case of (23.44),

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(r0)

√
B(Rc(r)) dRc(r) =

∫ r

r0

√
B(Rc(r))

dRc(r)
dr

dr,

(23.48)

where Rc(r0) is a priori unknown owing to the fact that Rc(r) is a priori
unknown. One cannot simply assume that because 0 ≤ r < ∞ in (23.42)
that it must follow that in (23.44) 0 ≤ Rc(r) < ∞. In other words, one

2Actually, pseudo-Efcleethean, after the geometry of Efcleethees.
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cannot simply assume that
√

C(r0) = Rc(r0) = 0. In (23.44) and (23.45) the
quantity r is just a parameter, and the radius of curvature and the proper
radius are not the same in general. Furthermore, according to (23.44) and
(23.45), Rc(r0) = α and Rp(r0) = 0, ∀ r0 [19–26].

For the sake of completeness, a similar analysis extends the foregoing
results to encompass the Reissner-Nordstrom, Kerr and Kerr-Newman con-
figurations. The generalised line element, in Boyer Lindquist coordinates, is
given by [28],

ds2 =
Δ
ρ2

(
dt − a sin2 θdϕ

)2 − sin2 θ

ρ2

[(
R2

c + a2
)
dϕ − adt

]2 − ρ2

Δ
dR2

c − ρ2dθ2,

(23.49)

Rc = Rc(r) =
(∣∣r − r0

∣∣n + βn
) 1

n

, β =
α

2
+

√
α2

4
− (q2 + a cos2 θ),

(23.50)

a =
2L

α
, ρ2 = R2

c + a2 cos2 θ, a2 + q2 <
α2

4
, Δ = R2

c − αRc + q2 + a2,

(23.51)

r ∈ �, n ∈ �+, (23.52)

wherein L is the angular momentum, q is the charge, and the constants r0

and n are entirely arbitrary. In can be seen that when the charge q = 0, the
Kerr configuration class is recovered; when the angular momentum is zero,
the Reissner-Nordstrom configuration class is recovered; and when the charge
and the angular momentum are both zero, the Schwarzschild class of solutions
is recovered. In no case is a black hole possible. In all cases an infinite number
of equivalent metrics is obtained.

It must be emphasized that the Schwarzschild class of solutions, and also
the Reissner-Nordstrom, Kerr and Kerr-Newman line elements, all describe
the source of the gravitational field in terms of a centre of mass, and so the
lone singularity that occurs in these line elements has no physical significance.

A full description of Einstein’s gravitational field for Rμν = 0 requires
two line elements – one for the voluminous interior of the source of the field
and one for the region outside the source, the latter being a centre of mass
description, such as one from the Schwarzschild class of solutions. This is
illustrated further by the class of solutions for the idealised case of a sphere
of homogeneous incompressible fluid.
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23.5 The Homogeneous Incompressible Sphere of Fluid

Schwarzschild obtained, in 1916, a solution for a sphere of homogeneous
incompressible fluid [29]. His solution has been generalised for an infinite
class of equivalent metrics [30]. These solutions demonstrate that there is
an upper bound and a lower bound on the size of a sphere of homogeneous
incompressible fluid that can exist.

The generalised Schwarzschild line element for this configuration is [30],

ds2 =

[
3 cos |χa − χ0| − cos |χ − χ0|

2

]2
dt2 − 3

κρ0

dχ2 − 3 sin2 |χ − χ0|
κρ0

(dθ2 + sin2 θdϕ2),

sin |χ − χ0| =

√
κρ0

3
η

1
3 , η = |r − r0 | + ρ, κ = 8πk2,

ρ =

(
κρ0

3

)− 3
2
{

3

2
sin3 |χa − χ0| −

9

4
cos |χa − χ0|

[
|χa − χ0| −

1

2
sin 2|χa − χ0|

]}
,

r ∈ �, χ ∈ �,

0 ≤ |χ − χ0| ≤ |χa − χ0| <
π

2
,

(23.53)

where ρ0 is the constant density of the sphere of fluid, the subscript a denotes
values at the surface of the fluid sphere, k2 is Gauss’ gravitational constant,
χ0 denotes the arbitrary location of the centre of spherical symmetry of the
sphere in the gravitational field, and r0 the arbitrary parametric location
of the centre of spherical symmetry. Schwarzschild’s solution is recoverd by
choosing χ0 = 0, r0 = 0, χ ≥ 0 and r ≥ 0. The foregoing line element is
non-singular.

Outside the sphere of fluid, where the sphere is described in terms of its
centre of mass, the Schwarzschild class of line elements for Rμν = 0 is affected
by the distribution of mass of the sphere of fluid, and becomes

ds2 =
(

1 − α

Rc

)
dt2 −

(
1 − α

Rc

)−1

dR2
c − R2

c(dθ2 + sin2 dϕ2),

Rc =
(
|r − r0|n + εn

) 1
n , α =

√
3

κρ0

sin3 |χa − χ0|,

ε =

√
3

κρ0

{
3
2

sin3 |χa− χ0| −
9
4

cos |χa− χ0|
[
|χa− χ0| −

1
2

sin 2|χa− χ0|
]} 1

3

,

r ∈ �, 0 < |χa − χ0| <
π

2
, 0 < |ra − r0| < ∞,

(23.54)
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where n, χ0 and r0 are entirely arbitrary constants. Schwarzschild’s original
solution for the region outside the sphere of fluid is recovered by choosing
n = 3, r0 = 0, χ0 = 0, r > 0 and χa > 0.

It is clear from this solution that the constant α appearing in the
Schwarzschild class of solutions is not the Newtonian mass. Only in a very
weak field, such as that of the Sun is α approximately the Newtonian
mass, but that mass is not assigned by comparison to a far field Newtonian
potential, as is usually done. It is determined by calculation using quan-
tities associated with the line element for the interior of the source of the
gravitational field in all cases, be they weak or strong fields. In the former
case the result differs little from the Newtonain value, but in strong fields
the difference becomes significant. Furthermore, there are two masses to
consider: the passive mass (substantial mass), as determined by the line
element for the interior of the source of the gravitational field, and the
active mass (gravitational mass) as determined for the line element for the
region exterior to the source of the field but which is still obtained from
an expression determined by quantities for the field inside the source of
the gravitational field. These masses are not the same - the passive mass is
greater than the active mass.

The passive mass of the sphere of fluid is determined by the line element
for the interior of the sphere, by multiplying the constant density of the sphere
into the volume V of the sphere, and is given by

M = ρ0V = ρ0

(
3

κρ0

) 3
2
∫ χa

χ0

sin2
∣∣χ − χ0

∣∣ (χ − χ0

)
|χ − χ0|

dχ

∫ π

0

sin θdθ

∫ 2π

0

dϕ

= 2πρ0

(
3

κρ0

) 3
2
(∣∣χa − χ0

∣∣− 1
2

sin 2
∣∣χa − χ0

∣∣) .

(23.55)

The active mass of the sphere is given by 2m = α
k2 , i.e.

m =
α

2k2
=

1
2k2

√
3

κρ0

sin3
∣∣χa − χ0

∣∣ . (23.56)

The ratio of the active to passive mass is,

m

M
=

2 sin3
∣∣χa − χ0

∣∣
3
(
|χa − χ0| − 1

2 sin 2 |χa − χ0|
) . (23.57)

The escape velocity for the sphere of fluid is given by va = sin
∣∣χa − χ0

∣∣.
Thus, as the escape velocity increases, the ratio m

M decreases owing to the
increase in the mass concentration.
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In addition, the proper radius of the sphere of fluid can only be determined
from the line elements for its interior [30]. The line elements for the region
outside the source of the field can say nothing about the proper radius of the
source of the field. This is not surprising, since the line element for the region
beyond the surface of the sphere of fluid describes the sphere in terms of its
centre of mass, and as such treats the source as a point-mass, which has no
extension.

23.6 Cosmological Models

A similar fundamental situation arises in the case of an Einstein cosmology.
In the case of the FLRW model, for example, there is a line element con-
taining an a priori unknown analytic function exp(g(t)). This line element
satisfies the field equations, but that does not of itself mean that it yields a
valid cosmological model. The form of exp(g(t)) must be determined by the
intrinsic geometry of the line element and the boundary conditions. It is not
determined by the field equations. One must demonstrate that there exists
some exp(g(t)) for the FLRW line element before any meaning can be given
to it as an Einstein cosmological model. Therefore, any analysis that pro-
ceeds by utilising the a priori unknown function exp(g(t)) may well be invalid
since it has not been determined beforehand if exp(g(t)) admits of a suitable
form for an Einstein cosmological model. Now it has been shown [31] that
exp(g(t)) has has only one form meeting the required boundary conditions.
In fact, the intrinsic geometry of the FLRW line element implies, with the
necessary boundary conditions, an infinite and unbounded Universe. From
where does this infinity come? Precisely from exp(g(t)), so that exp(g(t)) is
infinite for all values of t. In other words, the FLRW line element modelling an
Einstein cosmology is actually independent of time. Therefore, any analysis
that proceeds by treating exp(g(t)) in the FLRW line element as finite at any
given time, insofar as it is alleged to model an Einstein cosmology, must fail.
The Standard Cosmological Model (Big Bang) has failed to correctly consider
the intrinsic geometry of the line element and the boundary conditions on
exp(g(t)), and so it is invalid. It has merely been assumed in the Standard
Cosmological Model that exp(g(t)) can be well-defined, never proving that
exp(g(t)) has an admissible well-defined form.

The FLRW line element is based upon the assertion that it is possible to
express the spherically symmetric line element most generally in co-moving
coordinates as [32]

ds2 = eνdt2 + 2adrdt − eλdr2 − eμ(r2dθ2 + r2 sin2 θdϕ2), (23.58)

wherein ν, λ and μ are functions of the variables r and t. Then, by a series
of transformations and use of the field equations, the FLRW line element is
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obtained:

ds2 = dt2 − eg(t)[
1 + k

4 r2
]2 (dr2 + r2dθ2 + r2 sin2 θdϕ2

)
, (23.59)

where k is a constant. Note that the field equations have not determined a
form for g(t). This must be determined from the intrinsic geometry of the
line element and relevant boundary conditions. A question to be answered
therefore is whether or not the intrinsic geometry and boundary conditions
admit of a form for g(t) that relates to an Einstein cosmological model. Fur-
thermore, the range on the parameter r must also be determined from the
intrinsic geometry of the line element and the boundary conditions. One can-
not merely assume that in (23.7), 0 ≤ r < ∞. Indeed, the assumption is also
demonstrably false.

Since a geometry is entirely determined by the form of its line element [32],
everything must be determined from it. One cannot, as is usually done, merely
foist assumptions upon it. The intrinsic geometry of the line element and
the consequent geometrical relations between the components of the metric
tensor and associated boundary conditions determine all.

In (23.7) the quantity r is not a radial geodesic distance. It is not even
a radius of curvature on (23.7). It is merely a parameter for the radius of
curvature and the proper radius, both of which are well-defined by the form
of the line element (describing a spherically symmetric metric manifold). The
radius of curvature, Rc , for (23.7), is

Rc = e
1
2 g(t) r

1 + k
4 r2

. (23.60)

The proper radius is

Rp = e
1
2 g(t)

∫
dr

1 + k
4 r2

=
2e

1
2 g(t)

√
k

(
arctan

√
k

2
r + nπ

)
, n = 0, 1, 2, ...

(23.61)

Since Rp ≥ 0 by definition, Rp = 0 is satisfied when r = 0 = n. So r = 0 is
the lower bound on r. The upper bound on r must also be ascertained from
the line element and boundary conditions.

It is noted that the spatial component of (23.8) has a maximum of 1√
k

at
any time t, when r = 2√

k
. Thus, as r → ∞, the spatial component of Rc runs

from 0 (at r = 0) to the maximum 1√
k

(at r = 2√
k
), then back to 0, since

lim
r→∞

r

1 + k
4 r2

= 0. (23.62)
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Transform (23.7) by setting

R = R(r) =
r

1 + k
4 r2

, (23.63)

which carries (23.7) into

ds2 = dt2 − eg(t)

[
dR2

1 − kR2
+ R2

(
dθ2 + sin2 θdϕ2

)]
. (23.64)

The quantity R appearing in (23.11) is not a radial geodesic distance. It is
only a component of the radius of curvature in that it relates to the Gaussian
curvature G = 1

eg(t)R2 . The radius of curvature of (23.11) is

Rc =
1√
G

= e
1
2 g(t)R, (23.65)

and the proper radius of Einstein’s universe is, by (23.11),

Rp = e
1
2 g(t)

∫
dR

1 − kR2
=

e
1
2 g(t)

√
k

(
arcsin

√
kR + 2mπ

)
, m = 0, 1, 2, ...

(23.66)

Now according to (23.10), the minimum value of R is R(r = 0) = 0. Also,
according to (23.10), the maximum value R is R(r = 2√

k
) = 1√

k
. R = 1√

k

makes (23.11) singular, although (23.7) is not singular at r = 2√
k
. Since by

(23.10), r → ∞ ⇒ R(r) → 0, then if 0 ≤ r < ∞ on (23.7), it follows that the
proper radius of Einstein’s universe is, according to (23.10),

Rp = e
1
2 g(t)

∫ 0

0

dR

1 − kR2
≡ 0. (23.67)

Therefore, 0 ≤ r < ∞ on (23.7) is false. Furthermore, since the proper radius
of Einstein’s universe cannot be zero and cannot depend upon a set of coor-
dinates (it must be an invariant), expressions (23.9) and (23.13) must agree.
Similarly, the radius of curvature of Einstein’s universe must be an invariant
(independent of a set of coordinates), so expressions (23.8) and (23.12) must
also agree, in which case 0 ≤ R < 1√

k
and 0 ≤ r < 2√

k
. Then by (23.9), the

proper radius of Einstein’s universe is

Rp = lim
α→ 2√

k

e
1
2 g(t)

∫ α

0

dr

1 + k
4 r2

=
2e

1
2 g(t)

√
k

[(π

4
+ nπ

)
− mπ

]
, n,m = 0, 1, 2, ...

n ≥ m. (23.68)
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Setting p = n − m gives for the proper radius,

Rp =
2e

1
2 g(t)

√
k

(π

4
+ pπ

)
, p = 0, 1, 2, ... (23.69)

Now by (23.13), the proper radius of Einstein’s univese is

Rp = lim
α→ 1√

k

e
1
2 g(t)

∫ α

0

dR√
1 − kR2

=
e

1
2 g(t)

√
k

[(π

2
+ 2nπ

)
− mπ

]
,

n,m = 0, 1, 2, ... (23.70)

2n ≥ m. (23.71)

Setting q = 2n − m gives the proper radius of Einstein’s universe as,

Rp =
e

1
2 g(t)

√
k

(π

2
+ qπ

)
, q = 0, 1, 2, ... (23.72)

Expressons (23.16) and (23.17) must be equal for all values of p and q. This
can only occur if g(t) is infinite for all values of t. Thus, the proper radius of
Einstein’s universe is infinite, and hence, the radius of curvature of Einstein’s
universe is also infinite. In addition, it follows from the line elements, that
the volume and the area of Einstein’s universe are infinite for all time t.
Thus, Einstein’s universe is infinite and unbounded and independent of time.
Therefore, the Standard Cosmological Model (Big Bang) is inconsistent with
General Relativity and is therefore invalid.

The standard static cosmological models suffer from the same fundamental
defects, and are therefore invalid. The line element for Einstein’s cylindrical
model is,

ds2 = dt2 −
[
1 −
(
λ − 8πP0

)
R2

c

]−1
dR2

c − R2
c(dθ2 + sin2 θdϕ2). (23.73)

This has no Lorentz signature solution for 1√
λ−8πP0

< Rc(r) < ∞ [33]. For

1 −
(
λ − 8πP0

)
R2

c > 0 and Rc = Rc(r) ≥ 0,

0 ≤ Rc <
1√

λ − 8πP0

. (23.74)
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The proper radius is

Rp = lim
α→ 1√

λ−8πP0

∫ α

0

dRc√
1 − (λ − 8πP0 ) R2

c

=
(1 + 4n) π

2
√

λ − 8πP0

, n = 0, 1, 2, ...

(23.75)

which is arbitrarily large.
The spherical model of de Sitter is given by the line element

ds2 =
(

1 − λ + 8πρ00

3
R2

c

)
dt2 −

(
1 − λ + 8πρ00

3
R2

c

)−1

dR2
c

− R2
c(dθ2 + sin2 θdϕ2), (23.76)

where ρ00 is the macroscopic density of the Universe. This line element has
no Lorentz signature solution on

√
3

λ+8πρ00
< Rc < ∞ [33], so 0 ≤ Rc <√

3
λ+8πρ00

. The proper radius is

Rp = lim
α→

√
3

λ+8πρ00

∫ α

0

dRc

Rc

√
λ + 8πρ00

=

√
3

λ + 8πρ00

(1 + 4n) π

2
, n = 0, 1, 2, ...

(23.77)

which is arbitrarily large.
It is also worth noting that it has recently been shown that the likely

source of the Cosmic Microwave Background (CMB) is not the Cosmos but
the oceans of the Earth [15–23], and therefore the CMB has nothing to do
with the Standard Cosmological Model (Big Bang). It is anticipated that
the PLANCK satellite, soon to be launched to the 2nd Lagrange Point, will
verify the oceans, the Earth Microwave Background (EMB), as the source
of the CMB. The PLANCK satellite is equipped with absolute measuring
instruments whereas the WMAP satellite has only differential instruments
and so cannot take an absolute measurement, which simply means that the
interpretation of its data (and that of COBE) as a verification of the Big
Bang source of the CMB is invalid. Indeed, the WMAP data appears to have
no relevance for cosmology at all.
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Appendix 1: Hodge Dual Transformation

The general Hodge dual of a tensor is defined 11 as:

Ṽμ1...μn−p
=

1
p!

εν1...νp
μ1...μn−p

Vν1...νp
(A.1)

where:

εμ1μ2...μn
= |g| 12 εμ1μ2...μn

(A.2)

is the totally anti-symmetric tensor, defined as the square root of the modulus
of the determinant of the metric multiplied by the Levi-Civita symbol:

εμ1μ2...μn
=

⎧⎨
⎩

1 for even permutation
−1 for odd permutation

0 otherwise

⎫⎬
⎭ . (A.3)

Using the metric compatibility condition [11]:

Dμgνp = 0 (A.4)

it is seen that:

Dμ|g|
1
2 = ∂μ|g|

1
2 = 0 (A.5)

because the determinant of the metric is made up of individual elements of the
metric tensor. The covariant derivative of each element vanishes by Eq. (A.4),
so we obtain Eq. (A.5). The pre-multiplier |g| 12 is a scalar, and we use the fact
that the covariant derivative of a scalar is the same as its four-derivative [11]:

DμV = ∂μV. (A.6)



�

�

“Evans˙Chapter23” — 2008/12/2 — 16:37 — page 372 — #38
�

�

�

�

�

�

372 23 The Coulomb and Ampère Maxwell Laws

The homogeneous field equation (23.4) in tensor notation is:

∂μF a
νρ + ∂ρF

a
μν + ∂νFρμ =

− A(0)
(
Ra

μνρ + Ra
ρμν + Ra

νρμ + ωa
μbT

b
νρ + ωa

ρbT
b
μν + ωa

νbT
b
pμ

) (A.7)

and this is equivalent [2–18, 12] to:

∂μF̃αμν = μ0j̃
νa := −A(0)

(
R̃a

μμν + ωa
μbT̃

bμν
)

(A.8)

The Hodge dual of a two-form in four-dimensional space-time is another two-
form. For example:

F̃ aμν =
1
2
|g| 12 ε̄μνρσF a

ρσ, (A.9)

T̃ aμν =
1
2
|g| 12 ε̄μνρσT a

ρσ , (A.10)

R̃aμν
b =

1
2
|g| 12 ε̄μνρσRa

bρσ. (A.11)

The Bianchi identity:

d ∧ T a
μν + ωa

b ∧ T b
μν := −q ∧ Ra

bμν (A.12)

is an identity between two-forms. So it remains true for:

d ∧ F̃ a
μν = −A(0)

(
R̃a

bμν + ωa
b ∧ T̃ a

μν

)
(A.13)

because F̃μν , R̃μν , and T̃μν are two-forms, antisymmetric in their last two
indices. In other words if we write down the sum:

∂μF̃ a
νρ + ∂ρF̃

a
μν + ∂νF̃ a

ρμ := d ∧ F̃ a (A.14)

it is identically equal to the sum:

− A(0)
(
R̃a

μνρ + R̃a
ρμν + R̃a

νρμ + ωa
μbT̃

b
νρ + ωa

ρbT̃
b
μν + ωa

νbT̃
b
ρμ

)
:= −A(0)

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
(A.15)
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So the inhomogeneous field equation is:

d ∧ F̃ a = μ0J
a = −A(0)

(
qb ∧ R̃a

b + ωa
b ∧ T̃ b

)
(A.16)

which is equivalent to:

∂μF aμν = μ0J
aν (A.17)

as given in the text.
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Appendix 2: Equivalence of Indices in the
Field Equations

The homogeneous and inhomogeneous field equations can be written in equiv-
alent ways, and the equivalence is proven in this Appendix. The first method
of writing the homogeneous field equation is the sum:

∂μF a
νρ + ∂ρF

a
μν + ∂νF a

ρμ = μ0

(
ja
μνρ + ja

ρμν + ja
νρμ

)
(B.1)

where the charge current density three-forms are defined by:

ja
μνρ+ja

ρμν + ja
νρμ

:= −A(0)

μ0

(
Ra

μνρ + Ra
ρμν + Ra

νρμ + ωa
μbT

b
νρ + ωa

ρbT
b
μν + ωa

νbT
b
ρμ

)
.

(B.2)

Considering individual tensor elements such as those defined by

∂0F̃
a01 + ∂2F̃

a21 + ∂3F̃
a31 =

1
2
|g|ε̄μ1ρσ∂μF a

ρσ

=
1
2
|g| 12

(
ε̄01ρ0∂0F

a
ρσ + ε̄21ρσ∂2F

a
ρσ + ε̄31ρσ∂3F

a
ρσ

)
= |g| 12 (∂0F

a
23 + ∂2F

a
30 + ∂3F

a
02 )

(B.3)

which is a special case of the general result:

∂μF̃ aμν = |g| 12
(
∂μF a

νρ + ∂a
ρFμν + ∂νF a

ρμ

)
. (B.4)

Now consider the following current term for σ = 1 to obtain:

j̃aσ =
1
6
|g| 12 ε̄μνρσja

μνρ, (σ = 1) (B.5)



�

�

“Evans˙Chapter23” — 2008/12/2 — 16:37 — page 375 — #41
�

�

�

�

�

�

Appendix 2: Equivalence of Indices in the Field Equations 375

j̄a1 =
1
3
|g| 12 (ja

023 + ja
302 + ja

230) . (B.6)

Similarly, the other two current terms

j̃aσ =
1
6
|g| 12 ε̄ρμνσja

ρμν (B.7)

and

j̃aσ =
1
6
|g| 12 ε̄νρμσja

νρμ (B.8)

give Eq. (B.6) two more times. So the right hand side of Eq. (B.1) for ν = 1
is:

j̃a1 = |g| 12 (ja
023 + ja

302 + ja
230) . (B.9)

Finally use Eq. (A.5) to find that:

∂μ

(
|g| 12 F a

νρ

)
= |g| 12 ∂μF a

νρ (B.10)

and so derive Eq. (23.8) from Eq. (B.1), Q.E.D. Note that the pre-multiplier
|g|1/2 cancels out on either side of Eq. (23.8).

Similarly it can be shown that the following expression of the inhomoge-
neous field equation:

∂μF̃ a
νρ + ∂ρF̃

a
μν + ∂νF̃ a

ρμ

= −A(0)
(
R̃a

μνρ + R̃a
ρμν + R̃a

νρμ + ωa
μbT̃νρ + ωa

μbT̃μν + ωa
νbT̃ρμ

)
(B.11)

is equivalent to:

∂μF aμν = μ0J
aν (B.12)

as used in the text.
As a familiar example of Appendices 1 and 2 consider the Maxwell Heav-

iside (MH) equations in free space. The homogeneous MH equation in differ-
ential form notation is

d ∧ F = 0 (B.13)
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which is either:

∂μF̃μν = 0 (B.14)

or

∂μFνρ + ∂ρFμν + ∂νFρμ = 0 (B.15)

in tensor notation. The inhomogeneous MH equation in differential form nota-
tion is:

d ∧ F̃ = 0 (B.16)

which is either:

∂μFμν = 0 (B.17)

or

∂μF̃νρ + ∂ρF̃μν + ∂ν F̃ρμ = 0 (B.18)

in tensor notation. The individual Hodge dual tensors are defined by:

F̃ νρ =
1
2
ενρμσFμσ etc. (B.19)

and indices are lowered as follows:

F̃νρ = gνρgρκF̃ ρκ etc. (B.20)

where gμν is the Minkowski metric in this case. The equivalent ECE equations
in free space have the same properties exactly except of the addition of the
index a to every tensor in the equations. Finally, the homogeneous ECE
equation in form notation is:

d ∧ F a = μ0j
a (B.21)

which is

∂μF̃μνa = μ0j̃
νa (B.22)

in tensor notation. The inhomogeneous ECE equation in form notation is:

d ∧ F̃ a = μ0J
a (B.23)
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which is

∂μF̃μνa = μ0J
νa (B.24)

in tensor notation. The individual Hodge duals are:

F̃ νρa =
1
2
|g| 12 ε̄νρμσF a

μσ etc. (B.25)

and indices are lowered with the metric of the base manifold:

F̃ a
νρ = gνρgρκF̃ νρa etc. (B.26)
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Appendix 3: Reduction to Vector Notation

In this appendix the tensorial form of the inhomogeneous ECE equation is
reduced to the vector form, giving the Coulomb and Ampère Maxwell laws in
generally covariant unified field theory. Begin with the inhomogeneous field
equation:

∂μF aμν = μ0J
aν = −A(0)

μ0

(
Ra

μμν + ωa
μbT

bμν
)
. (C.1)

In the Einstein Hilbert limit:

T bμ0 = 0 (C.2)

so the equation becomes:

∂μF aμν = −A(o)

μ0
Raμν

μ. (C.3)

The indices in the Riemann tensor elements are raised using the metric of the
base manifold as follows:

Ra σρ
μ = gσνgρκRa

μνκ. (C.4)

The Coulomb Law is obtained for:

ν = 0 (C.5)

and is:

∂μF aμ0 = −A(0)

μ0

(
Ra 10

1 + Ra 20
2 + Ra 30

3

)
(C.6)
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where summation over repeated μ indices has been carried out. The vector
form of Eq. (C.6) is:

(∇ · E)a = −φ
(
Ra 10

1 + Ra 20
2 + Ra 30

3

)
. (C.7)

The only possible value of a (see also Appendix D) for the Coulomb Law is:

a = 0 (C.8)

so we obtain the generally covariant Coulomb Law:

∇ · E = (∇ · E)0 = −φ
(
R0 10

1 + R0 20
2 + R0 30

3

)
. (C.9)

Both sides are scalar valued quantities, so the time-like, or scalar, index a = 0
is used. Here φ is the scalar potential, having the units of volts. The units
of E are volt/m and those of the R elements are inverse meters squared, so
units are consistent.

The generally covariant Ampère Maxwell law is obtained with:

ν = 1, 2, 3. (C.10)

When:

ν = 1 (C.11)

Eq. (C.3) becomes:

∂0F
a01 + ∂2F

a21 + ∂3F
a31 = −A(0)

μ0
Ra μ1

μ . (C.12)

The vector form of this equation is:

(∇ × B)a
1 =

1
c2

∂Ea
1

∂t
+

μ0

c
Ja

1 . (C.13)

Here, the 1 subscript denotes a component in a particular coordinate system.
For example in the spherical polar system:

1 = r (C.14)

or in the Cartesian system:

1 = X. (C.15)
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So Eq. (C.13) is the r or X component of the Ampère Maxwell Law. If we
adopt the spherical polar system for the Riemann elements (see Appendix 5)
the value of a in Eq. (C.13) must also be 1. If the complex circular basis [2–9]
is chosen then:

a = (1), (2), (3). (C.16)

However, if the complex circular basis is chosen, then the relevant Riemann
elements are:

R(1) μ1
μ , R(2) μ2

μ , R(3) μ3
μ (C.17)

in which one index is complex circular, and the other three are spherical polar.
It is possible to use either system, or any other system of coordinates for a.
Therefore the generally covariant Ampère Maxwell Law is:

∇ × B =
1
c2

∂E

∂t
+

μ0

c
J (C.18)

where the charge current density is defined as:

J = J1
1er + J2

2eθ + J3
3eφ (C.19)

with the scalar valued components:

J1
1 = −A(0)

μ0

(
R1 01

0 + R1 21
2 + R1 31

3

)
, (C.20)

J2
2 = −A(0)

μ0

(
R2 02

0 + R2 12
1 + R2 32

3

)
, (C.21)

J3
3 = −A(0)

μ0

(
R3 03

0 + R3 13
1 + R3 23

2

)
, (C.22)

A particular metric may finally be used to calculate these Riemann compo-
nents exactly, and example is given in detail in Appendix 5.

The main result is that in the presence of space-time curvature, the electro-
dynamical properties of light are changed, in addition to the well known
effects of Einstein Hilbert theory there are polarization changes in light
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deflected by gravitation. These are due to the charge current density J , which
does not exist in the free space limit of Maxwell Heaviside theory. So these
are predictions of ECE theory that are known already to be corroborated
qualitatively [2–9], because of observations of polarization changes in light
deflected by a white dwarf for example.
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Appendix 4: The Meaning of the a Index

It is first noted that the ECE field equations originate in the Bianchi identity:

D ∧ F a := Ra
b ∧ Ab (D.1)

where the a and b indices denote those of a tangent space-time at point P in
a base manifold in differential geometry. Thus:

D ∧ F a = DμF a
νσ + DσF a

μν + DνF a
σμ (D.2)

where the Greek indices of the base manifold have been restored. In generally
covariant unified field theory the electromagnetic field tensor is therefore a
vector-valued two-form, i.e. an anti-symmetric tensor for each a. The field
two-form is defined as:

F a
μν = qa

κFκ
μν (D.3)

where Fκ
μν is a tensor in the base manifold with three indices. It is seen that:

D ∧ Fκ := Rκ
b ∧ Ab (D.4)

using the tetrad postulate:

Dμqa
κ = 0. (D.5)

Therefore Eq. (D.1) can be written in the base manifold:

DμFκ
νσ + DσFκ

μν + DνFκ
σμ := A(0)

(
Rκ

μνσ + Rκ
σμν + Rκ

νσμ

)
. (D.6)

In general relativity and unified field theory the base manifold is four dimen-
sional space-time in which curvature and torsion are both present in general.
So the electromagnetic field in this base manifold is a rank three tensor, not
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a rank two tensor as in special relativity and Minkowski space-time. In the
latter type of space-time there is no curvature and no torsion, so Minkowski
space-time is flat space-time.

For example, consider the electric field components:

Fκ
νσ = Fκ

10 , Fκ
20 , Fκ

30 . (D.7)

In the complex circular basis:

κ = (1), (2), (3) (D.8)

and we recover the three vector components E
(1)
X , E

(1)
Y , and E

(1)
Z . The first

two denote complex conjugate plane waves:

E(1) = E(2)∗ =
E(0)

√
2

(i − ij) ei(ωt−κz). (D.9)

So the meaning of κ superimposed on νσ is that one coordinate system is
superimposed on another. When one coordinate system is imposed on the
same coordinate system the only possibilities are:

Fκ
νσ = F 1

10, F
2
20, F

3
30 = E1

1 , E2
2 , E3

3 (D.10)

as used in Appendix 4.
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Appendix 5: Christoffel Symbols and Riemann
Elements

The non-vanishing Christoffel symbols and Riemann elements of each line
element used in this paper were computed using a program written by Horst
Eckardt based on Maxima [4], after first hand checking the program for cor-
rectness. For the spherically symmetric line element:

ds2 = −e2αdt2c2 = e2βdr2 + r2dΩ2 (E.1)

g∞ = −e2α, g11 = e2β , g22 = r2,

g33 = r2 sin2 θ,
(E.2)

it was checked by hand calculation and by computer that the Christoffel
symbols and Riemann elements are as given by Carroll [11] as follows:

Γ0
00 = ∂0α,Γ0

01 = ∂1α,Γ0
11 = e2(β−α)∂0β,

Γ1
00 = e2(α−β)∂1α,Γ1

01 = ∂0β,Γ1
11 = ∂1β,

Γ2
12 =

1
r
,Γ1

22 = −re−2β ,Γ3
13 =

1
r
,

Γ1
33 = −re−2β sin2 θ,Γ2

33 = − sin θ cos θ,Γ3
23 =

cos θ

sin θ
,

(E.3)
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R0
101 = e2(β−α)

(
∂2
0β + (∂0β)2 − ∂0α∂0β

)
+ ∂1α∂1β − ∂1(∂1α) − (∂1α)2

R0
202 = −re2β∂1α,

R0
303 = R0

202 sin2 θ,

R1
212 = re−2β∂1β,

R1
313 = re−2β∂1β sin2 θ = R1

212 sin2 θ,

R2
323 = (1 − e2β) sin2 θ,

(0, 1, 2, 3) : = (t, r, θ, φ)

(E.4)

The inverse metric elements are related to the metric elements as follows:

g00 = g−1
00 = −e−2α,

g11 = g−1
11 = e−2β ,

g22 = g−1
22 =

1
r2

g33 = g−1
33 =

1
(r2 sin2 θ)

(E.5)

in the spherical polar coordinate system (r, θ, φ). The Christoffel symbol in
Riemann geometry is:

Γσ
μν =

1
2
gσρ (∂μgνρ + ∂νgρμ − ∂ρgμν) (E.6)

where summation is implied over repeated indices in the covariant -
contravariant system.

The non-vanishing Riemann elements are calculated from the Christoffel
symbols using the definition of the Riemann tensor:

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ (E.7)

where summation is again implied over repeated indices.
In order to calculate the Coulomb law and Ampère Maxwell laws, indices

must be raised with the metrics:

R0 10
1 = −R0 01

1 = −g11g00R0
101 = R0

101,

R0 20
2 = −R0 20

2 = −g22g00R0
202,

R0 30
3 = −R0 03

3 = −g33g00R0
303,

(E.8)

and this procedure was adhered to for each line element.
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