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Abstract

The fundamental origin of curvature and torsion is discussed in terms of
commutators of covariant derivatives in the general manifold. Detailed proofs
are given of the origin of the curvature and torsion tensors. A proof of the
Jacobi operator identity is given and this identity is used to prove that the
conventional second Bianchi identity is true if and only if torsion is zero,
and if and only if accompanied by a novel operator identity neglected in the
literature. Finally group theoretical considerations are used to prove that in
the case of rotation, the Riemann and torsion tensors can be interpreted as
group structure constants. This proof in turn leads to the conclusion that the
equations of classical electrodynamics take the same vectorial form in Einstein
Cartan Evans (ECE) and Maxwell Heaviside field theory, but in different base
manifolds.
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6.1 Introduction

Recently a generally covariant unified field theory has been developed [1–8]
in which the electromagnetic sector is represented by Cartan geometry in
which appears curvature and torsion. This theory is known as Einstein Cartan
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Evans (ECE) theory because it is based on an extension of the Riemann
geometry used by Einstein to include Cartan’s torsion [9]. In ECE theory the
electromagnetic field is directly proportional to the Cartan torsion. The latter
is represented in Cartan differential geometry by a vector valued differential
two-form defined by:

T a = d ∧ qa + ωa
b ∧ qb (6.1)

where qa is the Cartan tetrad, a vector valued differential one-form [9], and
where ωa

b is the spin connection. The index a is defined in a tangential
Minkowski space-time at a point P in the base manifold, a manifold which
represents a four dimensional space-time with torsion and curvature. Using
the tetrad postulate [1–9]:

Dµqa
ν = 0 (6.2)

the definition (6.1) becomes equivalent to the definition of the Cartan torsion
tensor in the base manifold:

Tκ
µν = Γκ

µν − Γκ
νµ (6.3)

where Γκ
µν is the connection of the base manifold. In the Riemann geometry

used by Einstein to develop general relativity the connection is the Christoffel
connection:

Γκ
µν = Γκ

νµ (6.4)

so in Einsteinian general relativity and cosmology, torsion is zero. In ECE the-
ory the electromagnetic potential and field are directly proportional respec-
tively to the tetrad and torsion forms:

Aa
µ = A(0)qa

µ (6.5)

F a
µν = A(0)T a

µν . (6.6)

Therefore in the base manifold, the electromagnetic field becomes a rank three
tensor proportional to the torsion tensor:

Fκ
µν = A(0)Tκ

µν . (6.7)

It has been shown [1–8] that the definition (6.7) leads to the equations of
classical electrodynamics in the same vectorial notation as the Maxwell Heav-
iside vector theory but written in a base manifold with torsion and curvature,
not in the Minkowski space-time. The Cartesian components of the electric
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and magnetic field in ECE theory are defined by elements of the rank three
torsion tensor as follows:

EX = E1
01 , BX = B1

23 ,

EY = E2
02 , BY = B2

31 ,

EZ = E3
03 , BZ = B3

12 .

⎫⎪⎬⎪⎭ (6.8)

In this paper a further fundamental proof of equation (6.8) is given using
the fundamental definition [9] of the Riemann tensor and torsion tensor in
terms of commutators of covariant derivatives (or round trip in the base
manifold). The derivation of the Riemann tensor and torsion tensor (6.3)
using this method is given in detail in Section 6.2. In Section 6.3 the proof of
the Jacobi identity is given. The Jacobi identity [9–10] is exact and is valid
both for covariant derivatives and group generators [10]. In this section the
Jacobi identity is used to show under what circumstances the second Bianchi
identity [9] is valid. This is important because the second Bianchi identity is
used directly in the derivation of the Einstein Hilbert (EH) field equation. It
is found that the second Bianchi identity and EH field equation are valid if
and only if the Cartan torsion tensor (6.3) is zero, and if and only if:

Rρ
σµνDκ + Rρ

σκµDν + Rρ
σνκDµ = 0,

Ra
b ∧ D = 0,

(6.9)

which is a new differential operator relation which appears to have been
hitherto neglected in the literature. In Eq. (6.9), Ra

b is the curvature or
Riemann differential form [1–9] and D represents the covariant derivative
in differential geometry. The conventional second Bianchi identity is usually
written as the reverse of Eq. (6.9):

D ∧ Ra
b = 0. (6.10)

In the presence of the torsion form however the rigorously correct Bianchi
identity is [1–9]:

D ∧ T a := Ra
b ∧ qb (6.11)

and there is only one Bianchi identity (see paper 88 of www.aias.us). The
second one can be derived from Eq. (6.11).

In Section 6.4 finally, the rotational limit of Cartan geometry is considered
using the round trip method and it is shown that in this limit the Cartan
torsion tensor (6.3) can be considered to be a group structure constant. These
considerations lead directly to the interpretation (6.8) of the electric and
magnetic field components in ECE theory (see papers 93 and following on
www.aias.us).
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6.2 Derivation of the Curvature and Torsion Tensors
from Commutators of Covariant Derivatives

Although this proof is well known it is usually given in textbooks [9] without
sufficient detail for understanding by non-specialists. It gives a fundamental
interpretation for both curvature and torsion in terms of a round trip in the
general base manifold. This method is also used in field theory [10] and so
the curvature, torsion and field tensors have the same fundamental origin.
This is therefore a fundamental justification for the basic ECE hypothesis,
that the electromagnetic field tensor is directly proportional to the Cartan
torsion, they are both commutators of covariant derivatives. The origin of
both the Riemann and Cartan torsion tensors is parallel transport around a
closed loop:

δV ρ = (δa)(δb)AνBµRρ
σµνV σ (6.12)

which can be represented by a commutator of covariant derivatives [9–10]. The
covariant derivative of a tensor in a given direction measures [9] how much
the tensor changes relative to what it would have been if it had been parallel
transported. The commutator of covariant derivatives measures the difference
between parallel transporting the tensor one way and then the other, versus
the opposite ordering. In flat or Minkowski space-time the result is zero, it
makes no difference which sense the process takes place. In flat space-time the
covariant derivatives become ordinary derivatives so the following operator is
zero:

[∂µ, ∂ν ] = ∂µ∂ν − ∂ν∂µ = 0. (6.13)

The commutator of covariant derivatives is however an operator which is not
zero:

[Dµ, Dν ] �= 0. (6.14)

Such commutators are well known in the theory of rotation generators, angu-
lar momentum, group theory and quantum mechanics [10]. They also appear
in differential geometry as the wedge product [1–9] of two one-forms, which
is defined by:

Aa ∧ Bb = [Aa
µ, Ab

ν ]. (6.15)

The Riemann and torsion tensors are defined [9] by:

[Dµ, Dν ]V ρ = Dµ(DνV ρ) − Dν(DµV ρ) (6.16)
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where V ρ is a four vector in a base manifold with curvature and torsion.
On the right hand side of Eq. (6.16) the covariant derivatives act on rank
two tensors contained within the brackets. The rule [1–9] for the covariant
derivative of a rank two tensor then gives:

[Dµ, Dν ]V ρ = ∂µ(DνV ρ) − Γλ
µνDλV ρ + Γρ

µσDνV σ

− ∂ν(DµV ρ) + Γλ
νµDλV ρ − Γρ

νσDµV σ
(6.17)

within which are defined:

DνV ρ = ∂νV ρ + Γρ
νλV λ,

DλV ρ = ∂λV ρ + Γρ
λσV σ,

DνV σ = ∂νV σ + Γσ
νλV λ.

⎫⎪⎬⎪⎭ (6.18)

Therefore there are equations such as:

∂µ(DνV ρ) = ∂µ∂νV ρ + (∂µΓρ
νλ)V λ + Γρ

νλ∂µV λ

= ∂µ∂νV ρ + (∂µΓρ
νσ)V σ + Γρ

νσ∂µV σ.
(6.19)

The dummy or summation indices are now re-arranged as follows:

λ → σ (6.20)

This gives:

[Dµ, Dν ]V ρ = ∂µ∂νV ρ + (∂µΓρ
νσ)V σ + Γρ

νσ∂µV σ

− Γλ
µν∂λV ρ − Γλ

µνΓρ
λσV σ

+ Γρ
µσ∂νV σ + Γρ

µσΓσ
νλV λ

− ∂ν∂µV ρ − (∂νΓρ
µσ)V σ − Γρ

µσ∂νV σ

+ Γλ
νµ∂λV ρ + Γλ

νµΓρ
λσV σ

− Γρ
µσ∂νV σ − Γρ

µσΓσ
νλV λ (6.21)

which can be re-arranged to give:

[Dµ, Dν ]V ρ = (∂µΓρ
νσ − ∂νΓρ

µσ + Γρ
µλΓλ

νσ − Γρ
νλΓλ

µσ)V σ

− (Γλ
µν − Γλ

νµ)(∂λV ρ + Γρ
λσV σ).

(6.22)

Finally this is expressed as:

[Dµ, Dν ]V ρ = Rρ
σµνV σ − Tλ

µνDλV ρ (6.23)
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where the Riemann tensor is defined [9] by:

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (6.24)

and the torsion tensor is defined by:

Tλ
µν = Γλ

µν − Γλ
νµ. (6.25)

The overall result:

[Dµ, Dν ]V ρ = Rρ
σµνV σ − Tλ

µνDλV ρ (6.26)

is true irrespective of the symmetry of the metric and connection, and irre-
spective of the metric compatibility condition [9]. The use of the commutator
of covariant derivatives means the Riemann and torsion tensors are always
anti-symmetric in their last two indices:

Rρ
σµν = −Rρ

σνµ, Tλ
µν = −Tλ

νµ (6.27)

indicating their rotational or commutative or anti-symmetric origin. Both
curvature and torsion are kinds of rotation, or bending and twisting. How-
ever, it is important to note that there is no symmetry restriction on the
first two indices of the Riemann tensor in general. The Riemann tensor is
anti-symmetric in its first two indices if and only if the metric compatibility
condition is used [9]. If it is assumed that the metric is symmetric:

gµν = gνµ. (6.28)

It follows form metric compatibility [9] that the connection is symmetric:

Γλ
µν = Γλ

νµ (6.29)

and that torsion vanishes. In Cartan geometry [1–9], the torsion is not zero
in general, so the metric and connection are not symmetric in general. The
conventional first Bianchi identity is true if and only if the metric and con-
nection are symmetric, and if and only if the torsion is zero. In differential
form notation the first Bianchi identity in the absence of torsion is:

Ra
b ∧ qb = 0 (6.30)

and in tensor notation it is:

Rσµνρ + Rσρµν + Rσνρµ = 0. (6.31)
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However it is important to note that Eqs. (6.30) and (6.31) are special cases.
The rigorously correct first Bianchi identity is [1–9]:

D ∧ T a := Ra
b ∧ qb (6.32)

not zero in general, and the rigorously correct second Bianchi identity is a
re-expression of Eq. (6.32), and not an independent identity (paper 88 of
www.aias.us). Historically, the first Bianchi identity was given by Ricci and
Levi-Civita and not by Bianchi.

In the Minkowski space-time:

[Dµ, Dν ] = [∂µ, ∂ν ] = 0, (6.33)

Rρ
σµν = Tλ

µν = 0, (6.34)

and this is the space-time of Maxwell Heaviside field theory.
The Riemann and torsion tensors are constructed from the connection

and are true for any connection, whether metric compatible or not. Although
the connection is non-tensorial, the Riemann and torsion tensors are true
tensors by construction [1–9] and all the equations of Riemann and Cartan
geometry are generally covariant, i.e. tensorial under the general coordinate
transformation. This means that equations of physics based on these geome-
tries, such as ECE theory [1–8] are rigorously objective equations of physics,
they are the same in form to an observer moving arbitrarily with respect to
another, in a frame of reference moving arbitrarily with respect to another
frame of reference. This is the essence of the essentially geometrical philoso-
phy of general relativity as is well known [9]. The essence of the matter is that
physics is geometry, all physics is geometry, not just gravitation. Otherwise we
do not have a self consistent basic philosophy of physics. Maxwell Heaviside
(MH) field theory does not obey this philosophy because the MH field theory
is defined in Minkowski space-time, and MH theory is Lorentz covariant by
construction. It contains no connection and is not generally covariant.

For a tensor of any rank [9]:

[Dρ, Dσ]χµ1...µk
ν1...νl

= −Tλ
ρσDλχµ1...µk

ν1...νl
+ Rµ1

λρσχλµ2...µk
ν1...νl

+ Rµ2
λρσχµ1λ...µk

ν1...νl
+ . . .

− Rλ
ν1ρσχµ1...µk

λν2...νl
+ Rλ

ν2ρσχµ1...µk

ν1λ...νl
− . . . (6.35)

The commutator of two vector fields X and Y is a third vector field [9] with
components:

[X,Y ]µ = Xλ∂λY µ − Y λ∂λXµ. (6.36)
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The curvature and torsion tensors can be though of as multi-linear maps [9],
the torsion being a map from two vector fields to a third:

T (X,Y ) = DXY − DY X − [X,Y ] (6.37)

and the curvature as a map from three vector fields to a fourth [9]:

R(X,Y )Z = DXDY Z − DY DXZ − D[X,Y ]Z (6.38)

where:

DX = XµDµ. (6.39)

Cartan’s geometry [1–9] expresses these results in an elegant and concise way
through his two well known structure equations [9]:

T a = D ∧ qa, (6.40)
Ra

b = D ∧ ωa
b . (6.41)

6.3 The Jacobi and Bianchi Identities

The Jacobi identity [1–10] is an exact identity used in field theory and general
relativity. It is an operator identity that applies to covariant derivatives [9]
and group generators [10] alike. It is very rarely proven in all detail however
and so the following is a detailed proof. It is necessary to prove that:

[[Dλ, Dρ], Dσ] + [[Dρ, Dσ], Dλ] + [[Dσ, Dλ], Dρ] := 0 (6.42)

which is the Jacobi identity, an exact identity. The proof expands the com-
mutators as follows

L.H.S = (DλDρ − DρDλ)Dσ − Dσ(DλDρ − DρDλ)
+ (DρDσ − DσDρ)Dλ − Dλ(DρDσ − DσDρ)
+ (DσDλ − DλDσ)Dρ − Dρ(DσDλ − DλDσ) (6.43)

and this expansion is regarded as an expansion of algebra:

L.H.S = DλDρDσ − DρDλDσ − DσDλDρ + DσDρDλ

+ DρDσDλ − DσDρDλ − DλDρDσ + DλDσDρ

+ DσDλDρ − DλDσDρ − DρDσDλ + DρDλDσ := 0 (6.44)

Q.E.D.
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In field theory [10] the Jacobi identity is used to define field equations,
and the commutator of covariant derivatives defines the field Gµν through a
constant g :

[Dµ, Dν ] = −igGµν . (6.45)

The idea of covariant derivative in field theory is borrowed from general rela-
tivity [10] and in condensed notation in field theory there exist commutators
such as:

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν ]
= −ig(∂µAν − ∂νAµ − ig[Aµ, Aν ]) (6.46)

which have been extensively developed in to precursor theories of ECE such as
O(3) electrodynamics (see Omnia Opera section of www.aias.us from 1992 to
2003). In Ryder’s [10] eq. (3.173) for example there appears a field equation:

DρGµν + DµGνρ + DνGρµ = 0 (6.47)

which in the notation of differential geometry [1–9] is:

D ∧ G = 0. (6.48)

Eq. (6.48) is similar to the Bianchi identity of differential geometry, which
becomes the ECE homogeneous field equation [1–8]:

D ∧ F a = A(0)(Ra
b ∧ qb) (6.49)

or

d ∧ F a = A(0)(Ra
b ∧ qb − ωa

b ∧ T b). (6.50)

It is clear that both Ryder’s field equation (6.48) and the ECE field equation
(6.49) share a common origin in the commutator of covariant derivatives, but
ECE theory is developed in a more general manifold than the type of field
theory used by Ryder [10]. The latter is restricted to the Minkowski manifold
only.

Restricting consideration of Eq. (6.26) to the torsion free case it becomes:

[Dµ, Dν ]V ρ = Rρ
σµνV σ (6.51)
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which can be expanded as:

[Dµ, Dν ]V 0 = R0
0µνV 0 + R0

1µνV 1 + R0
2µνV 2 + R0

3µνV 3

[Dµ, Dν ]V 1 = R1
0µνV 0 + R1

1µνV 1 + R1
2µνV 2 + R1

3µνV 3

[Dµ, Dν ]V 2 = R2
0µνV 0 + R2

1µνV 1 + R2
2µνV 2 + R2

3µνV 3

[Dµ, Dν ]V 3 = R3
0µνV 0 + R3

1µνV 1 + R3
2µνV 2 + R3

3µνV 3. (6.52)

In the torsion free case the following Riemann tensor elements vanish:

R0
0µν = R1

1µν = R2
2µν = R3

3µν = 0 (6.53)

because [9] in this case:

Rρ
σµν = −Rσ

ρµν . (6.54)

Therefore

[Dµ, Dν ]

⎡⎢⎢⎣
V 0

V 1

V 2

V 3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 R0

1 R0
2 R0

3

−R0
1 0 R1

2 R1
3

−R0
2 −R1

2 0 R2
3

−R0
3 −R1

3 −R2
3 0

⎤⎥⎥⎦
µν

⎡⎢⎢⎣
V 0

V 1

V 2

V 3

⎤⎥⎥⎦ (6.55)

and it is possible to define an operator equation similar to Eq. (6.45) of field
theory:

[Dµ, Dν ] = Rµν :=

⎡⎢⎢⎣
0 R0

1µν R0
2µν R0

3µν

−R0
1µν 0 R1

2µν R1
3µν

−R0
2µν −R1

2µν 0 R2
3µν

−R0
3µν −R1

3µν −R2
3µν 0

⎤⎥⎥⎦ (6.56)

illustrating the relation between field theory and general relativity.
The conventionally named second Bianchi identity [9] may be derived from

Eq. (6.51) as follows:

([Dκ, [Dµ, Dν ]])V ρ = (Dκ[Dµ, Dν ] − [Dµ, Dν ]Dκ)V ρ

= Dκ(Dµ(DνV ρ) − Dν(DµV ρ)) − DµDν(DκV ρ)
+ DνDµ(DκV ρ)

= Dκ([Dµ, Dν ]V ρ) − [Dµ, Dν ](DκV ρ)
= (Dκ[Dµ, Dν ])V ρ + [Dµ, Dν ]DκV ρ − [Dµ, Dν ]DκV ρ

(6.57)



6.3 The Jacobi and Bianchi Identities 105

using the Leibnitz Theorem. Therefore:

(Dκ, [Dµ, Dν ])V ρ = (Dκ[Dµ, Dν ])V ρ. (6.58)

Therefore the Jacobi identity in this case becomes:

(Dκ[Dµ, Dν ] + Dν [Dκ, Dµ] + Dµ[Dν , Dκ])V ρ = 0 (6.59)

i.e.:

Dκ(Rρ
σµνV σ − Tλ

µν DλV ρ) + Dν(Rρ
σκµV σ − Tλ

κµ DλV ρ)

+ Dµ(Rρ
σνκV σ − Tλ

νκ DλV ρ) = 0. (6.60)

The conventional second Bianchi identity is a special case of this equation
when the torsion vanishes, so:

Dκ(Rρ
σµνV σ) + Dν(Rρ

σκµV σ) + Dµ(Rρ
σνκV σ) = 0 (6.61)

Using the Leibnitz Theorem:

Dκ(Rρ
σµνV σ) = (DκRρ

σµν)V σ + Rρ
σµνDκV σ (6.62)

and it is seen that the second Bianchi identity:

DκRρ
σµν + DνRρ

σκµ + DµRρ
σνκ = 0 (6.63)

is true if and only if the following operator identity is also true:

Rρ
σµνDκ + Rρ

σκµDν + Rρ
σνκDµ = 0 (6.64)

In differential form notation Eq. (6.64) is [1–9]:

Ra
b ∧ D = 0 (6.65)

and Eq. (6.63) is:

D ∧ Ra
b = 0. (6.66)

Therefore both Eqs. (6.65) and (6.4) severely restrict the validity of EH gen-
eral relativity and cosmology.
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6.4 Pure Rotational Limit

In previous work [1–8] the pure rotational limit of ECE theory has been
considered to be defined by the duality of Ra

b and T d in the Minkowski
tangent space-time:

Ra
b = −κ

2
εa

bdT
d. (6.67)

In this section the pure rotational limit is considered to be the special case
from Eq. (6.26) where:

Rρ
σµνV ρ = −Tλ

µν DλV ρ (6.68)

which is similar to Eq. (6.67) but written in the base manifold. With
Eq. (6.26), Eq. (6.68) becomes a rotation generator type equation:

[Dµ, Dν ]V ρ = −2Tλ
µν DλV ρ (6.69)

giving the operator equation:

[Dµ, Dν ] = −2Tλ
µν Dλ (6.70)

in which the covariant derivatives obey the Jacobi identity (6.42). The covari-
ant derivatives appearing in Eq. (6.70) can also be considered as group gen-
erators [9–10]. For example the group generators of SO(3) obey:

[Ii, Ij ] = iεijkIk (6.71)

where the group structure constant [10] is:

Cijk = iεijk (6.72)

and:

ClimCmjk + CljmCmki + ClkmCmij = 0. (6.73)

The group structure constant is defined by the adjoint representation [10]

Cimn = (Ii)mn (6.74)
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where:

I1 =

⎡⎣ 0 0 0
0 0 −i
0 i 0

⎤⎦ , I2 =

⎡⎣ 0 0 i
0 0 0
−i 0 0

⎤⎦ , I3 =

⎡⎣ 0 −i 0
i 0 0
0 0 0

⎤⎦ . (6.75)

There is a clear similarity between Eqs. (6.70) and (6.71), except that
Eq. (6.70) is written in the general manifold and Eq. (6.71) is Euclidean.
Therefore it is possible to think of the torsion tensor in Eq. (6.70) as a group
structure constant in the general manifold. The generators of the group
are the covariant derivatives in the general manifold. Taking the analogy
further the SU(3) group [10] is defined by Gell-Mann matrices which obey
the commutator relation: [

λa

2
,
λb

2

]
= ifabc

λc

2
. (6.76)

The group structure constant in this case is defined by [10] ifabc.
It therefore follows that if Eq. (6.70) is considered to be rotational in

nature, analogous to Eqs. (6.71) or (6.76), the possible values of Tλ
µν are the

totally anti-symmetric T 1
23 , T 2

31 and T 3
12 . These are space-like and play a

role analogous to ε123, ε231, and ε312 in Euclidean space-time. If the upper
indices are held constant and Hodge duals are performed on the lower two
indices we obtain T 1

01 , T 2
02 , and T 3

03 . In ECE theory [1–8] they define
the components of the electric and magnetic fields of the generally covariant
electromagnetic sector (Eqs. (6.8) and (6.50)). In the case of pure rotation
the electro-dynamical equations of ECE in vector notation are the free space
values:

∇ · B = 0
∇ × E + ∂B/∂t = 0

∇ · E = 0

∇ × B − 1
c2

∂E/∂t = 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.77)

More generally in the laboratory, and for all practical purposes, they become
[1–8] the familiar vectorial laws:

∇ · B = 0
∇ × E + ∂B/∂t = 0

∇ · E = ρ/ε0

∇ × B − 1
c2

∂E/∂t = µ0J

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.78)

but now written in the general manifold.
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